Math2033 Mathematical Analysis (Spring 2013-2014) Midterm Review

More Examples

Example 1 (2003 Spring). Let *P* be a countable set of points in \mathbb{R}^2 . Prove that there exists a circle *C* with the origin as center and positive radius such that every point of the circle *C* is not in *P*.

(Note points inside the circle do not belong to the circle)

<u>Sol</u> Note that the problem is not trivial since countable set in \mathbb{R}^2 , as in that in \mathbb{R} , can be very "dense" (imagine how $\mathbb{Q} \times \mathbb{Q}$ is distributed in \mathbb{R}^2).

Let's denote for $r \ge 0$,

$$C_r = \{(x, y) : \sqrt{x^2 + y^2} = r\}.$$

In other words, C_r is a circle of radius r centered at (0,0) and $C_0 = \{0\}$.

Method 1. In fact the set of circles with nonempty intersection with *P* must be countable. Indeed, let $P = {\vec{p_1}, \vec{p_2}, ...}$ and let

$$I = \{r : C_r \cap P \neq \emptyset\}.$$

Suppose $x \in I$, then $C_x \cap P \neq \emptyset$, so there is an *i* such that $\vec{p_i} \in C_x$, thus $x = ||\vec{p_i}||$ for some *i*, therefore the implication means the following set inclusion

$$I \subseteq \{ \|\vec{p}_i\| : i = 1, 2, 3, \dots \}.$$

As $\{\|\vec{p}_i\|: i = 1, 2, 3, ...\}$ is countable, so is *I*.

As $(0,\infty) \setminus I$ is uncountable, hence nonempty, thus there is an r > 0, $r \notin I$, i.e., $C_r \cap P = \emptyset$.

Method 2. We have $\mathbb{R}^2 = \bigcup_{r \ge 0} C_r$, since every point $(x, y) \in \mathbb{R}^2$ must lie in some C_r , namely, $C_{\sqrt{x^2+y^2}}$. Thus C_r 's give a decomposition of \mathbb{R}^2 , and therefore give a decomposition of *P* because

$$P = P \cap \mathbb{R}^2 = P \cap \left(\bigcup_{r \ge 0} C_r\right) = \bigcup_{r \ge 0} (P \cap C_r).$$

We want to show that $P \cap C_r = \emptyset$ for some r > 0. Suppose not, then $P \cap C_r \neq \emptyset$ for every r > 0. Which means we can pick an element $a_r \in P \cap C_r$ for each r > 0.

Note that $\{a_r : r > 0\}$ is uncountable since these are extracted from each of uncountably many circles

Put in other way, the function $f : (0, \infty) \to \{a_r : r > 0\}$ given by $f(r) = a_r$ is bijective. The surjectivity follows from the way we parametrize the set $\{a_r : r > 0\}$; injectivity follows from $x \neq y \implies a_x \neq a_y$ in view of radius.

Now $P = \bigcup_{r \ge 0} (P \cap C_r) \supseteq \bigcup_{r > 0} (P \cap C_r) \supseteq \bigcup_{r > 0} \{a_r\} = \{a_r : r > 0\}$, contradicting the countability of *P*. Therefore $P \cap C_r = \emptyset$ for some r > 0.

Example 2. Find the supremum of

(a)
$$A = \left\{ \frac{\alpha m + \beta n}{m + n} : m, n \in \mathbb{N}, m + n \neq 0 \right\}, \alpha, \beta > 0.$$

(b)
$$B = \left\{ \sqrt{n} - \left[\sqrt{n}\right] : n \in \mathbb{N} \right\};$$

<u>Sol</u> (a) Suppose that $\alpha \ge \beta$, then

$$\frac{\alpha m + \beta n}{m + n} \le \frac{\alpha (m + n)}{m + n} = \alpha$$

for every $m, n \in \mathbb{N}$. Thus *A* is bounded above by α . Fix n = 1, then

$$A \ni \frac{\alpha m + \beta}{m + 1} = \frac{\alpha m}{m + 1} + \frac{\beta}{m + 1} \to \alpha$$

as $m \to \infty$, thus $\sup A = \alpha$.

Similarly, if $\beta \ge \alpha$, then sup $A = \beta$. Thus actually sup $A = \max\{\alpha, \beta\}$.

(b) Recall that for every $x \in \mathbb{R}$,

$$[x] \le x < [x] + 1,$$

therefore

 $0 \le x - [x] < 1.$

It follows that *B* is bounded above by 1.

Consider $n = k^2 - 1$. It looks very similar to k^2 because $k^2 - 1 = k^2(1 - 1/k^2)$. It is tempting to expect

$$k - 1 < \sqrt{k^2 - 1} \ (< k \text{ obviously}). \tag{1}$$

If this is true, then immediately $[\sqrt{k^2 - 1}] = k - 1$.

