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Interpolating Sequences and Extremal
Problems

Ching-Cheong Lee

Department of Mathematics

Abstract

In 1958 Carleson proved that a sequence is interpolating if it is uniformly sep-

arated, later in 1983 Peter Jones gave a simple constructive proof in [JON] which

is stunning in his time. On the other hand, when a sequence is not uniformly

separated, Garnett gave a sharp positive result in [GAR2]. Following Jones’s

idea in [JON] and also a highly relevant paper [VIN] due to Vinogradov, we

give a constructive proof to Garnett’s result on nonuniformly separated sequence

with slightly modified assumption. We will also discuss extremal problems that

is described in the language of Hardy spaces and solve it in functional analytical

point of view.
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Chapter 1

Preliminaries

In Section 1.1 and 1.2 we will mention all necessary definitions and background

in complex analysis that we are going to use throughout the thesis. In Section 1.3

we give a complete introduction to interpolating sequences and known results in

this aspect, including the most important result—the Carleson Theorem—that

we use and partially generalize in the next chapter.

1.1 Notations

In this thesis we denote

D = {z ∈ C : |z| < 1} =: D(0, 1) and T = {|z| = 1} = [0, 2π)

the open unit disk and its boundary respectively. We denote
dt

2π
the normalized

Lebesgue measure on T = [0, 2π).

Given an analytic function f : D→ C and a fixed r ∈ [0, 1), we denote

fr(z) = f(rz), z ∈ 1

r
D

the r-dilation of f(z). We also use the notation

fr(θ) := f(reiθ)

which is a continuous function on the circle T .
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Whenever a function is defined on T , we use ‖ · ‖p to denote the p-norm on

Lp(T, dθ/2π), that is,

‖fr‖p =

(∫ 2π

0

|fr(θ)|p
dθ

2π

)1/p

.

The notation ‖ · ‖p will carry another meaning in (1.3). This is the only extra

meaning and hopefully no confusion will be caused.

1.2 Hardy Spaces

1.2.1 As a Subspace of Lp(T, dθ/2π)

The prime function space on which we do analysis is:

Definition 1.1. For p > 0, the notation Hp(D) (or simply Hp) denotes the

class of analytic functions f(z) on D satisfying

sup
0≤r<1

‖fr‖p <∞. (1.2)

The set of function in Hp is called the Hardy space on D.

When p = ∞, the definition says that H∞ consists of the class of bounded

analytic functions. Suppose f(z) is analytic on D, then |f(z)|p is subharmonic,

therefore r 7→ ‖fr‖p is an increasing function (for a proof, see pp. 336-337 of

[RUD]). Thus in the definition of Hardy class functions the supremum is actually

the limit of ‖fr‖p as r → 1. We define

‖f‖p = lim
r→1
‖fr‖p = lim

r→1

(∫ 2π

0

|f(reiθ)|p dθ
2π

)1/p

. (1.3)

When p ≥ 1, the triangle inequality for Lp(T ) functions shows that ‖f‖p in

(1.3) defines a norm on Hp. When 0 < p < 1, ‖f‖p is not a norm on Lp any

more. In fact it is easy to show conversely that if ‖·‖p satisfies triangle inequality

on Lp(T ), then p ≥ 1. However, for p ∈ (0, 1), the fact that

‖fg‖1 ≥ ‖f‖p‖g‖p∗ , p∗ = p/(p− 1)
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enables us to show

dp(f, g) := ‖f − g‖pp

defines a metric on Lp.

Theorem 1.4. When p ≥ 1, Hp is a Banach space with ‖ · ‖p defined in

(1.3). When 0 < p < 1, the metric d(f, g) := ‖f − g‖pp turns Hp into a complete

metric space (or even more, a Fréchet space).

An important feature of Hardy space Hp (p > 0) is that it can be identified

as a closed subspace of Lp(T ), as shown in the following theorem:

Theorem 1.5 ([RUD], p. 340). If 0 < p <∞ and f ∈ Hp, then

(a) The nontangential limits f ∗(eiθ) exist a.e. on T and f ∗ ∈ Lp(T ),

(b) limr→1 ‖f ∗ − fr‖p = 0 and

(c) ‖f ∗‖p = ‖f‖p.

As a convention, from now on we will denote f(t) the nonnganential limit

instead of f ∗ throughout the thesis.

Theorem 1.5 tells us that given an f(z) ∈ Hp, we get an f(t) ∈ Lp(T ). To

recover back from a function on T to a function on D, we need the following:

Definition 1.6. For z ∈ D, we define the Poisson kernel of D by

Pz(t) =
1− |z|2

|eit − z|2
= Re

(
eit + z

eit − z

)
=

1− r2

1− 2r cos(θ − t) + r2
=: Pr(θ − t).

The Poisson integral of f : T → C is the harmonic function on D defined by

P [f ](z) =

∫ 2π

0

Pz(t)f(t)
dt

2π
= Pr ∗ f(θ), z = reiθ.

Our notations Pz and Pr are consistently used. It is also not hard to see

L1(T )→ {harmonic function on D}; f 7→ P [f ]
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is one-one. The reason is simple: suppose P [f ] = 0, then for every g ∈ C(T ),

Fubini’s Theorem tells us
∫ 2π

0
P [g]rf dt =

∫ 2π

0
P [f ]rg dt = 0, by taking r → 1,∫ 2π

0
gf dt = 0, thus we conclude f = 0 a.e..

The Poisson kernel of D satisfies for every z ∈ D,∫ 2π

0

Pz(θ)
dθ

2π
= 1.

Generally the Poisson integral of an L1 function f(t) on T is harmonic but not

analytic, e.g., take f(z) = z−1, then g := P [f |T ] cannot be an analytic function.

To see this, suppose g were analytic, then g ∈ H1 by Theorem 1.7 below and

later by Lemma 3.1,
∫ 2π

0
g(t)eint dt = 0 for every n ≥ 1, a contradiction arises

when n = 1 since g(t) = e−it.

Although analyticity of functions in the image of P [·] cannot be guaranteed,

they automatically satisfy (1.2):

Theorem 1.7. If 1 ≤ p ≤ ∞ and f ∈ Lp(T, dθ/2π), then

sup
0≤r<1

‖P [f ]r‖p ≤ ‖f‖p.

This follows easily from the generalized Minkowski inequality:∥∥∥∥∫ F (x, t) dν(x)

∥∥∥∥
Lp(dµ(t))

≤
∫
‖F (x, t)‖Lp(dµ(t)) dν(x)

which is a standard exercise in real analysis as it can be proved by elementary

use of Hölder’s inequality.

Theorem 1.7 and density of continuous functions in Lp(T ) now give:

Theorem 1.8 ([RUD], p.239). Let f ∈ Lp(T ), 1 ≤ p <∞, then

lim
r→1
‖P [f ]r − f‖p → 0.

We can state for which functions analytic on D the integral representation on

the boundary is possible:
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Theorem 1.9. A function f(z) analytic in |z| < 1 is representable in the

form

f(z) =

∫ 2π

0

Pz(t)ϕ(t)
dt

2π

for some ϕ ∈ L1 if and only if f ∈ H1. In this case, ϕ(t) = f ∗(eit) a.e..

For a proof, see p. 31 of [DUR].

When p ≥ 1, Theorem 1.5 shows that every f ∈ Hp can be identified with

an f ∗ ∈ Lp(T ) isometrically. Therefore f ∗ = 0 a.e. implies f = 0. In fact the

zeros of f ∗ on the boundary must be very “thin”. More precisely, Theorem 1.10

below implies that if f ∗(eiθ) = 0 on a set of positive measure, then f ≡ 0.

Theorem 1.10. If f ∈ Hp, p > 0, then

ln |f(z)| ≤
∫ 2π

0

ln |f(t)|Pz(t)
dt

2π
. (1.11)

For a proof using Fatou’s lemma, see p. 23 of [DUR], p. 62 of [GAR] or p.

344 of [RUD]. For a proof using subharmonicity of ln |f(z)|, see p. 35 of [RAN].

Direct application of Jensen’s inequality to Theorem 1.10 gives:

Corollary 1.12. If f ∈ Hp, p > 0, then

|f(z)|p ≤
∫ 2π

0

|f(t)|pPz(t)
dt

2π
.

This inequality says that every bounded sequence {fn} in Hp must be lo-

cally uniformly bounded on D and thus forms a normal family. Moreover, this

inequality says that the pointwise evaluation at z, denoted by iz, is a bounded

linear functional on Hp. Perhaps the most useful consequence resulting from

Corollary 1.12 in this regard is:

|f(z)| ≤
(

1 + |z|
1− |z|

)1/p

‖f‖p.

We will sharpen the constant
(
(1+|z|)/(1−|z|)

)1/p
to (1−|z|2)1/p in Theorem 3.6

through techniques in solving extremal problems.
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1.2.2 Canonical Factorization via Inner and Outer Fac-

tors

Definition 1.13. An inner function is a bounded analytic f(z) on D such

that |f(eiθ)| = 1 for a.e. θ ∈ T . A singular inner function is a nonvanishsing

inner function.

Definition 1.14. An outer function for the class Hp is a function of the form

F (z) = eiγ exp

{∫ 2π

0

eit + z

eit − z
lnϕ(t)

dt

2π

}
,

where γ is a real number, ϕ ≥ 0, lnϕ ∈ L1 and ϕ ∈ Lp.

We note that inner functions and outer functions are respectively closed under

multiplication.

Example 1.15 (Inner Functions). Consider

f(z) = exp

(
z + 1

z − 1

)
,

which is an analytic function on D, for every ζ = eiθ 6= 1 we have

|f(ζ)| = exp

{
Re

(
ζ + 1

ζ − 1

)}
= exp

{
Re

(
−2i sin θ

|1− eiθ|2

)}
= 1,

therefore |f(ζ)| = 1 for a.e. ζ ∈ T , and hence f is an inner function.

