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Interpolating Sequences and Extremal
Problems

Ching-Cheong Lee

Department of Mathematics

Abstract

In 1958 Carleson proved that a sequence is interpolating if it is uniformly sep-
arated, later in 1983 Peter Jones gave a simple constructive proof in [JON] which
is stunning in his time. On the other hand, when a sequence is not uniformly
separated, Garnett gave a sharp positive result in [GAR2]. Following Jones’s
idea in [JON] and also a highly relevant paper [VIN] due to Vinogradov, we
give a constructive proof to Garnett’s result on nonuniformly separated sequence
with slightly modified assumption. We will also discuss extremal problems that
is described in the language of Hardy spaces and solve it in functional analytical

point of view.
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Chapter 1

Preliminaries

In Section and we will mention all necessary definitions and background
in complex analysis that we are going to use throughout the thesis. In Section
we give a complete introduction to interpolating sequences and known results in
this aspect, including the most important result—the Carleson Theorem—that

we use and partially generalize in the next chapter.

1.1 Notations

In this thesis we denote
D={z€C:|z| <1} =D(0,1) and T ={|z|=1}=10,27)

dt
the open unit disk and its boundary respectively. We denote 7 the normalized
T

Lebesgue measure on 7' = [0, 27).

Given an analytic function f : D — C and a fixed r € [0, 1), we denote

fi(2) = f(rz), ze€-D

r

the r-dilation of f(z). We also use the notation

fr(0) = f(re?)

which is a continuous function on the circle T.



Whenever a function is defined on 7', we use || - ||, to denote the p-norm on

LP(T,df/2r), that is,
27 da 1/1’
r - T OF :
Il = ([ 18 0F5)

The notation | - ||, will carry another meaning in (1.3]). This is the only extra

meaning and hopefully no confusion will be caused.

1.2 Hardy Spaces

1.2.1 As a Subspace of LP(T,df/2r)

The prime function space on which we do analysis is:

Definition 1.1. For p > 0, the notation H?(D) (or simply H?) denotes the

class of analytic functions f(z) on D satisfying

sup || frll, < oo. (1.2)
0<r<1

The set of function in H? is called the Hardy space on D.

When p = oo, the definition says that H* consists of the class of bounded
analytic functions. Suppose f(z) is analytic on D, then |f(2)|? is subharmonic,
therefore r +— || f,||, is an increasing function (for a proof, see pp. 336-337 of
[RUD]). Thus in the definition of Hardy class functions the supremum is actually
the limit of ||f.||, as » — 1. We define

27 » d0 1/p
— 1; — 1; WP
11 =t 17 =i ([ 70ep 52) (13

When p > 1, the triangle inequality for LP(T) functions shows that || f||, in
(1.3) defines a norm on H?. When 0 < p < 1, ||f|l, is not a norm on L? any
more. In fact it is easy to show conversely that if |||, satisfies triangle inequality

on LP(T), then p > 1. However, for p € (0,1), the fact that

1fglly = [ fllpllglle-,  p" =p/(p—1)

2



enables us to show
dp(f,9) = IIf =gl

defines a metric on LP.

Theorem 1.4. When p > 1, H? is a Banach space with || - ||, defined in
. When 0 < p < 1, the metric d(f, g) = ||f — gl|} turns H? into a complete

metric space (or even more, a Fréchet space).

An important feature of Hardy space H? (p > 0) is that it can be identified

as a closed subspace of LP(T'), as shown in the following theorem:

Theorem 1.5 ([RUD], p. 340). If0 <p < oo and f € H?, then
(a) The nontangential limits f*(e) exist a.e. on T and f* € LP(T),
(b) lim,_q || f* — fo]l, =0 and

(¢) 1My = 1171

As a convention, from now on we will denote f(t) the nonnganential limit

instead of f* throughout the thesis.

Theorem 1.5 tells us that given an f(z) € HP, we get an f(t) € LP(T). To

recover back from a function on 7" to a function on D, we need the following:

Definition 1.6. For z € D, we define the Poisson kernel of D by

1— |z et + 2 1—1r2
P.(t) = — =R . = =: P.(0—1t).
®) |eit — 2|2 e(e’t—z 1—2rcos(6 —t)+1r? ( )

The Poisson integral of f : T — C is the harmonic function on D defined by

Pf)(z) = / CPAOI() S = Pon f0), 2= e,

Our notations P, and P, are consistently used. It is also not hard to see

LY(T) — {harmonic function on D}; f + P[f]



is one-one. The reason is simple: suppose P[f] = 0, then for every g € C(T),
Fubini’s Theorem tells us fo% Plg].fdt = 0% P[f],gdt = 0, by taking r — 1,
fo% gf dt =0, thus we conclude f =0 a.e..

The Poisson kernel of I satisfies for every z € D,

2 do
P — = 1.
/0 Z(e) 27

Generally the Poisson integral of an L' function f(¢) on T is harmonic but not
analytic, e.g., take f(z) = 271, then g := P[f|r] cannot be an analytic function.
To see this, suppose g were analytic, then ¢ € H' by [Theorem 1.7 below and

later by , f027r g(t)e™ dt = 0 for every n > 1, a contradiction arises

when n = 1 since g(t) = ™.

Although analyticity of functions in the image of P[-] cannot be guaranteed,

they automatically satisfy (1.2)):
Theorem 1.7. If 1 <p < oo and f € LP(T,d0/2x), then

sup [ P[flllp < [1f[lp-
0<r<1

This follows easily from the generalized Minkowski inequality:

H / F(z,t) dv(z)

< / 1 )| o autey do()
Lr(du(t))

which is a standard exercise in real analysis as it can be proved by elementary

use of Holder’s inequality.

Theorem 1.7| and density of continuous functions in LP(T") now give:

Theorem 1.8 ([RUD], p.239). Let f € LP(T), 1 < p < oo, then

tim || P17, — fll, = 0.

We can state for which functions analytic on D the integral representation on

the boundary is possible:



Theorem 1.9. A function f(z) analytic in |z| < 1 is representable in the

form

0= [ Py

for some p € L' if and only if f € H'. In this case, o(t) = f*(e™) a.e..
For a proof, see p. 31 of [DUR].

When p > 1, shows that every f € HP can be identified with
an f* € LP(T) isometrically. Therefore f* = 0 a.e. implies f = 0. In fact the

zeros of f* on the boundary must be very “thin”. More precisely, |Iheorem 1.10]

below implies that if f*(e”) = 0 on a set of positive measure, then f = 0.

Theorem 1.10. If f € H?,p > 0, then

dt

In|f(2)] < /0 | ()| () ot (1.11)

For a proof using Fatou’s lemma, see p. 23 of [DUR], p. 62 of [GAR] or p.
344 of [RUD]. For a proof using subharmonicity of In|f(z)|, see p. 35 of [RAN].

Direct application of Jensen’s inequality to [I'heorem 1.10f gives:

Corollary 1.12. If f € H? p > 0, then

FEP < / e L

21’
This inequality says that every bounded sequence {f,} in H? must be lo-
cally uniformly bounded on D and thus forms a normal family. Moreover, this
inequality says that the pointwise evaluation at z, denoted by 7., is a bounded

linear functional on HP. Perhaps the most useful consequence resulting from

|Corollary 1.12[in this regard is:

S\ /P
sl (P 1

We will sharpen the constant ((1+|z|)/(1—\z|))1/p to (1—|2|%)"/? in[Theorem 3.6

through techniques in solving extremal problems.

5



1.2.2 Canonical Factorization via Inner and Outer Fac-

tors

Definition 1.13. An inner function is a bounded analytic f(z) on D such
that |f(e?)] = 1 for a.e. § € T. A singular inner function is a nonvanishsing

inner function.
Definition 1.14. An outer function for the class H? is a function of the form

] 2m it dt
F(z):e”exp{/ c JrZln(,p(t) },
0

et — z 21

where v is a real number, ¢ > 0, Inp € L' and ¢ € LP.