To show (1), note that

$$k-1 < \sqrt{k^2-1} \iff k^2-2k+1 < k^2-1 \iff 2 < 2k \iff 2 \le k.$$

Therefore (1) holds whenever $k \ge 2$, so $[\sqrt{k^2 - 1}] = k - 1$ whenever $k \ge 2$.

Now for $k \ge 2$,

$$\begin{split} B \ni \sqrt{k^2 - 1} &- [\sqrt{k^2 - 1}] = \sqrt{k^2 - 1} - (k - 1) \\ &= \frac{k^2 - 1 - (k - 1)^2}{\sqrt{k^2 - 1} + k - 1} \\ &= \frac{2k - 2}{\sqrt{k^2 - 1} + k - 1} = \frac{2 - \frac{2}{k}}{\sqrt{1 - \frac{1}{k^2} + 1 - \frac{1}{k}}} \to 1, \end{split}$$

therefore $\sup B = 1$.

Remark. Actually $\{\sqrt{n} - [\sqrt{n}] : n \ge 1\}$ is dense in [0, 1]. The construction is as follows: Let $a \in (0, 1)$, then

$$\sqrt{[n^2+2an]} - [\sqrt{[n^2+2an]}] \to a,$$

and the reason behind the convergence follows from the following estimates via Taylor expansion: as $n \to \infty$,

$$\sqrt{[n^2+2an]} \le \sqrt{n^2+2an} = n\sqrt{1+\frac{2a}{n}} = n+a+O(1/n),$$

and also

$$\sqrt{[n^2 + 2an]} \ge \sqrt{n^2 + 2an - 1} = n + a + O(1/n)$$

The first estimate tells us $\left[\sqrt{\left[n^2 + 2an\right]}\right] = n$, combining with the second estimate we have

$$\sqrt{[n^2 + 2an]} - [\sqrt{[n^2 + 2an]}] = a + O(1/n)$$
⁽²⁾

as $n \to \infty$.

For example, take a = 0.75, then 2a = 1.5, and

$$\sqrt{[(10^{10})^2 + 1.5 \times 10^{10}]} - [\sqrt{[(10^{10})^2 + 1.5 \times 10^{10}]}] = 0.749999718... \approx 0.75.$$

Example 3. Let $p \in (0, 1]$, show that for every $x, y \ge 0$,

$$|x^p - y^p| \le |x - y|^p$$

without any use of calculus.

<u>Sol</u> W.l.o.g. assume $y \le x$, then we need to show

$$x^p - y^p \le (x - y)^p \iff \left(1 - \left(\frac{y}{x}\right)\right)^p \le \left(1 - \left(\frac{y}{x}\right)\right)^p \iff 1 - u^p \le (1 - u)^p, \forall u \in [0, 1].$$

It is enough to show the rightmost statement.

Note that for any $x \in [0, 1]$, $x \le x^p$, it is simply because

$$x \le x^p \iff 0 \le x^p (1 - x^{1-p})$$

and the latter holds because both $x^p \ge 0$ and $1 - x^{1-p} \ge 0$ (since $1 - p \ge 0$).

By using this observation, we have for every $u \in [0, 1]$,

 $u \le u^p$

and since $1 - u \in [0, 1]$,

$$1-u \leq (1-u)^p$$

we add them up to get

```
1 = u + (1 - u) \le u^p + (1 - u)^p,
```

which becomes $1 - u^p \le (1 - u)^p$.

Example 4. Let $a_1, a_2, \dots \in \mathbb{R}$ be such that $\lim_{n \to \infty} a_n = 1$, prove that

$$\lim_{n \to \infty} \left(\frac{a_n^{2/3} - 1}{a_n - \frac{1}{2}} + \frac{n^2}{n^2 + 2014} \right) =$$

by checking the definition of limit of a sequence. *Do not* use computation formulas, sandwich theorem or L'Hopital's rule.

<u>Sol</u> By observation we have $\frac{a_n^{2/3}-1}{a_n-\frac{1}{2}} \to \mathbf{0}$ and $\frac{n^2}{n^2+2014} \to 1$, therefore to prove convergence by definition, we split the terms in the following way:

$$L_n := \left| \frac{a_n^{2/3} - 1}{a_n - \frac{1}{2}} + \frac{n^2}{n^2 + 2014} - 1 \right| \le \left| \frac{a_n^{2/3} - 1}{a_n - \frac{1}{2}} - \mathbf{0} \right| + \left| \frac{n^2}{n^2 + 2014} - 1 \right| \le \frac{|a_n - 1|^{2/3}}{|a_n - \frac{1}{2}|} + \frac{2014}{n}.$$

As $a_n \to 1$, we expect for large *n*,

$$\left| \underbrace{a_n - \frac{1}{2}}_{\approx \frac{1}{2}} \right| > \frac{1}{4}.$$
(3)

To show this, consider a fixed quantity $\frac{1}{4}$. By the definition of $a_n \rightarrow 1$, there is an N_1 such that

$$n > N_1 \implies |a_n - 1| < \frac{1}{4}$$

It follows that by triangle inequality $|x - y| \ge ||x| - |y||$,

$$n > N_1 \implies \left| a_n - \frac{1}{2} \right| = \left| a_n - 1 + \frac{1}{2} \right| \ge \left| |a_n - 1| - \frac{1}{2} \right| \ge \frac{1}{2} - |a_n - 1| \ge \frac{1}{2} - \frac{1}{4} = \frac{1}{4}.$$

Remark. Why we choose $\frac{1}{4}$ in (3)? Can other constants work? Let's generalize the idea to find positive lower bound instead of $\frac{1}{4}$ in (3).

