Math2033 Mathematical Analysis (Spring 2013-2014)

Midterm Review

Example 1 (2003 Spring). Let P be a countable set of points in \mathbb{R}^{2}. Prove that there exists a circle C with the origin as center and positive radius such that every point of the circle C is not in P.
(Note points inside the circle do not belong to the circle)

Sol Note that the problem is not trivial since countable set in \mathbb{R}^{2}, as in that in \mathbb{R}, can be very "dense" (imagine how $\mathbb{Q} \times \mathbb{Q}$ is distributed in \mathbb{R}^{2}).

Let's denote for $r \geq 0$,

$$
C_{r}=\left\{(x, y): \sqrt{x^{2}+y^{2}}=r\right\} .
$$

In other words, C_{r} is a circle of radius r centered at $(0,0)$ and $C_{0}=\{0\}$.
Method 1. In fact the set of circles with nonempty intersection with P must be countable. Indeed, let $P=\left\{\vec{p}_{1}, \vec{p}_{2}, \ldots\right\}$ and let

$$
I=\left\{r: C_{r} \cap P \neq \emptyset\right\} .
$$

Suppose $x \in I$, then $C_{x} \cap P \neq \emptyset$, so there is an i such that $\vec{p}_{i} \in C_{x}$, thus $x=\left\|\vec{p}_{i}\right\|$ for some i, therefore the implication means the following set inclusion

$$
I \subseteq\left\{\left\|\vec{p}_{i}\right\|: i=1,2,3, \ldots\right\}
$$

As $\left\{\left\|\vec{p}_{i}\right\|: i=1,2,3, \ldots\right\}$ is countable, so is I.
As $(0, \infty) \backslash I$ is uncountable, hence nonempty, thus there is an $r>0, r \notin I$, i.e., $C_{r} \cap P=\emptyset$.
Method 2. We have $\mathbb{R}^{2}=\bigcup_{r \geq 0} C_{r}$, since every point $(x, y) \in \mathbb{R}^{2}$ must lie in some C_{r}, namely, $C_{\sqrt{x^{2}+y^{2}}}$. Thus C_{r} 's give a decomposition of \mathbb{R}^{2}, and therefore give a decomposition of P because

$$
P=P \cap \mathbb{R}^{2}=P \cap\left(\bigcup_{r \geq 0} C_{r}\right)=\bigcup_{r \geq 0}\left(P \cap C_{r}\right) .
$$

We want to show that $P \cap C_{r}=\emptyset$ for some $r>0$. Suppose not, then $P \cap C_{r} \neq \emptyset$ for every $r>0$. Which means we can pick an element $a_{r} \in P \cap C_{r}$ for each $r>0$.

Note that $\left\{a_{r}: r>0\right\}$ is uncountable since these are extracted from each of uncountably many circles

Put in other way, the function $f:(0, \infty) \rightarrow\left\{a_{r}: r>0\right\}$ given by $f(r)=a_{r}$ is bijective. The surjectivity follows from the way we parametrize the set $\left\{a_{r}: r>0\right\}$; injectivty follows from $x \neq y \Longrightarrow a_{x} \neq a_{y}$ in view of radius.

Now $P=\bigcup_{r \geq 0}\left(P \cap C_{r}\right) \supseteq \bigcup_{r>0}\left(P \cap C_{r}\right) \supseteq \bigcup_{r>0}\left\{a_{r}\right\}=\left\{a_{r}: r>0\right\}$, contradicting the count ability of P. Therefore $P \cap C_{r}=\emptyset$ for some $r>0$.

Example 2. Find the supremum of

(a) $A=\left\{\frac{\alpha m+\beta n}{m+n}: m, n \in \mathbb{N}, m+n \neq 0\right\}, \alpha, \beta>0$.
(b) $B=\{\sqrt{n}-[\sqrt{n}]: n \in \mathbb{N}\}$;