We note that inner functions and outer functions are respectively closed under

multiplication.

Example 1.15 (Inner Functions). Consider

7(2) = exp (” 1) ,

z—1

which is an analytic function on D, for every ¢ = €¥ # 1 we have

+1 —2isin 6
761 =ew {Re (1)} = e {e (20 =1

therefore |f(()| =1 for a.e. ( € T, and hence f is an inner function.

Since f(e~™z) is again an inner function, for every ¢ € T, the function

o (z—i—()
p(T=¢)

is inner. It is evident from the definition that product of two inner functions is

again inner, so for (y,...,(, € T the function

is also an inner function. |



Just like outer functions, inner functions will have a general from described

in [Theorem 1.17in terms of singular measures (these are measures concentrated

on a set of Lebesgue measure zero), in fact we have just chosen p = ¢§; in

Fxample 1.15,

Example 1.16 (Outer Functions). Explicit examples of outer function can

be obtained by [Corollary 1.20l Any invertible bounded analytic functions must

be an outer function, for example,

g(z)=z—«

is outer for every |a| > 1. In fact it can be checked that when |a| =1, g is still

an outer function since in this case g € H' and 1/g € H? for every p € (0, 1).

It is evident from |[Corollary 1.20| that the product of finitely many bounded

or H? outer functions is again outer, therefore
n
11—
i=1

is an outer function whenever |a;| > 1. |

Finer properties of inner and outer functions are in order: Inner functions

satisfy |f(2)] < 1 on D by |Corollary 1.12] Also, suppose that F(z) is an outer

function with the same notations used in [Definition 1.14] then F'(2) € HP since it

is analytic and by the fact |F'(2)|P = exp{pP[ln ¢|(z)} and by Jensen’s inequality,

we have for every 0 < r < 1,

]
1E= [ 1RGPS
T m

< [ Pl 2
= 1Pl

< Il

= el

where the last inequality follows from [Theorem 1.7 therefore ((1.2)) holds. From
Theorem 1.5 F'(z) has nontangential limit F'(¢) a.e.. Since P[ln¢], — Iny in

7



LY, for a.e. t,

[F(8)]" = exp{plnp(t)} = ¢"(1).
Therefore the class of outer functions for the class H? is a subclass of H? functions
that can be uniquely determined by their magnitude on the boundary up to a
unimodular constant:

) 2m it dt
F(z):ewexp{/ - +Zln]F(t) —}
0

et — 2 21

with In |F(¢)| € L' and |F(t)| € LP. In particular,

i FO)] = [ m|Fl 5,

and this turns out to be also sufficient for a H! function to be outer (see
below).

Theorem 1.17 ([RUD], p. 342). A singular inner function is of the form

wo{- [ 2 0]

r(—=2

for some unique positive singular measure on T'. Conversely, any analytic func-

tion of this form is also a singular inner function.

We will use the following useful characterization of outer functions:

Theorem 1.18 ([GAR], p. 64). Let 0 < p < o0 and let f € HP, f # 0,

then the following are equivalent.

(a) f(2) is an outer function.

(b) For each z € D, equality holds, i.e.,

dt

nlfG) = [ mlrolro 5 (1.19)

(c) For some zy € D holds.

(d) For every g € H? such that |g(t)| = |f(t)| a.e., then

lg(2)| < |f(2)| for all z € D.



Corollary 1.20. If f € H? and if for somer >0, 1/f € H", then f(z) is

an outer function.

Theorem 1.21 ([GAR], p. 71). If p > 0 and f € HP, then f(z) has a
unique decomposition
f(z) = CB(2)5(2)F(2),
where |C| =1, B(z) is a Blaschke product, S(z) is a singular inner function and

F(z) is an outer function in HP.

1.3 Introduction to Interpolating Sequences

In this section we mention all results that we need and present the surprisingly
simple proof of P. Jones on explicit construction to interpolation problem. This
proof is very instructive that certain detail can be extracted to give an original

and constructive proof to an interpolation problems (Theorem 2.11|) in which the

important condition stated in |[Definition 1.23]fails.

Interpolating sequence plays an important role in the study of bounded an-
alytic functions. For example, they are used in Chapter 9 and 10 of Garnett’s
[GAR] on characterization of closed algebras between H* and L, and also on

the discussion of maximal ideal space.

1.3.1 Pseudohypoerbolic Distance

The following metric on D turns out to be more natural than the Euclidean

distance for problems in the open unit disk.

Definition 1.22. The pseudohyperbolic distance of a,b € D is defined by

a—>




Let’s list a few properties of p which we use later. Firstly, we will denote

Z—Q
o = s e D.
pal2) =17, @

With this notation, we have ¢, 0 p_, = id and p(«, z) = |pa(z)]|. We know that:

e For any analytic 7 : D — D, we have

p(1(2),7(C)) < p(,Q),

known as the generalized Schwarz Lemma. With equality holds for some
z,C if and only if 7 is of the form cp,, for some |¢| =1 and o € D, and in
that case the equality must be attained thoroughly for all z,{ € D, i.e.,

Yo 1S an isometry w.r.t. pseudohyperbolic distance.

e The quantities 1 — |a|?,1 — |z|* and 1 — |p(, 2)|? are related by

(1 —a®)(d — 2%
I1—azp

1= |p(e, 2)|* =

1.3.2 Separation and Uniform Separation Condition

Definition 1.23. A sequence {z,} in D is interpolating if for every bounded
sequence {a,} in C, we can find an f € H> such that

f(z) = a;.

We note that interpolating sequence cannot be arbitrary. For example, sup-

pose {z,} is an interpolating sequence and set a; = 1, ay = ag = --- = 0, then
there is a bounded analytic f(z) such that f(z;) = 1 and f(z2) = f(z3) =--- = 0.
Since 2y, 23, ... are zeros of f(z) and f(z) is nonzero, {z,} must satisfy
D (1= zl) < o (1.24)
n=1

A short reason is as follows. W.l.o.g. we assume |f| <1 and f(0) # 0. If we set

B, =11, %, then |f/B,| <1 on T, hence on D, and thus if we set z = 0,

0 < |f(0)] < [Ba(0) = [ ] I2al-

10



As this holds for every n, []|z,| > 0, therefore Y (1 — |z,|) < oo, as desired.

This kind of sequences is so important that they bear a name:

Definition 1.25. A sequence {z,} in D satisfying (1.24)) is called a Blaschke

sequence.

Let’s continue to assume {z,} is interpolating in D. We try to seek for its

basic properties beyond those of a Blaschke sequence. Define
T:H® =0 [ (f(21) fz2),...)

By definition T' is a surjective bounded operator, therefore by Open Mapping
Theorem there is a constant M > 0 such that for every a € ¢, there is a

solution f € H* such that
[flloe < Mlallco- (1.26)
The smallest possible constant M that satisfies this inequality is

M= swp min{|fle:feH® f(z)=a5j=1,2,...}.  (1.27)

[{a;Hleo <1

The minimum in the above quantity exists by a normal family argument. It is
easy to verify ([1.27)) indeed satisfies ([1.26]) for those solution f(z) of minimal

norm. Moreover, this M is independent of the choice of {a,} (but depends on

Definition 1.28. The constant in ([1.27)) is called the constant of interpola-

tion.

Now we try to investigate geometric properties of the interpolating sequence
{zn}. Let M be the constant of interpolation. For every k € N, let a; = ¢, for
7=1,2,..., then we can find an f € H* such that

f(z) = 6 and [[flle < M|{an}]lec = M,

it follows from generalized Schwarz Lemma that for every j # k, the pseduohy-

perbolic distance p(z;, z) is bounded below:

= p(zj26) 2 p (% %) = '%

11

1

i Bk = (1.29)

1 —Zkz;



This motivates our next definition.