Since f(e−iθ0z) is again an inner function, for every ζ ∈ T , the function

exp

(
z + ζ

z − ζ

)
,

is inner. It is evident from the definition that product of two inner functions is

again inner, so for ζ1, . . . , ζn ∈ T the function

exp

(
n∑
i=1

z + ζi
z − ζi

)

is also an inner function. z

6



Just like outer functions, inner functions will have a general from described

in Theorem 1.17 in terms of singular measures (these are measures concentrated

on a set of Lebesgue measure zero), in fact we have just chosen µ = δ1 in

Example 1.15.

Example 1.16 (Outer Functions). Explicit examples of outer function can

be obtained by Corollary 1.20. Any invertible bounded analytic functions must

be an outer function, for example,

g(z) = z − α

is outer for every |α| > 1. In fact it can be checked that when |α| = 1, g is still

an outer function since in this case g ∈ H1 and 1/g ∈ Hp for every p ∈ (0, 1).

It is evident from Corollary 1.20 that the product of finitely many bounded

or H2 outer functions is again outer, therefore

n∏
i=1

(z − αi)

is an outer function whenever |αi| ≥ 1. z

Finer properties of inner and outer functions are in order: Inner functions

satisfy |f(z)| ≤ 1 on D by Corollary 1.12. Also, suppose that F (z) is an outer

function with the same notations used in Definition 1.14, then F (z) ∈ Hp since it

is analytic and by the fact |F (z)|p = exp{pP [lnϕ](z)} and by Jensen’s inequality,

we have for every 0 ≤ r < 1,

‖Fr‖pp =

∫
T

|Fr(z)|p |dz|
2π

≤
∫
T

P [ϕp]r(z)
|dz|
2π

= ‖P [ϕp]r‖1

≤ ‖ϕp‖1

= ‖ϕ‖pp,

where the last inequality follows from Theorem 1.7, therefore (1.2) holds. From

Theorem 1.5, F (z) has nontangential limit F (t) a.e.. Since P [lnϕ]r → lnϕ in

7



L1, for a.e. t,

|F (t)|p = exp{p lnϕ(t)} = ϕp(t).

Therefore the class of outer functions for the class Hp is a subclass of Hp functions

that can be uniquely determined by their magnitude on the boundary up to a

unimodular constant:

F (z) = eiγ exp

{∫ 2π

0

eit + z

eit − z
ln |F (t)| dt

2π

}
with ln |F (t)| ∈ L1 and |F (t)| ∈ Lp. In particular,

ln |F (0)| =
∫
T

ln |F (t)| dt
2π
,

and this turns out to be also sufficient for a H1 function to be outer (see Theo-

rem 1.18 below).

Theorem 1.17 ([RUD], p. 342). A singular inner function is of the form

exp

{
−
∫
T

ζ + z

ζ − z
dµ(ζ)

}
for some unique positive singular measure on T . Conversely, any analytic func-

tion of this form is also a singular inner function.

We will use the following useful characterization of outer functions:

Theorem 1.18 ([GAR], p. 64). Let 0 < p ≤ ∞ and let f ∈ Hp, f 6≡ 0,

then the following are equivalent.

(a) f(z) is an outer function.

(b) For each z ∈ D, equality (1.11) holds, i.e.,

ln |f(z)| =
∫ 2π

0

ln |f(t)|Pz(t)
dt

2π
. (1.19)

(c) For some z0 ∈ D (1.19) holds.

(d) For every g ∈ Hp such that |g(t)| = |f(t)| a.e., then

|g(z)| ≤ |f(z)| for all z ∈ D.

8



Corollary 1.20. If f ∈ Hp and if for some r > 0, 1/f ∈ Hr, then f(z) is

an outer function.

Theorem 1.21 ([GAR], p. 71). If p > 0 and f ∈ Hp, then f(z) has a

unique decomposition

f(z) = CB(z)S(z)F (z),

where |C| = 1, B(z) is a Blaschke product, S(z) is a singular inner function and

F (z) is an outer function in Hp.

1.3 Introduction to Interpolating Sequences

In this section we mention all results that we need and present the surprisingly

simple proof of P. Jones on explicit construction to interpolation problem. This

proof is very instructive that certain detail can be extracted to give an original

and constructive proof to an interpolation problems (Theorem 2.11) in which the

important condition stated in Definition 1.23 fails.

Interpolating sequence plays an important role in the study of bounded an-

alytic functions. For example, they are used in Chapter 9 and 10 of Garnett’s

[GAR] on characterization of closed algebras between H∞ and L∞, and also on

the discussion of maximal ideal space.

1.3.1 Pseudohypoerbolic Distance

The following metric on D turns out to be more natural than the Euclidean

distance for problems in the open unit disk.

Definition 1.22. The pseudohyperbolic distance of a, b ∈ D is defined by

ρ(a, b) =

∣∣∣∣ a− b1− ab

∣∣∣∣ .

9



Let’s list a few properties of ρ which we use later. Firstly, we will denote

ϕα(z) =
z − α
1− αz

, α ∈ D.

With this notation, we have ϕα ◦ϕ−α = id and ρ(α, z) = |ϕα(z)|. We know that:

• For any analytic τ : D→ D, we have

ρ(τ(z), τ(ζ)) ≤ ρ(z, ζ),

known as the generalized Schwarz Lemma. With equality holds for some

z, ζ if and only if τ is of the form cϕα for some |c| = 1 and α ∈ D, and in

that case the equality must be attained thoroughly for all z, ζ ∈ D, i.e.,

ϕα is an isometry w.r.t. pseudohyperbolic distance.

• The quantities 1− |α|2, 1− |z|2 and 1− |ρ(α, z)|2 are related by

1− |ρ(α, z)|2 =
(1− |α|2)(1− |z|2)

|1− αz|2
.

1.3.2 Separation and Uniform Separation Condition

Definition 1.23. A sequence {zn} in D is interpolating if for every bounded

sequence {an} in C, we can find an f ∈ H∞ such that

f(zj) = aj.

We note that interpolating sequence cannot be arbitrary. For example, sup-

pose {zn} is an interpolating sequence and set a1 = 1, a2 = a3 = · · · = 0, then

there is a bounded analytic f(z) such that f(z1) = 1 and f(z2) = f(z3) = · · · = 0.

Since z2, z3, . . . are zeros of f(z) and f(z) is nonzero, {zn} must satisfy

∞∑
n=1

(1− |zn|) <∞. (1.24)

A short reason is as follows. W.l.o.g. we assume |f | ≤ 1 and f(0) 6= 0. If we set

Bn =
∏n

k=2
z−zk
1−zkz

, then |f/Bn| ≤ 1 on T , hence on D, and thus if we set z = 0,

0 < |f(0)| ≤ |Bn(0)| =
n∏
k=2

|zn|.

10



As this holds for every n,
∏
|zn| > 0, therefore

∑
(1− |zn|) <∞, as desired.

This kind of sequences is so important that they bear a name:

Definition 1.25. A sequence {zn} in D satisfying (1.24) is called a Blaschke

sequence.

Let’s continue to assume {zn} is interpolating in D. We try to seek for its

basic properties beyond those of a Blaschke sequence. Define

T : H∞ → `∞; f 7→ (f(z1), f(z2), . . . ).

By definition T is a surjective bounded operator, therefore by Open Mapping

Theorem there is a constant M > 0 such that for every a ∈ `∞, there is a

solution f ∈ H∞ such that

‖f‖∞ ≤M‖a‖∞. (1.26)

The smallest possible constant M that satisfies this inequality is

M = sup
‖{aj}‖∞≤1

min{‖f‖∞ : f ∈ H∞, f(zj) = aj, j = 1, 2, . . . }. (1.27)

The minimum in the above quantity exists by a normal family argument. It is

easy to verify (1.27) indeed satisfies (1.26) for those solution f(z) of minimal

norm. Moreover, this M is independent of the choice of {an} (but depends on

{zn}).

Definition 1.28. The constant in (1.27) is called the constant of interpola-

tion.

Now we try to investigate geometric properties of the interpolating sequence

{zn}. Let M be the constant of interpolation. For every k ∈ N, let aj = δkj for

j = 1, 2, . . . , then we can find an f ∈ H∞ such that

f(zj) = δjk and ‖f‖∞ ≤M‖{an}‖∞ = M,

it follows from generalized Schwarz Lemma that for every j 6= k, the pseduohy-

perbolic distance ρ(zj, zk) is bounded below:∣∣∣∣ zj − zk1− zkzj

∣∣∣∣ = ρ(zj, zk) ≥ ρ

(
f(zj)

M
,
f(zk)

M

)
=

∣∣∣∣0− 1
M

1− 0

∣∣∣∣ =
1

M
. (1.29)

11



This motivates our next definition.

Definition 1.30. A sequence {zn} in D is separated if there is an a > 0 such

that ∣∣∣∣ zj − zk1− zkzj

∣∣∣∣ ≥ a, for every j, k ∈ N, j 6= k.

We have just shown that every interpolating sequence is separated in (1.29).

Moreover, if we let B be the Blaschke product with zeros zj (j 6= k), i.e.,

B(z) =
∞∏
j=1
j 6=k

−zj
|zj|

z − zj
1− zjz

,

then since zj’s (j 6= k) are the zeros of f , f/B can be regarded as a nonvanishing

bounded analytic function and

1 = f(zk) = B(zk)
f(zk)

B(zk)
≤ |B(zk)|

∥∥∥∥ fB
∥∥∥∥
∞

= |B(zk)|‖f‖∞ ≤ |B(zk)|M,

thus we have for each k,∏
j 6=k

∣∣∣∣ zk − zj1− zjzk

∣∣∣∣ = |B(zk)| ≥
1

M
> 0.

