
Math2033 Mathematical Analysis (Spring 2013-2014) Midterm Review

More Examples

Example 1 (2003 Spring). Let P be a countable set of points in R2. Prove that
there exists a circle C with the origin as center and positive radius such that every
point of the circle C is not in P.

(Note points inside the circle do not belong to the circle)

Sol Note that the problem is not trivial since countable set in R2, as in that in R, can be very
“dense” (imagine how Q×Q is distributed in R2).

Let’s denote for r ≥ 0,
Cr = {(x, y) :

√
x2 + y2 = r}.

In other words, Cr is a circle of radius r centered at (0,0) and C0 = {0}.

Method 1. In fact the set of circles with nonempty intersection with P must be countable.
Indeed, let P = {~p1, ~p2, . . . } and let

I = {r : Cr ∩P 6= ∅}.

Suppose x ∈ I, then Cx ∩P 6= ∅, so there is an i such that ~pi ∈ Cx , thus x = ‖~pi‖ for some i,
therefore the implication means the following set inclusion

I ⊆ {‖~pi‖ : i = 1,2,3, . . . }.

As {‖~pi‖ : i = 1,2,3, . . . } is countable, so is I.

As (0,∞) \ I is uncountable, hence nonempty, thus there is an r > 0, r 6∈ I, i.e., Cr ∩P = ∅.

Method 2. We have R2 =
⋃

r≥0 Cr , since every point (x, y) ∈ R2 must lie in some Cr ,
namely, C√

x2+y2 . Thus Cr ’s give a decomposition of R2, and therefore give a decomposi-
tion of P because

P = P∩R2 = P∩
(⋃

r≥0

Cr

)
=
⋃
r≥0

(P∩Cr ).

We want to show that P∩Cr = ∅ for some r > 0. Suppose not, then P∩Cr 6= ∅ for every
r > 0. Which means we can pick an element ar ∈ P∩Cr for each r > 0.

Note that {ar : r > 0} is uncountable since these are extracted from each of uncountably
many circles

Put in other way, the function f : (0,∞)→ {ar : r > 0} given by f (r) = ar is bijective. The
surjectivity follows from the way we parametrize the set {ar : r > 0}; injectivty follows
from x 6= y Ô⇒ ax 6= ay in view of radius.

Now P=
⋃

r≥0(P∩Cr )⊇
⋃

r>0(P∩Cr )⊇
⋃

r>0{ar }= {ar : r > 0}, contradicting the count-
ability of P. Therefore P∩Cr = ∅ for some r > 0.

Example 2. Find the supremum of

(a) A =
{
αm+ βn

m+ n
: m, n ∈ N, m+ n 6= 0

}
, α, β > 0.

(b) B =
{√

n− [
√

n] : n ∈ N
}

;

Sol (a) Suppose that α ≥ β, then

αm+ βn
m+ n

≤
α(m+ n)

m+ n
= α

for every m, n ∈ N. Thus A is bounded above by α. Fix n = 1, then

A 3
αm+ β
m+1

=
αm

m+1
+

β

m+1
→ α

as m→∞, thus sup A = α.

Similarly, if β ≥ α, then sup A = β. Thus actually sup A =max{α, β}.

(b) Recall that for every x ∈ R,
[x] ≤ x < [x]+1,

therefore
0 ≤ x− [x] < 1.

It follows that B is bounded above by 1.

Consider n = k2−1. It looks very similar to k2 because k2−1 = k2(1−1/k2). It is tempting
to expect

k −1 <
√

k2 −1 (< k obviously). (1)

If this is true, then immediately [
√

k2 −1] = k −1.

To show (1), note that

k −1 <
√

k2 −1 ⇐⇒ k2 −2k +1 < k2 −1 ⇐⇒ 2 < 2k ⇐⇒ 2 ≤ k.

Therefore (1) holds whenever k ≥ 2, so [
√

k2 −1] = k −1 whenever k ≥ 2.

Now for k ≥ 2,

B 3
√

k2 −1− [
√

k2 −1] =
√

k2 −1− (k −1)

=
k2 −1− (k −1)2
√

k2 −1+ k −1

=
2k −2

√
k2 −1+ k −1

=
2− 2

k√
1− 1

k2 +1− 1
k

→ 1,

therefore sup B = 1.



Remark. Actually {
√

n −−− [[[
√

n]]] ::: nnn ≥≥≥ 111} is dense in [[[000,,,111]]]. The construction is as
follows: Let a ∈ (0,1), then√

[n2 +2an]− [
√

[n2 +2an]]→ a,

and the reason behind the convergence follows from the following estimates via Taylor
expansion: as n→∞,√

[n2 +2an] ≤
√

n2 +2an = n

√
1+

2a
n
= n+ a+O(1/n),

and also √
[n2 +2an] ≥

√
n2 +2an−1 = n+ a+O(1/n).

The first estimate tells us [
√

[n2 +2an]] = n, combining with the second estimate we
have √

[n2 +2an]− [
√

[n2 +2an]] = a+O(1/n) (2)

as n→∞.

For example, take a = 0.75, then 2a = 1.5, and√
[(1010)2 +1.5×1010]− [

√
[(1010)2 +1.5×1010]] = 0.749999718... ≈ 0.75.

Example 3. Let p ∈ (0,1], show that for every x, y ≥ 0,

|xp − yp | ≤ |x− y|p

without any use of calculus.

Sol W.l.o.g. assume y ≤ x, then we need to show

xp − yp ≤ (x− y)p ⇐⇒
(

1−
(
y

x

))p

≤

(
1−
(
y

x

))p

⇐= 1−up ≤ (1−u)p ,∀u ∈ [0,1].