Definition 1.30. A sequence {z,} in D is separated if there is an a > 0 such

that
Zj — Rk

——| >a, foreveryjkeN, j#Ek.
1 — 72z

We have just shown that every interpolating sequence is separated in ((1.29)).
Moreover, if we let B be the Blaschke product with zeros z; (j # k), i.e

H —Z Z— z]
25| 1 — %52
J#k

then since z;’s (j # k) are the zeros of f, f/B can be regarded as a nonvanishing

bounded analytic function and

) < B HiH

thus we have for each k,

1= f(z) = B(z) = [B(z)[[[fllse < [B(2k)|M,

1
= |B(z)| > >0

This condition is much stronger than being separated and we call:

Definition 1.31. A sequence {z,} is uniformly separated if

. Zkp — 2

inf 21 >0.

k>1
J7#k

1—z_jzk

In 1958 Carleson proved that the uniform separation condition is also suffi-

cient for a sequence to be interpolating in [['heorem 1.33] Not only that, part

(c) of this theorem provides a more geometric condition which we will use later

in the proof of [['heorem 2.1 The statement of [['heorem 1.33|involves a special

kind of annular sector that will also be used in a proof of our main result in the

next chapter:

Definition 1.32. Any annular sector in D of the form
Q={re” :1—-h<r<1,0—6 <h}
is called Carleson square, and we denote h by £(Q)).

12



Figure gives the general picture of Carleson squares.

Figure 1.1: A Carleson square.

Theorem 1.33 (Carleson). Let {z,} be a sequence in D, the following con-
ditions are equivalent:

(a) The sequence is an interpolating sequence.

(b) We have

0 = inf

Zk — Rn
k>1

> 0.

1 —ZZ]C

n#k
(¢c) The points z,’s are separated: There is a > 0 such that

2 —

2k
Pz 20) = | =

>a>0

1-— Z_ij
for every j, k distinct; and there is an absolute constant C such that for

every square Q = {re? : 1 —4(Q) <r < 1,10 — 6| < 4(Q)},

Y (1=1z]) € CUQ).

(1.34)
2n€Q
The constant § above and the constant of interpolation
M = H srp inf{||flle : f(2j) =a;,j =1,2,..., f € H*}
aj|leo<1
are related by the inequalities
<M< (14+m3 (1.35)
- - n-— .
o~ T 5)’
in which c is some absolute constant.

13



As the open unit disk and the upper half plane
H:={z:Imz >0}

are conformally equivalent, the interpolation at sequences in D is the same as
interpolation at sequences in H. It is not surprising we have an extremely similar
analogue of Theorem [1.33]in H, for a completely self-contained proof, see p. 278

of [GAR]. One can also find the proof in Chapter 9 of [KOO] which relies heavily

on facts related to Carleson measures (to be defined in [Definition 1.37)) with

many motivating pictures.

The estimate ((1.35)) is sharp, for an example, see p. 284 of [GAR].

Note that in part (c) of[Theorem 1.33[the sum . _,(1—|zx|) can be rewrit-

ten as

(Z(l —~ \znwzn) Q).

n=1

Where §,, denotes the Dirac measure at z,. If we denote = >">7 (1 —|z,])0.,,

then can be written as
Q) < CUQ). (1.36)

This also bears a name and it is found to be useful elsewhere.

Definition 1.37. Any Borel measure i on D such that there is a constant
C' > 0 for which ((1.36)) holds for every Carleson square @) is called a Carleson

measure.

1.3.3 An Example and a Nonexample of Interpolating Se-

quences

Since it is difficult both to understand and to verify the uniform separation
condition, the existence of interpolating sequence is not so obvious to us at the
moment. Fortunately the uniform separation condition has a simple sufficient

growth condition:

14



Theorem 1.38 ([DUR], p. 155). If there is a constant ¢ € (0,1) such that

1 — |zns1] < (1 —|zn]) for everyn, (1.39)

then {z,} is uniformly separated. Moreover, the condition 15 also necessary
if0§21<22<"'.

From this it is easy to raise the following examples:

Example 1.40 (Interpolating Sequence). Let z, 25, - -+ > 0 and take z; =
%. Replacing < by = in 1} forlany c € (0,1) we obtain an interpolating se-
|

quence {z,} given by z, =1 — 5

On the other hand, there is a Blaschke sequence that is not interpolating:

1
Example 1.41 (Noninterpolating Sequence). We take z, = 1——. This
n
sequence is increasing, but if (1.39) holds for some ¢ € (0, 1), then we have

n+1)2-1 n? <
n+12 n2—1-°

for every n, forcing ¢ > 1, impossible, so {1 — #} can’t be interpolating.

For more examples, of course any sequence containing a noninterpolating

sequence must not be interpolating either. 1
1.3.4 The Simple Constructive Proof to Existence of In-
terpolation by P. Jones

P. Jones gave an extremely simple proof to Carleson Theorem in [JON], formu-
lated in the form of [[heorem 1.42, This proof is stunning in his time because of
Carleson’s work and because very few people consider the explicit construction

possible.

Theorem 1.42. Let {\,} be a uniformly separated sequence such that 0 <

15



|An] < |Apia| forn=1,2,3,.... Denote

6_71L>1H‘1_

and also

Finally, let

PD,(z) = (11__|¥'|Z ) gj((;) exp (e(an(An) — an(2))), (1.43)

where € = (21n ﬁ) ' then

Z|c1> |<—ln52, for z € D.

As a result, these ®@,,’s directly gives an interpolation for every bounded se-

quence at points {z,} by setting f = > a, P,

Proof. This follows from very careful computation. First of all, we have

1— |2\l

o 0 ) (1.44)

Re(anm(2)) = >

k>n ‘

For every k > n, we have |\;| > |\,|, therefore (1 — |\, |?)(1 + [Mef?) > 1 —
|Anl?[Ax]?, thus

(1= [AH( =[NP
Rea,(\,) < .
Z TS wWE

(1 — A = (M)
[EESWHE
= (1 — (ks An)?)

k>n

2 (1 £ 3001 p0 )

k>n

I\/M

N——

IN

2 (1 =Y “Inp(X, ,\n)2> <2(1—1né?) =: L (1.45)

£
k>n

16



By (1.45)) and the definition of ®,, in (1.43]) we have

(L — A f[2?) 1
@, (2)] < W(l — [Aul?) - 5 oxp(l —eRean(2)) (1.46)
= g(Re an(2) — Reay11(2)) exp(—e Re ay (2))
< %(eeRean(z)—sRean+1(z) . 1)6—5Rean(z)
€
e
— _(e—sRecxn+1(z) o e—eRean(z))‘
gd
Finally we take summation on both sides to get > 7 | |®,(2)] < e/(£0). |

The key to the proof is to write the expression
(L= Aa?l2?)

1 — A\,z]2
in (1.46) as a difference of two “adjacent” numbers in a sequence. In [VIN]

(L= Al

Vinogradov found a similar interpolation operator for

Ty s HP = 075 = (f(21), f(22),...).

Theorem 1.47. Suppose {\,} is uniformly separated. Let

6 = inf 1;[ p(Ajs An)
Jj#n

and let
M| < Ao < -0

Denote

A A=z VIAA =[Nz
bo(z) = z, b,\(z):%l_xz and a,\(z):Tl_‘X’Z

for € C and X € D\ {0}. Also let

An = Ha/\k7

k>n

00 1— |)\n|2 2
2 () W=

n=1

then

and the interpolation is given by

. Oo 1_|)‘n‘2 ? Bn(z> A n(z)
Q) =2 o ( 1—A—nz> BL0v) A, () (148)

n=1

with |Qllp < (8/6%)all-
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(1.43) and (1.48]) suggest a strong evidence that explicit construction look

quite the same. Namely, the term

(50) o

must be there! They motivate the construction in (2.13) in the next chapter,
where C} is to be determined. We will adopt the similar idea as in Jones’s

proof above to push certain telescoping expression to appear in the proof of

[Theorem 2.11] later.
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Chapter 2

Interpolating Sequences

2.1 Uniformly Separated Sequences

We have seen that interpolating sequence must be a Blaschke sequence in Section
1.3.2] On the other hand, Section [1.3.3] shows us not every Blaschke sequence
is interpolating. The next theorem states that interpolating sequence can have

arbitrary growth rate as a Blaschke sequence!