This condition is much stronger than being separated and we call:

Definition 1.31. A sequence {zn} is uniformly separated if

inf
k≥1

∏
j 6=k

∣∣∣∣ zk − zj1− zjzk

∣∣∣∣ > 0.

In 1958 Carleson proved that the uniform separation condition is also suffi-

cient for a sequence to be interpolating in Theorem 1.33. Not only that, part

(c) of this theorem provides a more geometric condition which we will use later

in the proof of Theorem 2.1. The statement of Theorem 1.33 involves a special

kind of annular sector that will also be used in a proof of our main result in the

next chapter:

Definition 1.32. Any annular sector in D of the form

Q = {reiθ : 1− h ≤ r < 1, |θ − θ0| ≤ h}

is called Carleson square, and we denote h by `(Q).

12



Figure 1.1 gives the general picture of Carleson squares.

x

y

h

h

1

Figure 1.1: A Carleson square.

Theorem 1.33 (Carleson). Let {zn} be a sequence in D, the following con-

ditions are equivalent:

(a) The sequence is an interpolating sequence.

(b) We have

δ = inf
k≥1

∏
n6=k

∣∣∣∣ zk − zn1− znzk

∣∣∣∣ > 0.

(c) The points zn’s are separated: There is a > 0 such that

ρ(zj, zk) :=

∣∣∣∣ zj − zk1− zkzj

∣∣∣∣ ≥ a > 0

for every j, k distinct; and there is an absolute constant C such that for

every square Q = {reiθ : 1− `(Q) ≤ r < 1, |θ − θ0| ≤ `(Q)},∑
zn∈Q

(1− |zn|) ≤ C`(Q). (1.34)

The constant δ above and the constant of interpolation

M = sup
‖aj‖∞≤1

inf{‖f‖∞ : f(zj) = aj, j = 1, 2, . . . , f ∈ H∞}

are related by the inequalities

1

δ
≤M ≤ c

δ

(
1 + ln

1

δ

)
, (1.35)

in which c is some absolute constant.

13



As the open unit disk and the upper half plane

H := {z : Im z > 0}

are conformally equivalent, the interpolation at sequences in D is the same as

interpolation at sequences in H. It is not surprising we have an extremely similar

analogue of Theorem 1.33 in H, for a completely self-contained proof, see p. 278

of [GAR]. One can also find the proof in Chapter 9 of [KOO] which relies heavily

on facts related to Carleson measures (to be defined in Definition 1.37) with

many motivating pictures.

The estimate (1.35) is sharp, for an example, see p. 284 of [GAR].

Note that in part (c) of Theorem 1.33 the sum
∑

zn∈Q(1−|zn|) can be rewrit-

ten as (
∞∑
n=1

(1− |zn|)δzn

)
(Q).

Where δzn denotes the Dirac measure at zn. If we denote µ =
∑∞

n=1(1− |zn|)δzn ,

then (1.34) can be written as

µ(Q) ≤ C`(Q). (1.36)

This also bears a name and it is found to be useful elsewhere.

Definition 1.37. Any Borel measure µ on D such that there is a constant

C > 0 for which (1.36) holds for every Carleson square Q is called a Carleson

measure.

1.3.3 An Example and a Nonexample of Interpolating Se-

quences

Since it is difficult both to understand and to verify the uniform separation

condition, the existence of interpolating sequence is not so obvious to us at the

moment. Fortunately the uniform separation condition has a simple sufficient

growth condition:

14



Theorem 1.38 ([DUR], p. 155). If there is a constant c ∈ (0, 1) such that

1− |zn+1| ≤ c(1− |zn|) for every n, (1.39)

then {zn} is uniformly separated. Moreover, the condition (1.39) is also necessary

if 0 ≤ z1 < z2 < · · · .

From this it is easy to raise the following examples:

Example 1.40 (Interpolating Sequence). Let z1, z2, · · · > 0 and take z1 =

1
2
. Replacing ≤ by = in (1.39), for any c ∈ (0, 1) we obtain an interpolating se-

quence {zn} given by zn = 1− cn−1

2
. z

On the other hand, there is a Blaschke sequence that is not interpolating:

Example 1.41 (Noninterpolating Sequence). We take zn = 1− 1

n2
. This

sequence is increasing, but if (1.39) holds for some c ∈ (0, 1), then we have

(n+ 1)2 − 1

(n+ 1)2
· n2

n2 − 1
≤ c

for every n, forcing c ≥ 1, impossible, so {1− 1
n2} can’t be interpolating.

For more examples, of course any sequence containing a noninterpolating

sequence must not be interpolating either. z

1.3.4 The Simple Constructive Proof to Existence of In-

terpolation by P. Jones

P. Jones gave an extremely simple proof to Carleson Theorem in [JON], formu-

lated in the form of Theorem 1.42. This proof is stunning in his time because of

Carleson’s work and because very few people consider the explicit construction

possible.

Theorem 1.42. Let {λn} be a uniformly separated sequence such that 0 <

15



|λn| ≤ |λn+1| for n = 1, 2, 3, . . . . Denote

δ = inf
n≥1

∏
j 6=n

∣∣∣∣ λj − λn1− λnλj

∣∣∣∣ > 0, Bn(z) =
∞∏
j=1
j 6=n

−λj
|λj|

z − λj
1− λjz

and also

αn(z) =
∑
k≥n

1 + λkz

1− λkz
(1− |λk|2).

Finally, let

Φn(z) =

(
1− |λn|2

1− λnz

)2
Bn(z)

Bn(λn)
exp

(
ε(αn(λn)− αn(z))

)
, (1.43)

where ε = (2 ln
e

δ2
)−1, then

∞∑
n=1

|Φn(z)| ≤ 2e

δ
ln

e

δ2
, for z ∈ D.

As a result, these Φn’s directly gives an interpolation for every bounded se-

quence at points {zn} by setting f =
∑
anΦn.

Proof. This follows from very careful computation. First of all, we have

Re(αn(z)) =
∑
k≥n

1− |z|2|λk|2

|1− λkz|2
(1− |λk|2). (1.44)

For every k ≥ n, we have |λk| ≥ |λn|, therefore (1 − |λn|2)(1 + |λk|2) ≥ 1 −
|λn|2|λk|2, thus

Reαn(λn) ≤
∑
k≥n

(1− |λk|4)(1− |λn|2)
|1− λkλn|2

≤ 2
∑
k≥n

(1− |λk|2)(1− |λn|2)
|1− λkλn|2

= 2
∑
k≥n

(1− ρ(λk, λn)2)

= 2

(
1 +

∑
k>n

(1− ρ(λk, λn)2)

)

≤ 2

(
1−

∑
k>n

ln ρ(λk, λn)2

)
≤ 2(1− ln δ2) =:

1

ε
. (1.45)
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By (1.45) and the definition of Φn in (1.43) we have

|Φn(z)| ≤ (1− |λn|2|z|2)
|1− λnz|2

(1− |λn|2) ·
1

δ
· exp(1− εReαn(z)) (1.46)

=
e

δ
(Reαn(z)− Reαn+1(z)) exp(−εReαn(z))

≤ e

εδ
(eεReαn(z)−εReαn+1(z) − 1)e−εReαn(z)

=
e

εδ
(e−εReαn+1(z) − e−εReαn(z)).

Finally we take summation on both sides to get
∑∞

n=1 |Φn(z)| ≤ e/(εδ). z

The key to the proof is to write the expression

(1− |λn|2|z|2)
|1− λnz|2

(1− |λn|2)

in (1.46) as a difference of two “adjacent” numbers in a sequence. In [VIN]

Vinogradov found a similar interpolation operator for

T{zn} : Hp → `p; f 7→ (f(z1), f(z2), . . . ).

Theorem 1.47. Suppose {λn} is uniformly separated. Let

δ = inf
n≥1

∏
j 6=n

ρ(λj, λn)

and let

|λ1| ≤ |λ2| ≤ · · · .

Denote

b0(z) = z, bλ(z) =
|λ|
λ

λ− z
1− λz

and aλ(z) =

√
|λ|
λ

λ− |λ|z
1− λz

for z ∈ Ĉ and λ ∈ D \ {0}. Also let

An =
∏
k>n

aλk ,

then ∞∑
n=1

(
1− |λn|2

|1− λnz|

)2

|Aλn(z)| ≤ 8

and the interpolation is given by

Q(z) =
∞∑
n=1

an

(
1− |λn|2

1− λnz

)2
Bn(z)

Bn(λn)

Aλn(z)

Aλn(λn)
(1.48)

with ‖Q‖p ≤ (8/δ2)‖a‖∞.
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(1.43) and (1.48) suggest a strong evidence that explicit construction look

quite the same. Namely, the term(
1− |λn|2

1− λnz

)2
Bn(z)

Bn(λn)

must be there! They motivate the construction in (2.13) in the next chapter,

where Ck is to be determined. We will adopt the similar idea as in Jones’s

proof above to push certain telescoping expression to appear in the proof of

Theorem 2.11 later.
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Chapter 2

Interpolating Sequences

2.1 Uniformly Separated Sequences

We have seen that interpolating sequence must be a Blaschke sequence in Section

1.3.2. On the other hand, Section 1.3.3 shows us not every Blaschke sequence

is interpolating. The next theorem states that interpolating sequence can have

arbitrary growth rate as a Blaschke sequence!