Sol (a) Suppose that $\alpha \geq \beta$, then

$$
\frac{\alpha m+\beta n}{m+n} \leq \frac{\alpha(m+n)}{m+n}=\alpha
$$

for every $m, n \in \mathbb{N}$. Thus A is bounded above by α. Fix $n=1$, then

$$
A \ni \frac{\alpha m+\beta}{m+1}=\frac{\alpha m}{m+1}+\frac{\beta}{m+1} \rightarrow \alpha
$$

as $m \rightarrow \infty$, thus $\sup A=\alpha$.
Similarly, if $\beta \geq \alpha$, then $\sup A=\beta$. Thus actually $\sup A=\max \{\alpha, \beta\}$.
(b) Recall that for every $x \in \mathbb{R}$,

$$
[x] \leq x<[x]+1,
$$

therefore

$$
0 \leq x-[x]<1 .
$$

It follows that B is bounded above by 1 .
Consider $n=k^{2}-1$. It looks very similar to k^{2} because $k^{2}-1=k^{2}\left(1-1 / k^{2}\right)$. It is tempting to expect

$$
\begin{equation*}
k-1<\sqrt{k^{2}-1} \text { (}<k \text { obviously). } \tag{1}
\end{equation*}
$$

If this is true, then immediately $\left[\sqrt{k^{2}-1}\right]=k-1$.
To show (1), note that

$$
k-1<\sqrt{k^{2}-1} \Longleftrightarrow k^{2}-2 k+1<k^{2}-1 \Longleftrightarrow 2<2 k \Longleftrightarrow 2 \leq k
$$

Therefore (1) holds whenever $k \geq 2$, so $\left[\sqrt{k^{2}-1}\right]=k-1$ whenever $k \geq 2$.
Now for $k \geq 2$,

$$
\begin{aligned}
B \ni \sqrt{k^{2}-1}-\left[\sqrt{k^{2}-1}\right] & =\sqrt{k^{2}-1}-(k-1) \\
& =\frac{k^{2}-1-(k-1)^{2}}{\sqrt{k^{2}-1}+k-1} \\
& =\frac{2 k-2}{\sqrt{k^{2}-1}+k-1}=\frac{2-\frac{2}{k}}{\sqrt{1-\frac{1}{k^{2}}}+1-\frac{1}{k}} \rightarrow 1,
\end{aligned}
$$

therefore $\sup B=1$.

Remark. Actually $\{\sqrt{n}-[\sqrt{n}]: \boldsymbol{n} \geq \mathbf{1}\}$ is dense in $[\mathbf{0}, 1]$. The construction is as follows: Let $a \in(0,1)$, then

$$
\sqrt{\left[n^{2}+2 a n\right]}-\left[\sqrt{\left[n^{2}+2 a n\right]}\right] \rightarrow a
$$

and the reason behind the convergence follows from the following estimates via Taylor expansion: as $n \rightarrow \infty$,

$$
\sqrt{\left[n^{2}+2 a n\right]} \leq \sqrt{n^{2}+2 a n}=n \sqrt{1+\frac{2 a}{n}}=n+a+O(1 / n)
$$

and also

$$
\sqrt{\left[n^{2}+2 a n\right]} \geq \sqrt{n^{2}+2 a n-1}=n+a+O(1 / n)
$$

The first estimate tells us $\left[\sqrt{\left[n^{2}+2 a n\right]}\right]=n$, combining with the second estimate we have

$$
\begin{equation*}
\sqrt{\left[n^{2}+2 a n\right]}-\left[\sqrt{\left[n^{2}+2 a n\right]}\right]=a+O(1 / n) \tag{2}
\end{equation*}
$$

as $n \rightarrow \infty$.
For example, take $a=0.75$, then $2 a=1.5$, and

$$
\sqrt{\left[\left(10^{10}\right)^{2}+1.5 \times 10^{10}\right]}-\left[\sqrt{\left[\left(10^{10}\right)^{2}+1.5 \times 10^{10}\right]}\right]=0.749999718 \ldots \approx 0.75
$$

Example 3. Let $p \in(0,1]$, show that for every $x, y \geq 0$,

$$
\left|x^{p}-y^{p}\right| \leq|x-y|^{p}
$$

without any use of calculus.