Theorem 2.1. If 2| <1 for every j > 1 and if 377, (1 — |2|) < oo, then

there is an interpolating sequence {w;} with |w;| = |z;| for every j > 1.

This result is cited in p. 305 of [GAR] and was due to Naftalevitch in the
1940’s. However, the search for Naftalevitch’s original paper containing this

result is not successful. We try to fill in the proof on our own:

Proof. We may assume |z1] < |23] < ---. The proof is constructive. We
define
Op = > (1—|z)),
i>k
and we hope that
wy = |zle®, k=1,2,... (2.2)

form an interpolating sequence. By part (c) of [Theorem 1.33|a sequence {w,} is

19



interpolating if and only if {w,} is separated and the discrete measure

M= Z(l — |wn|)duw,
n=1
is Carleson. That is, we need to prove the following separation condition

inf {p(wj,wk) = ’

Wy — Wy

:j;ék;}>0 (2.3)

1—w_jwk

and for every Carleson square
Q={re?cD:1-h<r<1,/0—6|<h}=C6,h), h>0,
we have the Carleson condition

n(Q) < CUQ) (2.4)

(where ¢(Q) := h) for some absolute constant C' > 0.

We first prove the Carleson condition ([2.4), we will then prove that {wa,} is

separated and conclude that we don’t need to show {w,} itself is separated.

Proof of Carleson condition ([2.4). We consider three types of Carleson

squares:

Case 1. Consider Q C H such that 1 ¢ Q. Let Q := C(¢,h) be such that
¢—h>0(ie, 1 €Q). We give a sketch of those @)’s in Figure

~
~

Figure 2.1: Carleson squares not containing 1.

Since {wy} defined in (2.1]) only accumulates at 1, we may let k be the first
integer such that wy € @ and n the last integer such that w, € ), then

20



and therefore

W@ < S (1~ wil) = 0 — 0, + (1= wal) < (& +h) — (6 — h) + h = 3h.

k<i<n

The case for those ()’s in the lower half plane is essentially the same.

Case 2. In the remaining two cases let’s consider Carleson squares containing

1. First consider those centered at 1:
Q =C(0,h).
Let ko be the first integer such that wy, € ), then by definition,

S0 fuil) = b, <

i>ko

Now for every k > ko, we have 1 — |wy| < h, i.e., 1 — h < |wg]. We also have
0 < Ok, < h. Therefore wy € C'(0,h). So we have

p(@Q) = (1~ fwil) <

Case 3. Finally for every Carleson square @ such that 1 € Q, let h = ((Q),
then it must happen that @ C C(0,2h), as shown in Figure 2.2]

enlarge

Figure 2.2: Extension to Carleson squares centered at 1.

Therefore by case 2,

p(@) < p(C(0,2h)) < 2h.
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Combining 3 cases, (2.4)) holds with C' = 3.

Proof of Separation Condition ([2.3). We try to shrink

(1 — Jwy[*)(1 = Jwi]?)
|11 — Wrw; |2 '

:0<wj>wk)2 =1-

Since {w,} accumulates only at 1, we may just show that p(w;, wy) is bounded

below for sufficiently big 5 and k.

We first shrink the factor |1 —wiw;|. We may assume j < k, then 6; —6;, > 0.

Let € € (0,1) be very small and let k, 7 be sufficiently large.

11— wrw;|? = |1 — |z5|2;]e" %02

= (1 — |anllzj] cos(0; — Ok))® + |24 [*[ 2] sin®(0; — O0),

set |a = |z;| | and | b = |2/, | then the above

= a’b* + 1 — 2abcos(6; — by). (2.5)
Now we divide the proof into two steps.

Step 1. Assume that k£ — j > 2, then

k—1

0;— 0= (1)

i=j

Z 1-— |Z]| + 1-— ’Zk_1’

> 1= [yl + 1= [zl > 24/(1— |5 )(1 = |24,

and hence

(65 = 0x)* = 4(1 = |z])(1 — [zx]) = 4(1 — a)(1 — b) =: B. (2.6)

Since for € > 0, cosz < 1 — (5 — €)2? for sufficiently small z, it follows that from

(2.5) and (2.6),
1
11 — wrw;|* > a®b* + 1 — 2ab (1 — (5 — e)B)

= a?b* +1 — 2ab + ab(1 — 2¢)B
= (1 — ab)® + abB — 2abBe,
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recalling B = 4(1 — a)(1 — b) and observing that (1 — ab)? — (1 — a)(a — b) =
a’b? + a + b — 3ab > 0, we conclude the above

v

(1—a)(1—=0b)+ab4(l—a)(l—0)]—8(1—a)(l—Db)e
(1 —a)(1—0b)[1+ 4ab— 8¢

(1= Juw;[)(1 = Jewg | ) (1 + 4w ||wi| — 8e). (2.7)

Choose € = 3% at the beginning, then for j, k large, 1+4|w,||wy| > 4.75, therefore

from (7).

|1 — wrw; ] > 4.5(1 — |wy]) (1 — |wy]),
and we have

(1= Jw;?)(A — |wgl?)
|1 — wyw; |
401 — Jw; )X — |wg|) 1

S Ty Ty R

plwj, wi)? =1 —

Step 2. Suppose now k = j + 1, the same technique does not work since
0; — 0, = 1 — |z is not a sum of at least two terms in {1 — |z] : i > 1}.
Fortunately we don’t need to do this step! By Step 1, given any Blaschke sequence
|zn|, our construction shows that {ws,} is separated, and thus interpolating
since previously we have shown that Y (1 — |wa,|)du,, is Carleson, with |ws,| =
|z9,,|. From this point, given any Blaschke sequence z1, 2o, . . ., construct another
Blaschke sequence

A1,21,02,22,- .,

such that |a;| < |z1| < Jag| < |29] < -+, by Step 1 we get an interpolating

sequence {w! } with |w), | = |z,]. |

2.2 Nonuniformly Separated Sequences

Let A1, Ag, -+ € D. Recall that {\,} is said to be uniformly separated if

An — Mg

e >0, TL:]_,Z,?),...
1=\,
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satisty inf,,>1 0, > 0. In case

inf 9,, = 0,

n>1
Carleson’s Theorem fails. Nevertheless, under a suitable growth condition on
the sequence of numbers {a,} (rather than just a bounded sequence) a positive

result was found by Garnett:

Theorem 2.8 ([GARZ2]). Let A(t) be a positive decreasing function on [0, 00).
If
/ A(t)dt < oo
0
and if
la,| < 6, A(1+1nl/d,) for each n, (2.9)

then there is an absolute constant C' > 0 for which there is an interpolation
feH>® f(A\) =a, n=12...

such that
1flleo < 0/ A(t) dt. (2.10)
0

In case inf 6, > 0, also includes [Theorem 1.33] as a special case
by taklng A(t) = X[071+1n 1/6n] (t)

The proof of [Theorem 2.8 i.e., Theorem 4 in [GAR2], is done in the upper

half plane, and the existence of the solution rests on showing certain discrete

measure is Carleson in an attempt to give an upper bound of
M, :=inf{||f|le: f € H®, f(z;) =a;,1 <j<n}
that is independent of n. A similar result can be proved constructively when the

growth condition ([2.9) is modified to (2.12]).

Theorem 2.11. Let A(t) be a positive decreasing function on [0, 00). If
/ h A(t)dt < oo,
0
{t,} diverges to oo and if there is p > 2 such that
la,| < P A(t,) for each n, (2.12)
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then there is an absolute constant C > 0 for which there is an interpolation
feH>® f(A\) =a, n=12...

such that
Iflle < C / Alt) dt.
0

When t,, = 14+1n1/4,, then this becomes a weakened version of [Theorem 2.8|
Our modification is flexible in the sense that t,, can be arbitrary, as long as it

diverges to oo, rather than using the fixed choice {1 +1n1/d,}.