Theorem 2.1. If |zj| < 1 for every j ≥ 1 and if
∑∞

j=1(1 − |zj|) < ∞, then

there is an interpolating sequence {wj} with |wj| = |zj| for every j ≥ 1.

This result is cited in p. 305 of [GAR] and was due to Naftalevitch in the

1940’s. However, the search for Naftalevitch’s original paper containing this

result is not successful. We try to fill in the proof on our own:

Proof. We may assume |z1| ≤ |z2| ≤ · · · . The proof is constructive. We

define

θk =
∑
i≥k

(1− |zi|),

and we hope that

wk = |zk|eiθk , k = 1, 2, . . . (2.2)

form an interpolating sequence. By part (c) of Theorem 1.33 a sequence {wn} is
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interpolating if and only if {wn} is separated and the discrete measure

µ =
∞∑
n=1

(1− |wn|)δwn

is Carleson. That is, we need to prove the following separation condition

inf

{
ρ(wj, wk) :=

∣∣∣∣ wj − wk1− wjwk

∣∣∣∣ : j 6= k

}
> 0 (2.3)

and for every Carleson square

Q = {reiθ ∈ D : 1− h ≤ r < 1, |θ − θ0| ≤ h} =: C(θ, h), h > 0,

we have the Carleson condition

µ(Q) ≤ C`(Q) (2.4)

(where `(Q) := h) for some absolute constant C > 0.

We first prove the Carleson condition (2.4), we will then prove that {w2n} is

separated and conclude that we don’t need to show {wn} itself is separated.

Proof of Carleson condition (2.4). We consider three types of Carleson

squares:

Case 1. Consider Q ⊆ H such that 1 6∈ Q. Let Q := C(φ, h) be such that

φ− h > 0 (i.e., 1 6∈ Q). We give a sketch of those Q’s in Figure 2.1.

·

·
·

· · · · · · ····

Figure 2.1: Carleson squares not containing 1.

Since {wk} defined in (2.1) only accumulates at 1, we may let k be the first

integer such that wk ∈ Q and n the last integer such that wn ∈ Q, then

φ− h ≤ θn ≤ θk ≤ φ+ h,
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and therefore

µ(Q) ≤
∑
k≤i≤n

(1− |wi|) = θk − θn + (1− |wn|) ≤ (φ+ h)− (φ− h) + h = 3h.

The case for those Q’s in the lower half plane is essentially the same.

Case 2. In the remaining two cases let’s consider Carleson squares containing

1. First consider those centered at 1:

Q = C(0, h).

Let k0 be the first integer such that wk0 ∈ Q, then by definition,∑
i≥k0

(1− |wi|) = θk0 ≤ h.

Now for every k ≥ k0, we have 1 − |wk| ≤ h, i.e., 1 − h ≤ |wk|. We also have

θk ≤ θk0 ≤ h. Therefore wk ∈ C(0, h). So we have

µ(Q) =
∑
i≥k0

(1− |wi|) ≤ h.

Case 3. Finally for every Carleson square Q such that 1 ∈ Q, let h = `(Q),

then it must happen that Q ⊆ C(0, 2h), as shown in Figure 2.2.

·

·
·

· · · · · · ····
·

·
·

· · · · · · ····

enlarge

Figure 2.2: Extension to Carleson squares centered at 1.

Therefore by case 2,

µ(Q) ≤ µ(C(0, 2h)) ≤ 2h.
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Combining 3 cases, (2.4) holds with C = 3.

Proof of Separation Condition (2.3). We try to shrink

ρ(wj, wk)
2 = 1− (1− |wj|2)(1− |wk|2)

|1− wkwj|2
.

Since {wn} accumulates only at 1, we may just show that ρ(wj, wk) is bounded

below for sufficiently big j and k.

We first shrink the factor |1−wkwj|. We may assume j < k, then θj−θk > 0.

Let ε ∈ (0, 1) be very small and let k, j be sufficiently large.

|1− wkwj|2 = |1− |zk||zj|ei(θj−θk)|2

= (1− |zk||zj| cos(θj − θk))2 + |zk|2|zj|2 sin2(θj − θk),

set a = |zj| and b = |zk|, then the above

= a2b2 + 1− 2ab cos(θj − θk). (2.5)

Now we divide the proof into two steps.

Step 1. Assume that k − j ≥ 2, then

θj − θk =
k−1∑
i=j

(1− |zi|)

≥ 1− |zj|+ 1− |zk−1|

≥ 1− |zj|+ 1− |zk| ≥ 2
√

(1− |zj|)(1− |zk|),

and hence

(θj − θk)2 ≥ 4(1− |zj|)(1− |zk|) = 4(1− a)(1− b) =: B. (2.6)

Since for ε > 0, cosx < 1− (1
2
− ε)x2 for sufficiently small x, it follows that from

(2.5) and (2.6),

|1− wkwj|2 ≥ a2b2 + 1− 2ab

(
1− (

1

2
− ε)B

)
= a2b2 + 1− 2ab+ ab(1− 2ε)B

= (1− ab)2 + abB − 2abBε,
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recalling B = 4(1 − a)(1 − b) and observing that (1 − ab)2 − (1 − a)(a − b) =

a2b2 + a+ b− 3ab ≥ 0, we conclude the above

≥ (1− a)(1− b) + ab[4(1− a)(1− b)]− 8(1− a)(1− b)ε

= (1− a)(1− b)[1 + 4ab− 8ε]

= (1− |wj|)(1− |wk|)(1 + 4|wj||wk| − 8ε). (2.7)

Choose ε = 1
32

at the beginning, then for j, k large, 1+4|wj||wk| > 4.75, therefore

from (2.7),

|1− wkwj|2 ≥ 4.5(1− |wj|)(1− |wk|),

and we have

ρ(wj, wk)
2 = 1− (1− |wj|2)(1− |wk|2)

|1− wkwj|2

≥ 1− 4(1− |wj|)(1− |wk|)
4.5(1− |wj|)(1− |wk|)

=
1

9
.

Step 2. Suppose now k = j + 1, the same technique does not work since

θj − θk = 1 − |zj| is not a sum of at least two terms in {1 − |zi| : i ≥ 1}.
Fortunately we don’t need to do this step! By Step 1, given any Blaschke sequence

|zn|, our construction shows that {w2n} is separated, and thus interpolating

since previously we have shown that
∑

(1− |w2n|)δw2n is Carleson, with |w2n| =
|z2n|. From this point, given any Blaschke sequence z1, z2, . . . , construct another

Blaschke sequence

a1, z1, a2, z2, . . . ,

such that |a1| ≤ |z1| ≤ |a2| ≤ |z2| ≤ · · · , by Step 1 we get an interpolating

sequence {w′n} with |w′2n| = |zn|. z

2.2 Nonuniformly Separated Sequences

Let λ1, λ2, · · · ∈ D. Recall that {λn} is said to be uniformly separated if

δn :=
∞∏
k=1
k 6=n

∣∣∣∣ λn − λk1− λkλn

∣∣∣∣ > 0, n = 1, 2, 3, . . .
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satisfy infn≥1 δn > 0. In case

inf
n≥1

δn = 0,

Carleson’s Theorem fails. Nevertheless, under a suitable growth condition on

the sequence of numbers {an} (rather than just a bounded sequence) a positive

result was found by Garnett:

Theorem 2.8 ([GAR2]). Let A(t) be a positive decreasing function on [0,∞).

If ∫ ∞
0

A(t) dt <∞

and if

|an| ≤ δnA(1 + ln 1/δn) for each n, (2.9)

then there is an absolute constant C > 0 for which there is an interpolation

f ∈ H∞, f(λn) = an, n = 1, 2, . . .

such that

‖f‖∞ ≤ C

∫ ∞
0

A(t) dt. (2.10)

In case inf δn > 0, Theorem 2.8 also includes Theorem 1.33 as a special case

by taking A(t) = χ[0,1+ln 1/δn](t).

The proof of Theorem 2.8, i.e., Theorem 4 in [GAR2], is done in the upper

half plane, and the existence of the solution rests on showing certain discrete

measure is Carleson in an attempt to give an upper bound of

Mn := inf{‖f‖∞ : f ∈ H∞, f(zj) = aj, 1 ≤ j ≤ n}

that is independent of n. A similar result can be proved constructively when the

growth condition (2.9) is modified to (2.12).

Theorem 2.11. Let A(t) be a positive decreasing function on [0,∞). If∫ ∞
0

A(t) dt <∞,

{tn} diverges to ∞ and if there is p ≥ 2 such that

|an| ≤ δpnA(tn) for each n, (2.12)
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then there is an absolute constant C > 0 for which there is an interpolation

f ∈ H∞, f(λn) = an, n = 1, 2, . . .

such that

‖f‖∞ ≤ C

∫ ∞
0

A(t) dt.

When tn = 1+ln 1/δn, then this becomes a weakened version of Theorem 2.8.

Our modification is flexible in the sense that tn can be arbitrary, as long as it

diverges to ∞, rather than using the fixed choice {1 + ln 1/δn}.

The special case that inf δn > 0 in our Theorem 2.11 still generalizes Theo-

rem 1.33. The use of the condition p ≥ 2 will be seen in line (2.20) in which we

try to shrink a number |a| to |a|p−1 with |a| < 1.

Proof of Theorem 2.11. W.l.o.g. let’s assume |λ1| ≤ |λ2| ≤ · · · . We try

to construct an explicit construction as P. Jones did in [JON]. We define a similar

sum that’s supposed to be a correct interpolation

S(z) =
∞∑
n=1

an

(
1− |λn|2

1− λnz

)2
Bn(z)

Bn(λn)
· Cn(z), (2.13)

here Cn(z) is to be determined such that Cn(λn) = 1 and

Bn(z) =
∞∏
k=1
k 6=n

(
−λk
|λk|

)
z − λk
1− λkz

.