Let's fix a $\delta > 0$ (supposed to describe the "closeness" of a_n to 1), then there is an N_1 such that

$$n > N_1 \implies |a_n - 1| < \delta$$

From this, we have

$$\left|a_{n} - \frac{1}{2}\right| = \left|a_{n} - 1 + \frac{1}{2}\right| \ge \frac{1}{2} - |a_{n} - 1| > \frac{1}{2} - \delta.$$
(3')

Any $\delta > 0$ such that $\frac{1}{2} - \delta > 0 \Leftrightarrow \delta < \frac{1}{2}$ will be a sufficiently good lower bound, e.g., we may take $\delta = 1/2.00001$. The choice $\delta = \frac{1}{4} < \frac{1}{2}$ is taken simply because it looks better. Also, (3') can be used to replace (3) in the argument.

Now fix an $\epsilon > 0$, then there is an N_2 such that

$$n > N_2 \implies |a_n - 1| < \epsilon^{3/2}$$

and also by Archimedean principle, there is an N_3 such that

$$n > N_3 \implies \frac{1}{n} < \epsilon,$$

therefore

$$L_n \le \frac{|a_n - 1|^{2/3}}{|a_n - \frac{1}{2}|} + \frac{2014}{n}$$
$$n > \max\{N_1, N_2, N_3\} \implies \le \frac{(\epsilon^{3/2})^{2/3}}{\frac{1}{4}} + 2014\epsilon$$
$$= 2018\epsilon.$$

Example 5. Let $\{x_k\}$ converge and define $y_k = k(x_k - x_{k-1})$ for $k \ge 2$. Is $\{y_k\}$ necessarily convergent? If $\{y_k\}$ converges, show that $y_k \to 0$.

<u>Sol</u> $\{y_n\}$ may not converge. To see this, note

$$\sum_{k=2}^{n} \frac{y_k}{k} = \sum_{k=2}^{n} (x_k - x_{k-1}) = x_n - x_1,$$

for x_n to be convergent, we may take $y_k = (-1)^k$, then $\{x_n\}$ converges by Alternating Series Test, but $\{y_k\} = \{(-1)^k\}$ is divergent.

Suppose now $y_n \rightarrow \ell$, we show $\ell = 0$. Suppose not, then we have either two cases:

Case 1. $\ell > 0$, in this case, we can find an *N* such that

$$k > N \implies y_k > \frac{\ell}{2},$$

it follows that

$$x_n - x_1 = \sum_{k=2}^{N} \frac{y_k}{k} + \sum_{k=N+1}^{n} \frac{y_k}{k} > \sum_{k=2}^{N} \frac{y_k}{k} + \frac{\ell}{2} \sum_{k=N+1}^{n} \frac{1}{k}$$

then $x_n \to \infty$ by taking $n \to \infty$, a **contradiction** to that $\{x_n\}$ is convergent.

Case 2. $\ell < 0$, then there is an *N* such that

$$k > N \implies y_k < \frac{\ell}{2},$$

it follows that

$$x_n - x_1 = \sum_{k=2}^{N} \frac{y_k}{k} + \sum_{k=N+1}^{n} \frac{y_k}{k} < \sum_{k=2}^{N} \frac{y_k}{k} + \frac{\ell}{2} \sum_{k=N+1}^{n} \frac{1}{k}$$

then $x_n \to -\infty$ by taking $n \to \infty$, again the same **contradiction**.

Example 6. Suppose $x_1, x_2, \dots \ge 0$ and $\lim_{n \to \infty} (-1)^n x_n$ exists, show that $\lim_{n \to \infty} x_n$ also exists.

<u>Sol</u> Let $\ell = \lim_{n \to \infty} (-1)^n x_n$, by considering even and odd indexes (two subseqs of $\{(-1)^n x_n\}$, which must be convergent), then we have

$$\lim_{n \to \infty} x_{2n} = \ell = \lim_{n \to \infty} (-1) x_{2n-1}.$$
 (\varnot)

Let

$$\lim_{n \to \infty} x_{2n} = a \quad \text{and} \quad \lim_{n \to \infty} x_{2n-1} = b,$$

then (\heartsuit) becomes $a = \ell = -b$, this says that a + b = 0.

Since $x_n \ge 0$ for every *n*, we have $a, b \ge 0$, therefore $a + b = 0 \implies a = b = 0$, showing that $\lim_{n \to \infty} x_n = 0$.