The special case that inf §,, > 0 in our [Theorem 2.11] still generalizes [Theo-
rem 1.33] The use of the condition p > 2 will be seen in line (2.20)) in which we

try to shrink a number |a| to |a[P~! with |a| < 1.

Proof of [Theorem 2.11l W.lo.g. let’s assume |A;| < |[Ag] < ---. We try
to construct an explicit construction as P. Jones did in [JON]. We define a similar

sum that’s supposed to be a correct interpolation

S(z) = Zan (11_—‘/>\\_:|z > fin((/iz)) - Ch(2), (2.13)

n=1

here C,(2) is to be determined such that C,(A,) =1 and

ad _)\_k Z—)\k

B.(2) =[] AL

w1 (w) T e
k#n

Supposing the summation converges normally by suitably chosen C),(z)’s, then

we have
15(2)] §;| n|(|11:‘i\—:L|)2 bin(fj) |Cn(2)]
s (L= Pz (1 = M) 1
< ;[%A(tn)] TS 512l
= Alty) O M’"'L'l |—2|A_)(zll2_ M et (2.14)

n=1

From [VIN] we have the following computation: define

on () = Yol Qo Pl
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then

15 Jay, () = 1 — L2 PllzA = Au)

[EDwE
Therefore the line (2.14]) becomes
) S4Y 0 Alta) (L~ lax, (2) ) Cal2) 187" (2.15)
n=1

Now we follow Garnett’s proof in [GAR2] to consider the following sets of interg-
ers

E,={keN:m—-1<t, <m},

then from ([2.15)) we get

SEI<1Y Y ) <43 (A lon@PIGE )m -1,
m=1k€EEn, m=1 \ keEp
=B,
(2.16)
Next we perform summation by parts once to (2.16)), recall that
N N-1
Z Ao, = Z(al Tt am)(bm - bm—l—l) + (a1 + -+ aN)bN-
m=1 m=1
Putting a,, = By, and b,, = A(m — 1) we have from ({2.16) that
N—-1
(Bi+-+B)(Am—-1) - A
S()| < 4 fim [ 2D J(A(m = 1) = A(m)) (2.17)
N—oo +(B1+ -+ By)A(N — 1)

Now we aim to show that for suitably chosen C,(z) we have for some absolute

constant C > 0 such that

By+---+ B, <Cm for every m. (2.18)

Let’s accept (2.18]) for the moment and finish the proof quickly. Since A(t) is
decreasing and integrable, we have (B + - -+ By)A(N — 1) — 0, and therefore

(2.17) becomes

<4328, o B)(Alm 1) = A(m)

n
Mg
E
2
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< C’/ A(t) dt.
0

Thus the proof will be completed after we prove (2.18)) with suitable choices of
Ck s.t. Ck()\k) =1.

Now we prove (12.18]), recall that by definition
Bt Bu=Y Y IGO0l DT (219)
i=1 keE;

We define Cj(z) as follows. Let Ap(2) = [],., ax (2), which is a nonvanishing

analytic function since |1 — ay, (2)] < 2(1 — |\,|)/(1 — |z]). Moreover, we have

Al A =M |
| Ar(Ae)|? i = il LR > 2
1 — )\ /\k k 11— >\z/\k
for every k. Now we let )
[Ax(2)]P~
Cp(2) = —FF—
VoW
by fixing a branch of log. It then follows that
a1 JAG) P -
G~ ar (IO < 201~ ar, ()DL
k
< 2| A4k(2) [P = Jar (2)[P7) (2.20)

= 2(JA(2)]"" = [Aa (2)P7).

We combine this estimate with (2.19) to obtain

Bitoot B 23 S (A — (A () < 2m,

zlkl

J/

=lmy o0 (JAN (2) [P~ 1 =[Ao(2) [P~ 1) <1

as desired.
To sum up, our interpolation is given by

. 1 - ‘)‘n|2 ? B,(2) [
Zan ( 1— A,z ) Bn(An) . [An(An)]pil' '

I
3
—~
N
P
T
—_
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Chapter 3

Extremal Problems Through
Duality

3.1 Preparative Results

Before going through the next theorem, we list out a few more facts that will be

found important to us later.

Lemma 3.1. Let f € H'. The Fourier coefficient of the nontangential limit
f(0) of f(z) coincides with the Laurent series coefficient of f(z) at 0.

Proof. This follows from explicit computation. For every r € (0,1), let

n € Z, then the n-th Laurent series coefficient is
) (0 1 1 [ o oo dl
f ( ) _ f(Z) dZ:—/ fT(ezﬁ)e—mB_'
™ Jo 2m

n! 271 , 2Tl

|2z|=
On the other hand, since f(n) := 0277 f(0)e=™? 2 "4 triangle inequality gives

27
) (0 A
'f m( ) —f(m\ <" =Dl el + 1F = Sl

_ f<")(0)' |

n!

for every r € (0,1), when 7 — 17, (b) of [Theorem 1.5|gives f(n)

As a consequence, when f € H! (D HP for all p > 1), the negative Fourier

coefficients vanish, i.e., f (n) = 0 for all n < 0. Conversely, H? is the set class
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of functions in LP(T)) (where p > 1) such that f(n) = 0 for all n < 0. This is

simply because

Pr(t) =14+ Zrn(eint + efint>'
n=1

Thus P|[f] = f € H? by [Theorem 1.7| when identified as an element in LP(T).

Lemma 3.2. Let p > 1, if g,’s € HP are bounded in HP and converge to
g normally, then g € H? and for fized k € 7Z the k-th Fourier coefficient of g,
converges to that of g. In other words, for any k € 7Z,

2 2
o dt L dt
hm gneilkt _— = / geilkt —.
n—o00 J 27 0 2

Proof. g € H? since ||g,||, < oo as r — 1. Now the convergence of the kth

Taylor coefficient of g, (in n) follows from normal convergence:

27 27
/ r’”gn(reit)e’““ dt/2m — / r’"g(re“)e’ikt dt/2m.
0 0

Since Taylor coefficients and Fourier coefficients coincide, we are done. 1

Lemma 3.3. Let f € H'(D) and let f(t) be real a.e. onT, then f(z) can be

extended analytically across any point of T.

The idea of the proof will borrow from that of the standard fact that if a
continuous f : D — C is analytic on D \ I with D a domain and I' a piecewise
smooth Jordan arc that chops D into two pieces, then f(z) is analytic on D.
Thanks to the existence of nontangential limits, we have a natural candidate of

extension across 71"

Proof. Set f(z) = f(1/Z) when |z| > 1. Let L;(r) and T;(r), i = 1,2,4, be
defined roughly as in Figure 3.1} where L3 and T3 are fixed arc and independent

of r, Ly(r), Ty (r) are arcs with radius r and 2 — r respectively.

We denote

L(T) = (Ll -+ LQ + L3 + L4)(7") and T(’f’) = (Tl + TQ + T3 -+ T4)(7“)
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Figure 3.1: The contours we use.

the boundaries of corresponding annular sectors. Now for every z € D, for big

1= () S

Of course the second integral vanishes, thus the integral formula follows, now we

enough r we have

expand all contours:

fle) = ({/(L2+L3+L4)(T) Jr/(TerT:’HrT4 ] [/Ll /Tl ]) a Z;fz

The second square bracket converges to 0 by part (b) of [Theorem 1.5/ and by the
fact that f(t) is real a.e. on T, it follows that as r — 17,

[ 5Q
e = [ L

where C = (Lo + Ly + Ly + Ty + T3 + T})(1) is a piecewise C' closed path. 1

Lemma 3.4. Let D C C be a domain such that D O D. Suppose f : D — C

is analytic and f|r > 0, then every zero of f(z) on T must have even multiplicity.