Supposing the summation converges normally by suitably chosen Cn(z)’s, then

we have

|S(z)| ≤
∞∑
n=1

|an|
(1− |λn|2)2

|1− λnz|2

∣∣∣∣ Bn(z)

Bn(λn)

∣∣∣∣ |Cn(z)|

≤
∞∑
n=1

[δpnA(tn)]
(1− |λn|2|z|2)(1− |λn|2)

|1− λnz|2
1

δn
|Cn(z)|

=
∞∑
n=1

A(tn)
(1− |λn|2|z|2)(1− |λn|2)

|1− λnz|2
|Cn(z)|δp−1n . (2.14)

From [VIN] we have the following computation: define

aλn(z) =

√
|λn|
λn

(
λn − |λn|z

1− λnz

)
,
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then

1 ≥ |aλn(z)|2 = 1− (1− |λn||z|2)(1− |λn|)
|1− λnz|2

.

Therefore the line (2.14) becomes

|S(z)| ≤ 4
∞∑
n=1

A(tn)(1− |aλn(z)|2)|Cn(z)|δp−1n . (2.15)

Now we follow Garnett’s proof in [GAR2] to consider the following sets of interg-

ers

Em = {k ∈ N : m− 1 ≤ tk < m},

then from (2.15) we get

|S(z)| ≤ 4
∞∑
m=1

∑
k∈Em

(· · · ) ≤ 4
∞∑
m=1

( ∑
k∈Em

(1− |aλk(z)|2)|Ck(z)|δp−1k︸ ︷︷ ︸
:=Bm

)
A(m− 1).

(2.16)

Next we perform summation by parts once to (2.16), recall that

N∑
m=1

ambm =
N−1∑
m=1

(a1 + · · ·+ am)(bm − bm+1) + (a1 + · · ·+ aN)bN .

Putting am = Bm and bm = A(m− 1) we have from (2.16) that

|S(z)| ≤ 4 lim
N→∞

 ∑N−1
m=1(B1 + · · ·+Bm)(A(m− 1)− A(m))

+(B1 + · · ·+BN)A(N − 1)

 . (2.17)

Now we aim to show that for suitably chosen Cn(z) we have for some absolute

constant C > 0 such that

B1 + · · ·+Bm ≤ Cm for every m. (2.18)

Let’s accept (2.18) for the moment and finish the proof quickly. Since A(t) is

decreasing and integrable, we have (B1 + · · ·+BN)A(N − 1)→ 0, and therefore

(2.17) becomes

|S(z)| ≤ 4
∞∑
m=1

(B1 + · · ·+Bm)(A(m− 1)− A(m))

≤ 4C
∞∑
m=1

m(A(m− 1)− A(m))
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≤ C ′
∫ ∞
0

A(t) dt.

Thus the proof will be completed after we prove (2.18) with suitable choices of

Ck s.t. Ck(λk) = 1.

Now we prove (2.18), recall that by definition

B1 + · · ·+Bm =
m∑
i=1

∑
k∈Ei

|Ck(z)|(1− |aλk(z)|2)δp−1k . (2.19)

We define Ck(z) as follows. Let Ak(z) =
∏

i>k aλi(z), which is a nonvanishing

analytic function since |1− aλn(z)| ≤ 2(1− |λn|)/(1− |z|). Moreover, we have

|Ak(λk)|2 =
∏
i>k

1

|λi|

∣∣∣∣λi − |λi|λk1− λiλk

∣∣∣∣2 ≥∏
i>k

∣∣∣∣ λi − λk1− λiλk

∣∣∣∣2 ≥ δ2k

for every k. Now we let

Ck(z) =
[Ak(z)]p−1

[Ak(λk)]p−1

by fixing a branch of log. It then follows that

|Ck(z)|(1− |aλk(z)|2)δp−1k ≤ |Ak(z)|p−1

δp−1k

2(1− |aλk(z)|)δp−1k

≤ 2|Ak(z)|p−1(1− |aλk(z)|p−1) (2.20)

= 2(|Ak(z)|p−1 − |Ak−1(z)|p−1).

We combine this estimate with (2.19) to obtain

B1 + · · ·+Bm ≤ 2
m∑
i=1

∞∑
k=1

(|Ak(z)|p−1 − |Ak−1(z)|p−1)︸ ︷︷ ︸
=limN→∞(|AN (z)|p−1−|A0(z)|p−1)≤1

≤ 2m,

as desired.

To sum up, our interpolation is given by

∞∑
n=1

an

(
1− |λn|2

1− λnz

)2
Bn(z)

Bn(λn)
· [An(z)]p−1

[An(λn)]p−1
. z
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Chapter 3

Extremal Problems Through

Duality

3.1 Preparative Results

Before going through the next theorem, we list out a few more facts that will be

found important to us later.

Lemma 3.1. Let f ∈ H1. The Fourier coefficient of the nontangential limit

f(θ) of f(z) coincides with the Laurent series coefficient of f(z) at 0.

Proof. This follows from explicit computation. For every r ∈ (0, 1), let

n ∈ Z, then the n-th Laurent series coefficient is

f (n)(0)

n!
=

1

2πi

∫
|z|=r

f(z)

zn+1
dz =

1

rn

∫ 2π

0

fr(e
iθ)e−inθ

dθ

2π
.

On the other hand, since f̂(n) :=
∫ 2π

0
f(θ)e−inθ dθ

2π
, a triangle inequality gives∣∣∣∣f (n)(0)

n!
− f̂(n)

∣∣∣∣ ≤ (r−n − 1)‖fr‖1 + ‖fr − f‖1

for every r ∈ (0, 1), when r → 1−, (b) of Theorem 1.5 gives f̂(n) = f (n)(0)
n!

. z

As a consequence, when f ∈ H1 (⊇ Hp for all p ≥ 1), the negative Fourier

coefficients vanish, i.e., f̂(n) = 0 for all n < 0. Conversely, Hp is the set class
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of functions in Lp(T ) (where p ≥ 1) such that f̂(n) = 0 for all n < 0. This is

simply because

Pr(t) = 1 +
∞∑
n=1

rn(eint + e−int).

Thus P [f ] = f ∈ Hp by Theorem 1.7 when identified as an element in Lp(T ).

Lemma 3.2. Let p ≥ 1, if gn’s ∈ Hp are bounded in Hp and converge to

g normally, then g ∈ Hp and for fixed k ∈ Z the k-th Fourier coefficient of gn

converges to that of g. In other words, for any k ∈ Z,

lim
n→∞

∫ 2π

0

gne
−ikt dt

2π
=

∫ 2π

0

ge−ikt
dt

2π
.

Proof. g ∈ Hp since ‖gr‖p < ∞ as r → 1. Now the convergence of the kth

Taylor coefficient of gn (in n) follows from normal convergence:∫ 2π

0

r−ngn(reit)e−ikt dt/2π →
∫ 2π

0

r−ng(reit)e−ikt dt/2π.

Since Taylor coefficients and Fourier coefficients coincide, we are done. z

Lemma 3.3. Let f ∈ H1(D) and let f(t) be real a.e. on T , then f(z) can be

extended analytically across any point of T .

The idea of the proof will borrow from that of the standard fact that if a

continuous f : D → C is analytic on D \ Γ with D a domain and Γ a piecewise

smooth Jordan arc that chops D into two pieces, then f(z) is analytic on D.

Thanks to the existence of nontangential limits, we have a natural candidate of

extension across T :

Proof. Set f(z) = f(1/z) when |z| > 1. Let Li(r) and Ti(r), i = 1, 2, 4, be

defined roughly as in Figure 3.1, where L3 and T3 are fixed arc and independent

of r, L1(r), T1(r) are arcs with radius r and 2− r respectively.

We denote

L(r) = (L1 + L2 + L3 + L4)(r) and T (r) = (T1 + T2 + T3 + T4)(r)
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L1(r)

L2(r)

L3(r)
L4(r)

T1(r)

T2(r)

T3(r)
T4(r)

Figure 3.1: The contours we use.

the boundaries of corresponding annular sectors. Now for every z ∈ D, for big

enough r we have

f(z) =

(∫
L(r)

+

∫
T (r)

)
f(ζ)

ζ − z
dζ

2πi
.

Of course the second integral vanishes, thus the integral formula follows, now we

expand all contours:

f(z) =

([∫
(L2+L3+L4)(r)

+

∫
(T2+T3+T4)(r)

]
+

[∫
L1(r)

−
∫
−T1(r)

])
f(ζ)

ζ − z
dζ

2πi
.

The second square bracket converges to 0 by part (b) of Theorem 1.5 and by the

fact that f(t) is real a.e. on T , it follows that as r → 1−,

f(z) =

∫
C

f(ζ)

ζ − z
dζ

2πi
,

where C = (L2 + L3 + L4 + T2 + T3 + T4)(1) is a piecewise C1 closed path. z

Lemma 3.4. Let D ⊆ C be a domain such that D ⊇ D. Suppose f : D → C

is analytic and f |T ≥ 0, then every zero of f(z) on T must have even multiplicity.

Proof. Suppose that z0 ∈ T is a zero of f(z), w.l.o.g. let’s take z0 = 1,

then f(z) = (z − 1)ng(z) for some g(z) analytic near 1 with g(1) 6= 0. For every

z ∈ T \ {1} close enough to 1, we have

nArg(z − 1) + Arg g(z) ≡ 0 (mod 2π),

where Arg denotes any branch of argument whose branch cut does not intersect

g(1), so as to make Arg g(z) continuous near z = 1.
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Let’s take z1 ∈ T \{1} near 1 and then take z2 ∈ T such that z1−1 = z2 − 1,

we have

nArg(z1 − 1) + Arg g(z1) ≡ 0 (mod 2π)

and

−nArg(z1 − 1) + Arg g(z2) ≡ 0 (mod 2π),

hence

2nArg(z1 − 1) + Arg g(z1)− Arg g(z2) ≡ 0 (mod 2π).