Sol W.l.o.g. assume $y \leq x$, then we need to show

$$
x^{p}-y^{p} \leq(x-y)^{p} \Longleftrightarrow\left(1-\left(\frac{y}{x}\right)\right)^{p} \leq\left(1-\left(\frac{y}{x}\right)\right)^{p} \Longleftrightarrow 1-u^{p} \leq(1-u)^{p}, \forall u \in[0,1]
$$

It is enough to show the rightmost statement.
Note that for any $x \in[0,1], x \leq x^{p}$, it is simply because

$$
x \leq x^{p} \Longleftrightarrow 0 \leq x^{p}\left(1-x^{1-p}\right)
$$

and the latter holds because both $x^{p} \geq 0$ and $1-x^{1-p} \geq 0$ (since $1-p \geq 0$).
By using this observation, we have for every $u \in[0,1]$,

$$
u \leq u^{p}
$$

and since $1-u \in[0,1]$,

$$
1-u \leq(1-u)^{p}
$$

we add them up to get

$$
1=u+(1-u) \leq u^{p}+(1-u)^{p}
$$

which becomes $1-u^{p} \leq(1-u)^{p}$.

Example 4. Let $a_{1}, a_{2}, \cdots \in \mathbb{R}$ be such that $\lim _{n \rightarrow \infty} a_{n}=1$, prove that

$$
\lim _{n \rightarrow \infty}\left(\frac{a_{n}^{2 / 3}-1}{a_{n}-\frac{1}{2}}+\frac{n^{2}}{n^{2}+2014}\right)=1
$$

by checking the definition of limit of a sequence. Do not use computation formulas, sandwich theorem or L'Hopital's rule.

Sol By observation we have $\frac{a_{n}^{2 / 3}-1}{a_{n}-\frac{1}{2}} \rightarrow 0$ and $\frac{n^{2}}{n^{2}+2014} \rightarrow 1$, therefore to prove convergence by definition, we split the terms in the following way:

$$
L_{n}:=\left|\frac{a_{n}^{2 / 3}-1}{a_{n}-\frac{1}{2}}+\frac{n^{2}}{n^{2}+2014}-1\right| \leq\left|\frac{a_{n}^{2 / 3}-1}{a_{n}-\frac{1}{2}}-0\right|+\left|\frac{n^{2}}{n^{2}+2014}-1\right| \leq \frac{\left|a_{n}-1\right|^{2 / 3}}{\left|a_{n}-\frac{1}{2}\right|}+\frac{2014}{n} .
$$

As $a_{n} \rightarrow 1$, we expect for large n,

$$
\begin{equation*}
\underbrace{\left|a_{n}-\frac{1}{2}\right|}_{\approx \frac{1}{2}}>\frac{1}{4} . \tag{3}
\end{equation*}
$$

To show this, consider a fixed quantity $\frac{1}{4}$. By the definition of $a_{n} \rightarrow 1$, there is an N_{1} such that

$$
n>N_{1} \Longrightarrow\left|a_{n}-1\right|<\frac{1}{4}
$$

It follows that by triangle inequality $|x-y| \geq\|x|-| y\|$,

$$
n>N_{1} \Longrightarrow\left|a_{n}-\frac{1}{2}\right|=\left|a_{n}-1+\frac{1}{2}\right| \geq\left|\left|a_{n}-1\right|-\frac{1}{2}\right| \geq \frac{1}{2}-\left|a_{n}-1\right| \geq \frac{1}{2}-\frac{1}{4}=\frac{1}{4} .
$$

Remark. Why we choose $\frac{1}{4}$ in (3)? Can other constants work? Let's generalize the idea to find positive lower bound instead of $\frac{1}{4}$ in (3).

Let's fix a $\delta>0$ (supposed to describe the "closeness" of a_{n} to 1), then there is an N_{1} such that

$$
n>N_{1} \Longrightarrow\left|a_{n}-1\right|<\delta
$$

From this, we have

$$
\left|a_{n}-\frac{1}{2}\right|=\left|a_{n}-1+\frac{1}{2}\right| \geq \frac{1}{2}-\left|a_{n}-1\right|>\frac{1}{2}-\delta .
$$