Proof. Suppose that zp € T is a zero of f(z), w.lo.g. let’s take zy = 1,
then f(z) = (2 — 1)"g(z) for some ¢(z) analytic near 1 with g(1) # 0. For every
z € T\ {1} close enough to 1, we have

nArg(z — 1)+ Argg(z) =0 (mod 27),

where Arg denotes any branch of argument whose branch cut does not intersect

g(1), so as to make Arg g(z) continuous near z = 1.
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Let’s take z; € T'\ {1} near 1 and then take zo € T such that z; — 1 = z, — 1,

we have
nArg(z; — 1)+ Argg(z;) =0 (mod 27)
and
—nArg(z; — 1)+ Argg(z) =0 (mod 27),
hence

2n Arg(z — 1) + Argg(z1) — Argg(z2) =0 (mod 27).

If we take T'> z; — 1, then the equality above modulo 27 becomes
s
2n (5) +0=0 (mod 27),

which is the same as saying n is even. 1

3.2 Extremal Problems

This section is devoted to solving extremal problems in Hardy spaces. In handling
extremal problems we will apply the following well-known theorem to switch a

problem from finding maximum to finding minimum:

Theorem 3.5 (Duality). Let M be a closed vector subsapce of a normed
space X. We have the following isometric isomorphisms and equations.

(a) M* = X*/M*. For every F € X*,

sup{|(z, F)| : & € M, ||z <1} = min{||F - G|| : G € M"}.

(b) (X/M)* = M~*. For every x € X,

inf{||jz —m| : m € M} = max{|(x,G)|: G € Mt G|l < 1}.

3.2.1 In Hardy Spaces

Our first two extremal results will be done in H? since the Parseval’s identity in

Fourier series makes the explicit computation possible.
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We now improve one of the consequences of [Corollary 1.12]in the sense that

the constant in the definition of boundedness of i, : H? — C is optimally sharp-

ened:

Theorem 3.6. If f € H? (0 < p < c0), then
[F) < (== £l
Moreover, the inequality is sharp for each fized z.

Note by sharpness we mean for each z € D a solution f € HP such that

1 £1l, = 1 with |f(2)] = (1—|2]*)"'/P. Thus f is an “extremal function” attaining

max{l|i.(f)] - f € H",[[fll, = 1}.

Note that the maximum exists simply by a normal family argument due to bound-
edness w.r.t. HP-norm, which will be the technique that we always use in our

later theorem in showing existence of “extremal function”.

Proof. The case p = oo is trivial. Suppose the case p = 2 was done at the
moment. Let B be the Blaschke product of zeros of f, then there is an h € H?
such that f = Bh?? with [|h]|3 = || f||%, then

A=) < (1= [ 2lIR ] = (1= =) 7212,

this implies
AP < (1= 27 £l

Since Blaschke product is inner, |B| < 1, thus
[f(2)] = [BENAE)PP < [h(2)PP < (1= [217) 72| ],
Therefore it remains to prove the case p = 2.

Suppose now p = 2, let i, € (H?)* be the pointwise evaluation at z, it is

enough to show
il = (1 — [~
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For this, note that

27
. dt
Jid = sup 1£:)| = swp [ POF0) 51 = swp PAH. (3D
feH? ren? Jo m feH?
Ifll2<1 Ifll2<1 Ifll2<1

Part (a) of [Theorem 3.5| yields

sup Pz(f) = min ||Pz—g||2‘
feH? HEHg
Ifll2<1

Now we can minimize RHS by using Fourier series method. Recall that if z = re®,

then P,(t) = P.(0 —t), it follows that

min || P, — glls = min | P.(t) — ()]l
geEH geH]

0
0 00 1/2
iy ( S FE S F —aw) |
gGHO = n=1

Recall that P,(t) = >, ., r"le™, we may take go(z) = Y oo, r"z" € H{ to get

desired minimization, therefore

0 1/2 . .
1 - g ‘TL‘ 2 = g
grggéHPz gll2 ( Z (r'™) ) 1 —r2)2  (1— |22

n=—0oo

For sharpness, a normal family argument shows that there is an f, € H? with

| foll2 = 1 such that

[fo()l = li(fo)l = llizll = (1= [21) 72 folle.

Let B be the Blaschke product of the zeros of fy, set u = fo/B, then wu is

nonvanishing and
[fo(2)] < Ju(z)] < (1= 2137 2llalls = (1= |2%) 7] foll2-

This shows that |u(z)| = (1 — |2]%)7"/?||ul|2. Now we simply take v = u*?, then
lv(2)| = (1 — |2]?)~Y?||v]|,, thus the inequality is sharp, i.e.,

Iy = (1= [2) 717, i
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Theorem 3.8. For fized z, |z| < 1, and for each positive integer n, the
mazimum of |f™(2)| over all H? function f with || f|lz <1 is

o) k‘ 2 1/2
n! (Z (”Z ) |z\2k> .
k=0

The solution to its dual extremal problem in (@) 18

:i (n—l—k—l)wk'

k=1

Proof. By Cauchy integral formula we have

2 eie do
/0 (¢i0 — z)n+1 f0) ol

We call finding the supremum an (original) extremal problem.

sup | (2)] = n! sup
feH? feH?
iflla<1 liflla<1

Define ‘
619
Fu(0) = (e — z)nt1’
then by part (a) of [Theorem 3.5 m
M := sup |Fn(f)] = min [|F(0) — gll2. (3.9)
iaen 7eto

We call finding the minimum above a dual extremal problem. The extremal
function of the original problem (the leftmost quantity in (3.9))) exists by a normal
family argument. The dual extremal function exists automatically by the Duality

Theorem just used.

For fo € H? and gy € H? to be the corresponding extremal functions, they

are necessary and sufficient to satisfy

/0 Fufo g2 | = IE(6) — golls (3.10)

this is easily seen from the equality (3.9). Thus, generally we have two approaches
in finding M. Either we raise an example such that (3.10]) holds, or we directly
maximize the LHS / minimize the RHS, if possible. The latter approach is much

more feasible in this proof.
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Let -
= Z bow" € H,
n=1

from Fourier series we have

- 1/2
RHS of (3.10) = ( > - ga)(kr>|2> :
k=—o00

Note that since go € HZ, by we have go(k) = 0 when & < 0 and
go(k) = bx, when k > 1. Moreover,

o 2r ei(lfk)e do
Fo(k) = /O @i

616 _ Z)n—i—l I

1 nl ¢k
= 2w ) =

1 1
— (R (k= 1) (k= (1= 1)

From this we can conclude

RHS of (310) = | *= n+k—1) 1

£
(0

Therefore we minimize RHS above to get

= (n+ k)’ 2
n
M=(Z( ’ )|z|%> ,
k=0

and the dual extremal function is

We conclude that

00 +k 2 1/2
n
— nIM = nl 2k . |
may £)(2)] = nlM =n (}( ' )|z| )

Ifll2<1

The original extremal function may be hard to find. But that’s natural since

there is no guarantee on the feasibility of finding explicit solution.
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3.2.2 A Coefficient Problem of Bounded Analytic Func-

tions

Given ¢y, ¢q, ..., ey € C, we call finding the maximum of |coag+cia1+- - -+enay]|

over f =Y a;z; € H? a coeflicient problem.

The special case that p = oo and ¢y = ¢; = --- = ¢y = 1 were posed and
solved by E. Landau. We now consider p = oo with general ¢y, ¢y, ..., cy € C.
Theorem 3.11. Letcy,cq,...,cn be given complex numbers and consider the

mazimum problem
N

E :Cjaj

J=0

M = sup
fEH™>®
1<t

Y

where f(z) = Y2 a;27. The dual extremal problem is
M = inf ||k — g||,
gEH]
where k(z) = 377 cjz~7. Moreover, it is equivalent to the minimum problem

M =inf{[|hlly :he H' ,h=cy +enaz+ -+ oz +--- ).

|Theorem 3.11| was studied by F. Riesz in 1920 using variational method in

[RIE]. Here we study the same problem through functional analysis on HP.