If we take T 3 z1 → 1, then the equality above modulo 2π becomes

2n
(π

2

)
+ 0 ≡ 0 (mod 2π),

which is the same as saying n is even. z

3.2 Extremal Problems

This section is devoted to solving extremal problems in Hardy spaces. In handling

extremal problems we will apply the following well-known theorem to switch a

problem from finding maximum to finding minimum:

Theorem 3.5 (Duality). Let M be a closed vector subsapce of a normed

space X. We have the following isometric isomorphisms and equations.

(a) M∗ = X∗/M⊥. For every F ∈ X∗,

sup{|〈x, F 〉| : x ∈M, ‖x‖ ≤ 1} = min{‖F −G‖ : G ∈M⊥}.

(b) (X/M)∗ = M⊥. For every x ∈ X,

inf{‖x−m‖ : m ∈M} = max{|〈x,G〉| : G ∈M⊥, ‖G‖ ≤ 1}.

3.2.1 In Hardy Spaces

Our first two extremal results will be done in H2 since the Parseval’s identity in

Fourier series makes the explicit computation possible.
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We now improve one of the consequences of Corollary 1.12 in the sense that

the constant in the definition of boundedness of iz : Hp → C is optimally sharp-

ened:

Theorem 3.6. If f ∈ Hp (0 < p ≤ ∞), then

|f(z)| ≤ (1− |z|2)−1/p‖f‖p.

Moreover, the inequality is sharp for each fixed z.

Note by sharpness we mean for each z ∈ D a solution f ∈ Hp such that

‖f‖p = 1 with |f(z)| = (1−|z|2)−1/p. Thus f is an “extremal function” attaining

max{|iz(f)| : f ∈ Hp, ‖f‖p = 1}.

Note that the maximum exists simply by a normal family argument due to bound-

edness w.r.t. Hp-norm, which will be the technique that we always use in our

later theorem in showing existence of “extremal function”.

Proof. The case p = ∞ is trivial. Suppose the case p = 2 was done at the

moment. Let B be the Blaschke product of zeros of f , then there is an h ∈ H2

such that f = Bh2/p with ‖h‖22 = ‖f‖pp, then

|h(z)| ≤ (1− |z|2)−1/2‖h‖2 = (1− |z|2)−1/2‖f‖p/2p ,

this implies

|h(z)|2/p ≤ (1− |z|2)−1/p‖f‖p.

Since Blaschke product is inner, |B| ≤ 1, thus

|f(z)| = |B(z)||h(z)|2/p ≤ |h(z)|2/p ≤ (1− |z|2)−1/p‖f‖p.

Therefore it remains to prove the case p = 2.

Suppose now p = 2, let iz ∈ (H2)∗ be the pointwise evaluation at z, it is

enough to show

‖iz‖ = (1− |z|2)−1/2.
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For this, note that

‖iz‖ = sup
f∈H2

‖f‖2≤1

|f(z)| = sup
f∈H2

‖f‖2≤1

∫ 2π

0

Pz(t)f(t)
dt

2π
= sup

f∈H2

‖f‖2≤1

Pz(f). (3.7)

Part (a) of Theorem 3.5 yields

sup
f∈H2

‖f‖2≤1

Pz(f) = min
g∈H2

0

‖Pz − g‖2.

Now we can minimize RHS by using Fourier series method. Recall that if z = reiθ,

then Pz(t) = Pr(θ − t), it follows that

min
g∈H2

0

‖Pz − g‖2 = min
g∈H2

0

‖Pr(t)− g(t)‖2

= min
g∈H2

0

(
0∑

n=−∞

|P̂r(n)|2 +
∞∑
n=1

|P̂r(n)− ĝ(n)|2
)1/2

.

Recall that Pr(t) =
∑

n∈Z r
|n|eint, we may take g0(z) =

∑∞
n=1 r

nzn ∈ H2
0 to get

desired minimization, therefore

min
g∈H2

0

‖Pz − g‖2 =

(
0∑

n=−∞

(r|n|)2

)1/2

=
1

(1− r2)1/2
=

1

(1− |z|2)1/2
.

For sharpness, a normal family argument shows that there is an f0 ∈ H2 with

‖f0‖2 = 1 such that

|f0(z)| = |iz(f0)| = ‖iz‖ = (1− |z|2)−1/2‖f0‖2.

Let B be the Blaschke product of the zeros of f0, set u = f0/B, then u is

nonvanishing and

|f0(z)| ≤ |u(z)| ≤ (1− |z|2)−1/2‖u‖2 = (1− |z|2)−1/2‖f0‖2.

This shows that |u(z)| = (1− |z|2)−1/2‖u‖2. Now we simply take v = u2/p, then

|v(z)| = (1− |z|2)−1/p‖v‖p, thus the inequality is sharp, i.e.,

‖iz‖(Hp)∗ = (1− |z|2)−1/p. z
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Theorem 3.8. For fixed z, |z| < 1, and for each positive integer n, the

maximum of |f (n)(z)| over all H2 function f with ‖f‖2 ≤ 1 is

n!

(
∞∑
k=0

(
n+ k

n

)2

|z|2k
)1/2

.

The solution to its dual extremal problem in (3.9) is

g0(w) =
∞∑
k=1

(−1)n
(
n+ k − 1

n

)
wk.

Proof. By Cauchy integral formula we have

sup
f∈H2

‖f‖2≤1

|f (n)(z)| = n! sup
f∈H2

‖f‖2≤1

∣∣∣∣∫ 2π

0

eiθ

(eiθ − z)n+1
f(θ)

dθ

2π

∣∣∣∣ .
We call finding the supremum an (original) extremal problem.

Define

Fn(θ) =
eiθ

(eiθ − z)n+1
,

then by part (a) of Theorem 3.5,

M := sup
f∈H2

‖f‖2≤1

|Fn(f)| = min
g∈H2

0

‖Fn(θ)− g‖2. (3.9)

We call finding the minimum above a dual extremal problem. The extremal

function of the original problem (the leftmost quantity in (3.9)) exists by a normal

family argument. The dual extremal function exists automatically by the Duality

Theorem just used.

For f0 ∈ H2 and g0 ∈ H2
0 to be the corresponding extremal functions, they

are necessary and sufficient to satisfy∣∣∣∣∫ 2π

0

Fnf0
dθ

2π

∣∣∣∣ = ‖Fn(θ)− g0‖2. (3.10)

this is easily seen from the equality (3.9). Thus, generally we have two approaches

in finding M . Either we raise an example such that (3.10) holds, or we directly

maximize the LHS

/
minimize the RHS, if possible. The latter approach is much

more feasible in this proof.
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Let

g0(w) =
∞∑
n=1

bnw
n ∈ H2

0 ,

from Fourier series we have

RHS of (3.10) =

(
∞∑

k=−∞

| ̂(Fn − g0)(k)|2
)1/2

.

Note that since g0 ∈ H2
0 , by Lemma 3.1 we have ĝ0(k) = 0 when k ≤ 0 and

ĝ0(k) = bk when k ≥ 1. Moreover,

F̂n(k) =

∫ 2π

0

ei(1−k)θ

(eiθ − z)n+1

dθ

2π

=
1

n!

n!

2πi

∫
T

ζ−k

(ζ − z)n+1
dζ

=
1

n!
(−k)(−k − 1) · · · (−k − (n− 1))

1

zn+k
.

From this we can conclude

RHS of (3.10) =


∑
k≤0

(
1

n!
(−k)(−k − 1) · · · (−k − (n− 1))

1

|z|n+k

)2

+
∞∑
k=1

∣∣∣∣(−1)n

n!

(n+ k − 1)!

(k − 1)!

1

zn+k
− bk

∣∣∣∣2


1/2

=

(
∞∑
k=0

(
n+ k

n

)2

|z|2k +
∞∑
k=1

∣∣∣∣(−1)n
(
n+ k − 1

n

)
− bk

∣∣∣∣2
)1/2

.

Therefore we minimize RHS above to get

M =

(
∞∑
k=0

(
n+ k

n

)2

|z|2k
)1/2

,

and the dual extremal function is

g0(w) =
∞∑
k=1

(−1)n
(
n+ k − 1

n

)
wk.

We conclude that

max
f∈H2

‖f‖2≤1

|f (n)(z)| = n!M = n!

(
∞∑
k=0

(
n+ k

n

)2

|z|2k
)1/2

. z

The original extremal function may be hard to find. But that’s natural since

there is no guarantee on the feasibility of finding explicit solution.
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3.2.2 A Coefficient Problem of Bounded Analytic Func-

tions

Given c0, c1, . . . , cN ∈ C, we call finding the maximum of |c0a0+c1a1+· · ·+cNaN |
over f =

∑
ajzj ∈ Hp a coefficient problem.

The special case that p = ∞ and c0 = c1 = · · · = cN = 1 were posed and

solved by E. Landau. We now consider p =∞ with general c0, c1, . . . , cN ∈ C.

Theorem 3.11. Let c0, c1, . . . , cN be given complex numbers and consider the

maximum problem

M = sup
f∈H∞
‖f‖≤1

∣∣∣∣∣
N∑
j=0

cjaj

∣∣∣∣∣ ,
where f(z) =

∑∞
j=0 ajz

j. The dual extremal problem is

M = inf
g∈H1

0

‖k − g‖1,

where k(z) =
∑n

j=0 cjz
−j. Moreover, it is equivalent to the minimum problem

M = inf{‖h‖1 : h ∈ H1, h = cN + cN−1z + · · ·+ c0z
N + · · · }.