Any $\delta>0$ such that $\frac{1}{2}-\delta>0 \Leftrightarrow \delta<\frac{1}{2}$ will be a sufficiently good lower bound, e.g., we may take $\delta=1 / 2.00001$. The choice $\delta=\frac{1}{4}<\frac{1}{2}$ is taken simply because it looks better. Also, (3^{\prime}) can be used to replace (3) in the argument.
and also by Archimedean principle, there is an N_{3} such that

$$
n>N_{3} \Longrightarrow \frac{1}{n}<\epsilon
$$

therefore

$$
\begin{aligned}
L_{n} & \leq \frac{\left|a_{n}-1\right|^{2 / 3}}{\left|a_{n}-\frac{1}{2}\right|}+\frac{2014}{n} \\
n>\max \left\{N_{1}, N_{2}, N_{3}\right\} \Longrightarrow \quad & \leq \frac{\left(\epsilon^{3 / 2}\right)^{2 / 3}}{\frac{1}{4}}+2014 \epsilon \\
& =2018 \epsilon .
\end{aligned}
$$

Now fix an $\epsilon>0$, then there is an N_{2} such that

$$
n>N_{2} \Longrightarrow\left|a_{n}-1\right|<\epsilon^{3 / 2}
$$

Example 5. Let $\left\{x_{k}\right\}$ converge and define $y_{k}=k\left(x_{k}-x_{k-1}\right)$ for $k \geq 2$. Is $\left\{y_{k}\right\}$ necessarily convergent? If $\left\{y_{k}\right\}$ converges, show that $y_{k} \rightarrow 0$.

Sol $\left\{y_{n}\right\}$ may not converge. To see this, note

$$
\sum_{k=2}^{n} \frac{y_{k}}{k}=\sum_{k=2}^{n}\left(x_{k}-x_{k-1}\right)=x_{n}-x_{1}
$$

for x_{n} to be convergent, we may take $y_{k}=(-1)^{k}$, then $\left\{x_{n}\right\}$ converges by Alternating Series Test, but $\left\{y_{k}\right\}=\left\{(-1)^{k}\right\}$ is divergent.

Suppose now $y_{n} \rightarrow \ell$, we show $\ell=0$. Suppose not, then we have either two cases:
Case 1. $\ell>0$, in this case, we can find an N such that

$$
k>N \Longrightarrow y_{k}>\frac{\ell}{2}
$$

it follows that

$$
x_{n}-x_{1}=\sum_{k=2}^{N} \frac{y_{k}}{k}+\sum_{k=N+1}^{n} \frac{y_{k}}{k}>\sum_{k=2}^{N} \frac{y_{k}}{k}+\frac{\ell}{2} \sum_{k=N+1}^{n} \frac{1}{k},
$$

then $x_{n} \rightarrow \infty$ by taking $n \rightarrow \infty$, a contradiction to that $\left\{x_{n}\right\}$ is convergent.
Case 2. $\ell<0$, then there is an N such that

$$
k>N \Longrightarrow y_{k}<\frac{\ell}{2}
$$

it follows that

$$
x_{n}-x_{1}=\sum_{k=2}^{N} \frac{y_{k}}{k}+\sum_{k=N+1}^{n} \frac{y_{k}}{k}<\sum_{k=2}^{N} \frac{y_{k}}{k}+\frac{\ell}{2} \sum_{k=N+1}^{n} \frac{1}{k},
$$

then $x_{n} \rightarrow-\infty$ by taking $n \rightarrow \infty$, again the same contradiction. 【

Example 6. Suppose $x_{1}, x_{2}, \cdots \geq 0$ and $\lim _{n \rightarrow \infty}(-1)^{n} x_{n}$ exists, show that $\lim _{n \rightarrow \infty} x_{n}$ also exists.

Sol Let $\ell=\lim _{n \rightarrow \infty}(-1)^{n} x_{n}$, by considering even and odd indexes (two subseqs of $\left\{(-1)^{n} x_{n}\right\}$ which must be convergent), then we have

$$
\lim _{n \rightarrow \infty} x_{2 n}=\ell=\lim _{n \rightarrow \infty}(-1) x_{2 n-1}
$$

Let

$$
\lim _{n \rightarrow \infty} x_{2 n}=a \quad \text { and } \quad \lim _{n \rightarrow \infty} x_{2 n-1}=b
$$

then (\odot) becomes $a=\ell=-b$, this says that $a+b=0$.
Since $x_{n} \geq 0$ for every n, we have $a, b \geq 0$, therefore $a+b=0 \Longrightarrow a=b=0$, showing that $\lim _{n \rightarrow \infty} x_{n}=0$.