Proof. Since f(2) =5, a;2’, by we have
27
e dt
a; 2/ ft)e ™" o=
0

o’

therefore we have

fEH™>®

N
M = sup E cja;
Jj=0

llF<1
2 N
G dt
— (e®) I 1) —
sl (o) rog]

dt

3.12
= (312)

27
— sup / k(e £ (1)
i 1o
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where

k(z) = Z c;jz . (3.13)

=0
Thus M is the operator norm of k in (H*)* when viewed as a linear functional

on H*>. Although we have the following duality relation:
(H>)" = (L) /(H>)" = (L*)"/Hy, (3.14)

but (L*°)* cannot be viewed as a subspace of L!. In fact, conversely, L' is a

proper subspace of (L*)*. Nevertheless, it still suggests we should have
M = min ||k — g]|.
gEH]

Fortunately this remains true, but this is not a direct consequence of[Theorem 3.5
i.e., it does not directly follow from (3.14]).

From p. 313 of [DUR]: for every h € L', we have

2m
oodt
h(t)f(t)e" —| = min ||h — g1
aw | [ s 5| = minln gl
fli<1

We take h = e~k above to conclude that

21 dt .
M = sup k(t)f(t) —| = min |le "k — g1
feH® 2w geH!
ES! (3.15)

= min ||k — " = min ||k — =d(k, H}),
et | 9l g é“ 9l (k, Hy)
as desired.

Since every g € Hj is of the form g(z) = bjz + byz* + - -+, therefore by

|k — gl = ||2Vk — 2V g||l; we have

Recall the definition of k(z) in (3.13)) if the reader get confused. |

Theorem 3.16. In the original extremal problem has a unique

extremal function fo € H* and the dual problem has a unique minimizing func-

tion (or dual extremal function) go € H}. Moreover, with the same notation in

fo(2)(k(2) = go(2)) = [F(2) = go(2)], |2 =1,
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so that

fol2) (k(2) = gol2)) = e=* [ (= — ay)(1 — @52) / N

j=1
withn+q= N, 0 < |a;| <1, ¢>0. Reindezing o, ..., o, if necessary, there is
s €N, 0<s<n, such that |o;j| <1, j < s with

i) == T (22

Jj=1

and

k)=o) = 7 [0 -2 1T (752) /=~

Jj=s+1

where |y| = 1.

Proof. The existence of solution gy € H} of the dual extremal problem
is clear from the fact cited in (3.15). We establish the existence of extremal
solution—fy € H*® with || fo||cc < 1—of our original problem ([3.12)) now.

Existence. Let’s prove the existence as follows. In view of (3.12), we let
fn € H*® and || f,|| < 1 be such that

2 a
0< /0 B0 fult) g = M.

Since {f,} is uniformly bounded, it forms a normal family. Passing to further

subsequence if necessary, we may assume f, itself converges normally to a func-

tion fo € H™, then by we have
2 27
dt dt
/ kfn, — — / kfo—.
0 2T 0 2T

On the other hand, since fo% kf.dt/2mr — M, we have fo% kfodt/2n = M.
Since ||f.|| < 1 for each n, we have ||fo| < 1, so fo € H*. Thus (3.12)) has a

solution.

Uniqueness. Next we focus on the uniqueness of the solutions of our ex-
tremal problems. Let fy € H* and gy € Hj be the extremal solutions, then we

have

dt

27 2 dt
M= [ a0 5= [ 1llh-gol - < Woleli—golls < 1lk—golls = 01
0 s 0 2m
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Thus the equality of each inequality must be attained thoroughly. Therefore

folk —g0) = [follk — go| and | folle = 1.

If k — gy is zero on a set of positive measure of T', then so is 2V (k — gy), therefore

by |Corollary 1.12, z¥(k — go) = 0 on D, thus k = gy on D, a contradiction. So

k — go is nonzero almost everywhere, and hence by fo% | follk = gol &£ = ||k — gol|

we have |fo||k — go| = |k — go| a.e. and thus |fy| = 1 a.e.. It follows that

|k—go|
k- go

fo= a.e.. (3.17)

This shows that fy is uniquely determined.

Now Relifo(k — go)] = 0 on T, thus we have Re(ifygo) = Re(ifok). Since
ifogo € HY, the real part of ifygy uniquely determine ifogo. As fy is uniquely

determined, so is gg. So the uniqueness of the pair fy, gy is established.

Expression. Since f(k—gg) is real a.e. on T, it can be extended analytically
across T by applied to F' = f(k — go). By setting F/(z) = F(1/Z) on
|z| > 1 the function fo(k — go) extends to a meromorphic function on C, with

two poles 0 and oo that are not essential singularity, hence rational.

Due to the way of extension, if a is a zero of fo(k — go) in |2| < 1, then 1/@
is a zero of fy(k — go) in |z| > 1, we conclude

A= o)1 - a52)

Jo(k —g0)(2) = (3.18)

z

for some 0 < |o;| < 1 and constant ¢ € C. We allow |a;| = 1 in the expression
because each root on the boundary must be of even multiplicity by
since fo(k — go) > 0 a.e. on 7.

By the way of extension the order of zero at 0 must be the same as that at

infinity. As

20 (1= au2) (2 — o
folk = gn)(1/2) = L 02E 2T,

we conclude

N—-—q—2n=q— N < qg+n=N.
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Now we try to find the expression of fy. In view of canonical factorization

(see [Theorem 1.21)) we first try to clear out the Blaschke factor of fy and k — go.

Reindexing if necessary, we let aq, ..., ag be the zeros of fy in D, then
T Q;
F = a c H*®
fO/Z (H L— O‘ﬂ)
J=1
and
G= (k- H!
( D H 1 Oéj
Jj=s+1

are nonvanishing analytic functions on D, i.e., they are just composed of inner
and outer factor. Let’s try to show F,G have no inner factor, to do this, it is

enough to show F'- G has no inner factor, i.e., it is outer.

We note that F'- G is a rational function without zeros in D, therefore F'- G is
a product of linear factors with zero on |z| > 1 (up to a multiplicative constant),
it is enough to show z — « is outer when || > 1. For this, it is enough to show
1/(z —a) € H" for some r > 0, this is obvious when |«a| > 1; for |a| = 1, this is

true when r = p for any p € (0,1). To see this, write

27
/o ‘ew - 04\” (/9|<5 /@|>5) 11— ew‘p

— 1, so the first integral is bounded for sufficiently small §. For

: 1|
as limg o =

this fixed choice of d, the second integral is also bounded, so 1/(z — «) € H? for
any p € (0,1). Therefore F'- G is a product of outer factors, which must also be

outer, this establishes the fact that F' and G are outer functions.

Since ' € H* is an outer function, it is uniquely determined by its magnitude

on T, namely, In |F| is integrable and

2m it
e’ +z Lo dt
F= . In |F(e™)|— |.
veo ([ S mIpelg)
Since |F| = |fo| = 1 a.e. on T by the argument before (3.17)), we have F' = =,

therefore .
Z—
— | | J
fO Yz ( 1 — OZ]Z),

j=1

where |y| = 1. Plugging in this into the formula (3.18)) we have

o e ) /o
— Y0 = z2—aj
21 Hj 11— ajz
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[0 -mr I - /ZN. '
=1 !