Theorem 3.11 was studied by F. Riesz in 1920 using variational method in

[RIE]. Here we study the same problem through functional analysis on Hp.

Proof. Since f(z) =
∑

j≥0 ajz
j, by Lemma 3.1 we have

aj =

∫ 2π

0

f(t)e−ijt
dt

2π
,

therefore we have

M = sup
f∈H∞
‖f‖≤1

∣∣∣∣∣
N∑
j=0

cjaj

∣∣∣∣∣
= sup

f∈H∞
‖f‖≤1

∣∣∣∣∣
∫ 2π

0

(
N∑
j=0

cj(e
it)−j

)
f(t)

dt

2π

∣∣∣∣∣
= sup

f∈H∞
‖f‖≤1

∣∣∣∣∫ 2π

0

k(eit)f(t)
dt

2π

∣∣∣∣ , (3.12)
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where

k(z) =
N∑
j=0

cjz
−j. (3.13)

Thus M is the operator norm of k in (H∞)∗ when viewed as a linear functional

on H∞. Although we have the following duality relation:

(H∞)∗ = (L∞)∗/(H∞)⊥ = (L∞)∗/H1
0 , (3.14)

but (L∞)∗ cannot be viewed as a subspace of L1. In fact, conversely, L1 is a

proper subspace of (L∞)∗. Nevertheless, it still suggests we should have

M = min
g∈H1

0

‖k − g‖1.

Fortunately this remains true, but this is not a direct consequence of Theorem 3.5,

i.e., it does not directly follow from (3.14).

From p. 313 of [DUR]: for every h ∈ L1, we have

sup
f∈H∞
‖f‖≤1

∣∣∣∣∫ 2π

0

h(t)f(t)eit
dt

2π

∣∣∣∣ = min
g∈H1
‖h− g‖1.

We take h = e−itk above to conclude that

M = sup
f∈H∞
‖f‖≤1

∣∣∣∣∫ 2π

0

k(t)f(t)
dt

2π

∣∣∣∣ = min
g∈H1
‖e−itk − g‖1

= min
g∈H1
‖k − eitg‖1 = min

g∈H1
0

‖k − g‖1 = d(k,H1
0 ),

(3.15)

as desired.

Since every g ∈ H1
0 is of the form g(z) = b1z + b2z

2 + · · · , therefore by

‖k − g‖1 = ‖zNk − zNg‖1 we have

M = inf{‖h‖1 : h ∈ H1, h = cN + cN−1z + · · ·+ c0z
N + higher order terms}.

Recall the definition of k(z) in (3.13) if the reader get confused. z

Theorem 3.16. In Theorem 3.11 the original extremal problem has a unique

extremal function f0 ∈ H∞ and the dual problem has a unique minimizing func-

tion (or dual extremal function) g0 ∈ H1
0 . Moreover, with the same notation in

Theorem 3.11,

f0(z)(k(z)− g0(z)) = |k(z)− g0(z)|, |z| = 1,
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so that

f0(z)(k(z)− g0(z)) = czq
n∏
j=1

(z − αj)(1− αjz)

/
zN

with n+ q = N , 0 < |αj| ≤ 1, c > 0. Reindexing α1, . . . , αn if necessary, there is

s ∈ N, 0 ≤ s ≤ n, such that |αj| < 1, j ≤ s with

f0(z) = γzq
s∏
j=1

(
z − αj
1− αjz

)
and

k(z)− g0(z) = cγ

n∏
j=1

(1− αjz)2
n∏

j=s+1

(
z − αj
1− αjz

)/
zN ,

where |γ| = 1.

Proof. The existence of solution g0 ∈ H1
0 of the dual extremal problem

is clear from the fact cited in (3.15). We establish the existence of extremal

solution—f0 ∈ H∞ with ‖f0‖∞ ≤ 1—of our original problem (3.12) now.

Existence. Let’s prove the existence as follows. In view of (3.12), we let

fn ∈ H∞ and ‖fn‖ ≤ 1 be such that

0 ≤
∫ 2π

0

k(t)fn(t)
dt

2π
→M.

Since {fn} is uniformly bounded, it forms a normal family. Passing to further

subsequence if necessary, we may assume fn itself converges normally to a func-

tion f0 ∈ H∞, then by Lemma 3.2 we have∫ 2π

0

kfn
dt

2π
→
∫ 2π

0

kf0
dt

2π
.

On the other hand, since
∫ 2π

0
kfn dt/2π → M , we have

∫ 2π

0
kf0 dt/2π = M .

Since ‖fn‖ ≤ 1 for each n, we have ‖f0‖ ≤ 1, so f0 ∈ H∞. Thus (3.12) has a

solution.

Uniqueness. Next we focus on the uniqueness of the solutions of our ex-

tremal problems. Let f0 ∈ H∞ and g0 ∈ H1
0 be the extremal solutions, then we

have

M =

∫ 2π

0

f0(k−g0)
dt

2π
≤
∫ 2π

0

|f0||k−g0|
dt

2π
≤ ‖f0‖∞‖k−g0‖1 ≤ 1·‖k−g0‖1 = M.

38



Thus the equality of each inequality must be attained thoroughly. Therefore

f0(k − g0) = |f0||k − g0| and ‖f0‖∞ = 1.

If k− g0 is zero on a set of positive measure of T , then so is zN(k− g0), therefore

by Corollary 1.12, zN(k − g0) ≡ 0 on D, thus k ≡ g0 on D, a contradiction. So

k− g0 is nonzero almost everywhere, and hence by
∫ 2π

0
|f0||k− g0| dt2π = ‖k− g0‖

we have |f0||k − g0| = |k − g0| a.e. and thus |f0| = 1 a.e.. It follows that

f0 =
|k − g0|
k − g0

a.e.. (3.17)

This shows that f0 is uniquely determined.

Now Re[if0(k − g0)] = 0 on T , thus we have Re(if0g0) = Re(if0k). Since

if0g0 ∈ H1
0 , the real part of if0g0 uniquely determine if0g0. As f0 is uniquely

determined, so is g0. So the uniqueness of the pair f0, g0 is established.

Expression. Since f(k−g0) is real a.e. on T , it can be extended analytically

across T by Lemma 3.3 applied to F = f(k − g0). By setting F (z) = F (1/z) on

|z| > 1 the function f0(k − g0) extends to a meromorphic function on Ĉ, with

two poles 0 and ∞ that are not essential singularity, hence rational.

Due to the way of extension, if α is a zero of f0(k − g0) in |z| < 1, then 1/α

is a zero of f0(k − g0) in |z| > 1, we conclude

f0(k − g0)(z) = c
zq
∏n

j=1(z − αj)(1− αjz)

zN
(3.18)

for some 0 < |αj| ≤ 1 and constant c ∈ C. We allow |αj| = 1 in the expression

because each root on the boundary must be of even multiplicity by Lemma 3.4

since f0(k − g0) ≥ 0 a.e. on T .

By the way of extension the order of zero at 0 must be the same as that at

infinity. As

f0(k − g0)(1/z) = c
zq
∏n

j=1(1− αiz)(z − αi)
zq+2n

,

we conclude

N − q − 2n = q −N ⇐⇒ q + n = N.
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Now we try to find the expression of f0. In view of canonical factorization

(see Theorem 1.21) we first try to clear out the Blaschke factor of f0 and k− g0.
Reindexing if necessary, we let α1, . . . , αs be the zeros of f0 in D, then

F = f0

/
zq
( s∏

j=1

z − αj
1− αjz

)
∈ H∞

and

G = (k − g0)zN
/

n∏
j=s+1

z − αj
1− αjz

∈ H1

are nonvanishing analytic functions on D, i.e., they are just composed of inner

and outer factor. Let’s try to show F,G have no inner factor, to do this, it is

enough to show F ·G has no inner factor, i.e., it is outer.

We note that F ·G is a rational function without zeros in D, therefore F ·G is

a product of linear factors with zero on |z| ≥ 1 (up to a multiplicative constant),

it is enough to show z − α is outer when |α| ≥ 1. For this, it is enough to show

1/(z − α) ∈ Hr for some r > 0, this is obvious when |α| > 1; for |α| = 1, this is

true when r = p for any p ∈ (0, 1). To see this, write∫ 2π

0

1

|eiθ − α|p
dθ =

(∫
|θ|<δ

+

∫
|θ|≥δ

)
1

|1− eiθ|p
dθ,

as limθ→0
|1−eiθ|

θ
→ 1, so the first integral is bounded for sufficiently small δ. For

this fixed choice of δ, the second integral is also bounded, so 1/(z − α) ∈ Hp for

any p ∈ (0, 1). Therefore F ·G is a product of outer factors, which must also be

outer, this establishes the fact that F and G are outer functions.

Since F ∈ H∞ is an outer function, it is uniquely determined by its magnitude

on T , namely, ln |F | is integrable and

F = γ exp

(∫ 2π

0

eit + z

eit − z
ln |F (eit)| dt

2π

)
.

Since |F | = |f0| = 1 a.e. on T by the argument before (3.17), we have F = γ,

therefore

f0 = γzq
( s∏

j=1

z − αj
1− αjz

)
,

where |γ| = 1. Plugging in this into the formula (3.18) we have

k − g0 = cγ
zq
∏n

j=1(z − αj)(1− αjz)

zq
∏s

j=1
z−αj
1−αjz

/
zN
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= cγ
n∏
j=1

(1− αjz)2
n∏

j=s+1

z − αj
1− αjz

/
zN . z

Theorem 3.19. In Theorem 3.11, if cN 6= 0, then there are λj ∈ C such

that(
∞∑
j=0

λjz
j

)2

= cN + cN−1z + · · ·+ c0z
N + bN+1z

N+1 + bN+2z
N+2 + · · · .