It is enough to show the rightmost statement.

Note that for any x ∈ [0,1], x ≤ xp , it is simply because

x ≤ xp ⇐⇒ 0 ≤ xp(1− x1−p)

and the latter holds because both xp ≥ 0 and 1− x1−p ≥ 0 (since 1− p ≥ 0).

By using this observation, we have for every u ∈ [0,1],

u ≤ up

and since 1−u ∈ [0,1],
1−u ≤ (1−u)p ,

we add them up to get
1 = u+ (1−u) ≤ up + (1−u)p ,

which becomes 1−up ≤ (1−u)p .



Example 4. Let a1, a2, · · · ∈ R be such that limn→∞ an = 1, prove that

lim
n→∞

(
a2/3
n −1

an −
1
2

+
n2

n2+2014

)
= 1

by checking the definition of limit of a sequence. Do not use computation formu-
las, sandwich theorem or L’Hopital’s rule.

Sol By observation we have a2/3
n −1
an−

1
2
→ 000 and n2

n2+2014 → 1, therefore to prove convergence by

definition, we split the terms in the following way:

Ln :=

∣∣∣∣ a2/3
n −1

an − 1
2
+

n2

n2 +2014
−1

∣∣∣∣ ≤ ∣∣∣∣ a2/3
n −1

an − 1
2
−−−000

∣∣∣∣+ ∣∣∣∣ n2

n2 +2014
−1

∣∣∣∣ ≤ |an −1|2/3

|an − 1
2 |
+

2014
n

.

As an → 1, we expect for large n, ∣∣∣an − 1
2

∣∣∣︸ ︷︷ ︸
≈ 1

2

>
1
4

. (3)

To show this, consider a fixed quantity 1
4 . By the definition of an → 1, there is an N1 such

that
n > N1 Ô⇒ |an −1| <

1
4

.

It follows that by triangle inequality |x− y| ≥ ||x| − |y||,

n > N1 Ô⇒

∣∣∣an − 1
2

∣∣∣ = ∣∣∣an −1+
1
2

∣∣∣ ≥ ∣∣∣|an −1| −
1
2

∣∣∣ ≥ 1
2
− |an −1| ≥

1
2
−

1
4
=

1
4

.

Remark. Why we choose 1
4 in (3)? Can other constants work? Let’s generalize the

idea to find positive lower bound instead of 1
4 in (3).

Let’s fix a δ > 0 (supposed to describe the “closeness” of an to 1), then there is
an NNN111 such that

n > N1 Ô⇒ |an −1| < δ.

From this, we have∣∣∣an − 1
2

∣∣∣ = ∣∣∣an −1+
1
2

∣∣∣ ≥ 1
2
− |an −1| >

1
2
− δ. (3′)

Any δ > 0 such that 1
2 − δ > 0⇔ δ < 1

2 will be a sufficiently good lower bound, e.g.,
we may take δ = 1/2.00001. The choice δ = 1

4 <
1
2 is taken simply because it looks

better. Also, (3′) can be used to replace (3) in the argument.

Now fix an ε > 0, then there is an N2 such that

n > N2 Ô⇒ |an −1| < ε3/2,

and also by Archimedean principle, there is an N3 such that

n > N3 Ô⇒
1
n
< ε ,

therefore

n > max{N1, N2, N3} Ô⇒

Ln ≤
|an −1|2/3

|an − 1
2 |
+

2014
n

≤
(ε3/2)2/3

1
4

+2014ε

= 2018ε .



Example 5. Let {xk } converge and define yk = k(xk − xk−1) for k ≥ 2. Is {yk }
necessarily convergent? If {yk } converges, show that yk → 0.

Sol {yn} may not converge. To see this, note

n
ÿ

k=2

yk
k
=

n
ÿ

k=2

(xk − xk−1) = xn − x1,

for xn to be convergent, we may take yk = (−1)k , then {xn} converges by Alternating Series
Test, but {yk } = {(−1)k } is divergent.

Suppose now yn → `, we show ` = 0. Suppose not, then we have either two cases:

Case 1. ` > 0, in this case, we can find an N such that

k > N Ô⇒ yk >
`

2
,

it follows that

xn − x1 =

N
ÿ

k=2

yk
k
+

n
ÿ

k=N+1

yk
k
>

N
ÿ

k=2

yk
k
+
`

2

n
ÿ

k=N+1

1
k

,

then xn →∞ by taking n→∞, a contradiction to that {xn} is convergent.

Case 2. ` < 0, then there is an N such that

k > N Ô⇒ yk <
`

2
,

it follows that

xn − x1 =

N
ÿ

k=2

yk
k
+

n
ÿ

k=N+1

yk
k
<

N
ÿ

k=2

yk
k
+
`

2

n
ÿ

k=N+1

1
k

,

then xn →−∞ by taking n→∞, again the same contradiction.

Example 6. Suppose x1, x2, · · · ≥ 0 and lim
n→∞

(−1)n xn exists, show that lim
n→∞

xn
also exists.

Sol Let ` = lim
n→∞

(−1)n xn , by considering even and odd indexes (two subseqs of {(−1)n xn},

which must be convergent), then we have

lim
n→∞

x2n = ` = lim
n→∞

(−1)x2n−1. (♥)

Let
lim
n→∞

x2n = a and lim
n→∞

x2n−1 = b,

then (♥) becomes a = ` = −b, this says that a+ b = 0.

Since xn ≥ 0 for every n, we have a, b≥ 0, therefore a+b= 0 Ô⇒ a = b= 0, showing that
limn→∞ xn = 0.