Jj=s+1

Theorem 3.19. In |Theorem 5.11|, if cy # 0, then there are A\; € C such
that

- 2
(Z )‘jzj) =conFonvorz+ o+ 2 + by 2V T b2V 4
=0

We set Py(z) = Z;V:o Nz If Py(z) has no zero in |z| < 1, then there is an
n <N and ay,...,a, €D such that

he) = A (o)

N |en| i

is the extremal function. Moreover, the dual extremal function satisfies k(z) —

go(z) = P3(2)/2N and we have

N
M =Pyl =D [N
§=0

Before going into the proof, observe that formally (¢Vk(2))Y/? = Py(z) +
2Ng(z), where g(0) = 0, and therefore

Nk = P2+ 2N go(2).
Now we still have go(0) = 0 and we have k = P% /2" + go, so
PJ%T/ZN =k — 9o

for some gy € Hi. Hopefully and indeed g is an extremal function. A similar
construction can be done with 1/2 replaced by 1/3,1/4, ..., whatever, but we

prefer to have explicit computation by Fourier series method.

Proof. Now we observe that fy, g are the corresponding extremal functions

if and only if

" otk ) 22| = ik~ (3:20)
. 0 Yo ol = Joll1- .
To be convinced the readers can look at inequalities (3.15). Now we aim at

finding such f, € H* and gy € H{.
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Let Py(z) = Zj'v:o Aj27. Since Py(z) has no zero in D, there is an n < N
such that .
Py(z) = Oy [ (1 —a52),
=1

for some Cy € C. It follows that

e VPE(2) = enz H(l —a@z)”.
j=1
This function is of the form k — gy for some gy € H} mentioned before the proof.

_C_N N—n - Z_aj
fO(Z) ‘CN’Z H (1 —Oé_]Z) )

J=1

Construct

then we find that
fo(2)P2(2)/2N >0 when |z| =1,

and hence

/o (W@ PR ) 5 - / NP ) o

Therefore ((3.20)) is satisfied, fo and gy = k — p3;/2z" are the corresponding ex-

tremal functions.

Finally we have

N
M = |27V Pl = 1Pyl = 1Pl = D AP I

J=0
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Chapter 4

Future Research Direction

4.1 The Nevanlinna-Pick Problem

In 1916 G. Pick proved the following theorem:

Theorem 4.1 (Pick). Let zy,...,2z, €D and w1, ..., w, € D. There exists
a bounded analytic f : D — D satisfying the interpolating

flz))=w;, j=12,....n (4.2)

if and only if the quadratic form

n
1—ww, —
Qu(tr, .. ty) =Y —2 =tk

Pyt 1— 2z

1s nonnegative: Q, > 0. When Q, > 0, there is a Blaschke product of degree at
most n which solves .

Nowadays the matrix

1 —w;wy
wa= () (13)
1 — 2% 1<i,j<n
is called the Nevanlinna-Pick matrix for H>*(D), where z,...,z, € D and
wy,...,w, € D. Finding a function in a corresponding function space that

satisfies (4.2)) is called Nevallina-Pick problem. For example, it is known that:
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Theorem 4.4. Let H be a reproducing kernel space onD. Let 21, 25, ..., 2, €
D be distinct and wy,ws,...,w, € C. Suppose that the reproducing kernels
K, Ky, ...,K,, at z1, ..., z, respectively, are linearly indepednent, then the fol-

lowing are equivalent:

(i) There exists an f € H such that ||f|| < 1 and f(z) = w; for i =
1,2,...,n;

(11) The Nevanlinna-Pick matriv M = ((K;, K;) — Wjwj)1<i j<n 1S nonnega-

tive.
Furthermore, it is proved in [LI] that the above are also equivalent to
(i1i) det M > 0, where M is the matriz in (ii).

Consider H = H*(D), then the reproducing kernels at z; is given by K;(z2) =
1/(1 — zz), and the Nevanlinna-Pick matrix for H?(D) is then

M:<1—(1—Z_ﬂj)mwa‘> .
1 —7Ziz; 1<i,j<n

Comparing the Nevanlinna-Pick matrix for H* in (4.3)) and that for H? above,

it is conjectured:

Conjecture 4.5. The solvability of the Nevanlinna-Pick problem on HP(D)
(with some f(z) s.t. ||fll, <1, 0<p < o0) is equivalent to

M, = (1_(1_7"23')2“%%) >0
1<i,j<n

— = Y,
1—27;,2]'

where the principal branch of logarithm s taken in each entry.

Objective. Show that, at least, the nonnegativity M, is a necessary condition

for solvability of the Nevanlinna-Pick problem in HP.

Give give two examples as evidence. When n = 1, z; = z and w; = f(z),

then M, > 0 is the same as

(1= )77 > | f(2)],
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which is true by [Theorem 3.6{ with || f||, < 1.

Also, set n = 2, and it is no loss of generality to assume further that z; = 0,

then set 2, = z, wy = f£(0) and wy = f(2), the condition M, > 0 becomes
L= FOPI[L = (1= [P £()P) = [1 = 2171 = FO0)£(2)]" (4.6)
Suppose it happens that f(0) = 0, then becomes
L= (L= [=*?If )P =1 -2
= 2= RP)YIfR)
— (1= =77 > [g(2)],

where f(z) = zg(z), which again holds by [Theorem 3.6|since ||g|l, = ||f|l, <1
in HP.

It remains in progress to determine whether or not the conjecture holds when

n > 2.

4.2 Interpolating Blaschke Products

We start off by introducing the standard terminology in potential theory on the

complex plane. We will then describe a standard fact on approximation of inner

functions by Blaschke product in [Corollary 4.12| which will lead us to a natural

open problem.

Definition 4.7. For a compactly supported Borel measure o on C we define

the energy of u by

I(u)z/C/Cln|x—y|du(:v)du(y)-

It it obvious that I(u) < oo for any compactly supported positive measure

on C, therefore p has finite energy if and only if I(u) > —oc.

Definition 4.8. A set F is said to be polar if for every positive Borel measure

p compactly supported in E, we have I(u) > —oo = u = 0.
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In other words, any nonzero measure supported on a polar set must have
unbounded energy. For example, any singleton in C must be polar. A standard
result in potential theory says that a countable union of polar sets is polar,

therefore all countable sets are polar.

Definition 4.9. For any set F, we define the capacity of E by

()= exp (- su (C):lum).

spt(u)EE,p

As easily seen, since e~ = 0, so that ¢(E) = 0 precisely when a set E is

polar. Since our main purpose up to this point is to develop a vocabulary to

describe [Corollary 4.12] we will not go any further to capacity theory.

Theorem 4.10. Let y be a finite Borel measure on C with compact support,

and suppose that 1(p) > —oo, then u(E) = 0 for every Borel polar set.

For a proof, see p. 56 of [RAN]. By [Theorem 4.10| we have ¢(F) = 0 =

A(FE) = 0, where A is the area measure on C, this follows from the fact that
AL B(0, p) has finite energy for any p > 0. Therefore the complement of a polar

set in C must be dense in C.

Theorem 4.11 (Frostman). Let f(z) be a nonconstant inner function on
the unit disk . Then for nearly every ( € dD, i.e., excpet possibly for a set of

capacity zero, the function

_ f) ¢
fC<Z> - 1_Zf<z)

1s a Blaschke product.

For a proof, see p. 76 of [GAR].

Corollary 4.12. The set of Blaschke products is uniformly dense in the set

of inner functions.
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Proof. By [Theorem 4.11| and a direct consequence of [Theorem 4.10] we de-

duce that for A-a.e. ( € D, f; is a Blaschke product, and since

2|¢]
1—¢]’
so given € > 0, |¢| can be chosen small with ||f — f¢||« < € and f; being a
Blaschke product. i

1f = felloo <

A relatively longer proof of [Theorem 4.11|can be found in pp. 83-86 of [KOO)]

which avoids any use of tools from potential theory.

Now the following open problem becomes natural to us:

Open Problem. Can every Blaschke product be uniformly approximated by

interpolating Blaschke products?

Here an interpolating Blaschke product means it is the Blaschke product of an

interpolating sequence.

When the zeros of a Blaschke product are distributed nice enough, a positive

answer was found by Li in [LI2]:

Theorem 4.13. If a Blaschke product has all its zeros lying on finitely many

radii, then it can be uniformly approzimated by interpolating Blaschke products.

Objective. Improve Li’s result.
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