We set PN(z) =
∑N

j=0 λjz
j. If PN(z) has no zero in |z| ≤ 1, then there is an

n ≤ N and α1, . . . , αn ∈ D such that

f0(z) =
cN
|cN |

zN−n
n∏
j=1

(
z − αj
1− αjz

)
is the extremal function. Moreover, the dual extremal function satisfies k(z) −
g0(z) = P 2

N(z)/zN and we have

M = ‖P 2
N‖1 =

N∑
j=0

|λj|2.

Before going into the proof, observe that formally (zNk(z))1/2 = PN(z) +

zNg(z), where g(0) = 0, and therefore

zNk = P 2
N + zNg0(z).

Now we still have g0(0) = 0 and we have k = P 2
N/z

N + g0, so

P 2
N/z

N = k − g0

for some g0 ∈ H1
0 . Hopefully and indeed g0 is an extremal function. A similar

construction can be done with 1/2 replaced by 1/3, 1/4, ..., whatever, but we

prefer to have explicit computation by Fourier series method.

Proof. Now we observe that f0, g0 are the corresponding extremal functions

if and only if ∣∣∣∣∫ 2π

0

f0(k − g0)
dθ

2π

∣∣∣∣ = ‖k − g0‖1. (3.20)

To be convinced the readers can look at inequalities (3.15). Now we aim at

finding such f0 ∈ H∞ and g0 ∈ H1
0 .
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Let PN(z) =
∑N

j=0 λjz
j. Since PN(z) has no zero in D, there is an n ≤ N

such that

PN(z) = CN

n∏
j=1

(1− αjz),

for some CN ∈ C. It follows that

z−NP 2
N(z) = cNz

−N
n∏
j=1

(1− αjz)2.

This function is of the form k− g0 for some g0 ∈ H1
0 mentioned before the proof.

Construct

f0(z) =
cN
|cN |

zN−n
n∏
j=1

(
z − αj
1− αjz

)
,

then we find that

f0(z)P 2
N(z)/zN ≥ 0 when |z| = 1,

and hence ∫ 2π

0

(
f0(z)z−NP 2

N(z)
)
(eiθ)

dθ

2π
=

∫ 2π

0

|z−NP 2
N(z)|(eiθ) dθ

2π
.

Therefore (3.20) is satisfied, f0 and g0 = k − p2N/zN are the corresponding ex-

tremal functions.

Finally we have

M = ‖z−NP 2
N‖1 = ‖P 2

N‖1 = ‖PN‖22 =
N∑
j=0

|λj|2. z
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Chapter 4

Future Research Direction

4.1 The Nevanlinna-Pick Problem

In 1916 G. Pick proved the following theorem:

Theorem 4.1 (Pick). Let z1, . . . , zn ∈ D and w1, . . . , wn ∈ D. There exists

a bounded analytic f : D→ D satisfying the interpolating

f(zj) = wj, j = 1, 2, . . . , n (4.2)

if and only if the quadratic form

Qn(t1, . . . , tn) :=
n∑

j,k=1

1− wjwk
1− zjzk

tjtk

is nonnegative: Qn ≥ 0. When Qn ≥ 0, there is a Blaschke product of degree at

most n which solves (4.2).

Nowadays the matrix

M :=

(
1− wjwk
1− zjzk

)
1≤i,j≤n

(4.3)

is called the Nevanlinna-Pick matrix for H∞(D), where z1, . . . , zn ∈ D and

w1, . . . , wn ∈ D. Finding a function in a corresponding function space that

satisfies (4.2) is called Nevallina-Pick problem. For example, it is known that:
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Theorem 4.4. Let H be a reproducing kernel space on D. Let z1, z2, . . . , zn ∈
D be distinct and w1, w2, . . . , wn ∈ C. Suppose that the reproducing kernels

K1, K2, . . . , Kn, at z1, . . . , zn respectively, are linearly indepednent, then the fol-

lowing are equivalent:

(i) There exists an f ∈ H such that ‖f‖ ≤ 1 and f(zi) = wi for i =

1, 2, . . . , n;

(ii) The Nevanlinna-Pick matrix M = (〈Ki, Kj〉 − wiwj)1≤i,j≤n is nonnega-

tive.

Furthermore, it is proved in [LI] that the above are also equivalent to

(iii) detM ≥ 0, where M is the matrix in (ii).

Consider H = H2(D), then the reproducing kernels at zi is given by Ki(z) =

1/(1− ziz), and the Nevanlinna-Pick matrix for H2(D) is then

M =

(
1− (1− zizj)wiwj

1− zizj

)
1≤i,j≤n

.

Comparing the Nevanlinna-Pick matrix for H∞ in (4.3) and that for H2 above,

it is conjectured:

Conjecture 4.5. The solvability of the Nevanlinna-Pick problem on Hp(D)

(with some f(z) s.t. ‖f‖p ≤ 1, 0 < p ≤ ∞) is equivalent to

Mp =

(
1− (1− zizj)2/pwiwj

1− zizj

)
1≤i,j≤n

≥ 0,

where the principal branch of logarithm is taken in each entry.

Objective. Show that, at least, the nonnegativity Mp is a necessary condition

for solvability of the Nevanlinna-Pick problem in Hp.

Give give two examples as evidence. When n = 1, z1 = z and w1 = f(z),

then Mp ≥ 0 is the same as

(1− |z|2)−1/p ≥ |f(z)|,
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which is true by Theorem 3.6 with ‖f‖p ≤ 1.

Also, set n = 2, and it is no loss of generality to assume further that z1 = 0,

then set z2 = z, w1 = f(0) and w2 = f(z), the condition Mp ≥ 0 becomes

[1− |f(0)|2][1− (1− |z|2)2/p|f(z)|2] ≥ [1− |z|2]
∣∣1− f(0)f(z)

∣∣2. (4.6)

Suppose it happens that f(0) = 0, then (4.6) becomes

1− (1− |z|2)2/p|f(z)|2 ≥ 1− |z|2

⇐⇒ |z| ≥ (1− |z|2)1/p|f(z)|

⇐⇒ (1− |z|2)−1/p ≥ |g(z)|,

where f(z) = zg(z), which again holds by Theorem 3.6 since ‖g‖p = ‖f‖p ≤ 1

in Hp.

It remains in progress to determine whether or not the conjecture holds when

n ≥ 2.

4.2 Interpolating Blaschke Products

We start off by introducing the standard terminology in potential theory on the

complex plane. We will then describe a standard fact on approximation of inner

functions by Blaschke product in Corollary 4.12, which will lead us to a natural

open problem.

Definition 4.7. For a compactly supported Borel measure µ on C we define

the energy of µ by

I(µ) =

∫
C

∫
C

ln |x− y| dµ(x)dµ(y).

It it obvious that I(µ) < ∞ for any compactly supported positive measure

on C, therefore µ has finite energy if and only if I(µ) > −∞.

Definition 4.8. A set E is said to be polar if for every positive Borel measure

µ compactly supported in E, we have I(µ) > −∞ =⇒ µ = 0.
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In other words, any nonzero measure supported on a polar set must have

unbounded energy. For example, any singleton in C must be polar. A standard

result in potential theory says that a countable union of polar sets is polar,

therefore all countable sets are polar.

Definition 4.9. For any set E, we define the capacity of E by

c(E) := exp

(
sup

spt(µ)bE,µ(C)=1

I(µ)

)
.

As easily seen, since e−∞ = 0, so that c(E) = 0 precisely when a set E is

polar. Since our main purpose up to this point is to develop a vocabulary to

describe Corollary 4.12, we will not go any further to capacity theory.

Theorem 4.10. Let µ be a finite Borel measure on C with compact support,

and suppose that I(µ) > −∞, then µ(E) = 0 for every Borel polar set.

For a proof, see p. 56 of [RAN]. By Theorem 4.10 we have c(E) = 0 =⇒
A(E) = 0, where A is the area measure on C, this follows from the fact that

A B(0, ρ) has finite energy for any ρ > 0. Therefore the complement of a polar

set in C must be dense in C.

Theorem 4.11 (Frostman). Let f(z) be a nonconstant inner function on

the unit disk D. Then for nearly every ζ ∈ ∂D, i.e., excpet possibly for a set of

capacity zero, the function

fζ(z) =
f(z)− ζ
1− ζf(z)

is a Blaschke product.

For a proof, see p. 76 of [GAR].

Corollary 4.12. The set of Blaschke products is uniformly dense in the set

of inner functions.
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Proof. By Theorem 4.11 and a direct consequence of Theorem 4.10, we de-

duce that for A-a.e. ζ ∈ D, fζ is a Blaschke product, and since

‖f − fζ‖∞ ≤
2|ζ|

1− |ζ|
,

so given ε > 0, |ζ| can be chosen small with ‖f − fζ‖∞ < ε and fζ being a

Blaschke product. z

A relatively longer proof of Theorem 4.11 can be found in pp. 83-86 of [KOO]

which avoids any use of tools from potential theory.

Now the following open problem becomes natural to us:

Open Problem. Can every Blaschke product be uniformly approximated by

interpolating Blaschke products?

Here an interpolating Blaschke product means it is the Blaschke product of an

interpolating sequence.

When the zeros of a Blaschke product are distributed nice enough, a positive

answer was found by Li in [LI2]:

Theorem 4.13. If a Blaschke product has all its zeros lying on finitely many

radii, then it can be uniformly approximated by interpolating Blaschke products.

Objective. Improve Li’s result.
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