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Chapter 1

Metric Space

The purpose of this chapter is to introduce basic concept and terminology in point-set
topology used in this text and also in other branches of mathematics in which the lan-
guage of topology is used. Although here we only attach our focus on metric space,
most of the definition can be easily translated to a more general concept called topo-
logical space.

Throughout our text the notation K will mean either R or C. By normed space we
mean normed vector space.

1.1 Metric

Definition 1.1.1. A metric space is a nonempty set M with a function d : M x
M — R such that for every x,y,z € M,

(1) d(x,y) >0 and equality holds iff x = y;
(i) d(x,y)=d(y,x);

(iii) (Triangle Inequality) d(x,z) < d(x,y)+d(y,2).

Such a function d is called metric. Sometimes we may write (M,d) to denote a
space M endowed with a metric d. Henceforth we write M instead of (M,d) and d is
always the metric on the space mentioned unless there are two spaces.

Example 1.1.2. On any set X, the function dg;s defined by

dastey) =40 F2

(X, y) =

dis( X,y 1, x#y

is a metric, called discrete metric. And (X,dg;s) is called a discrete metric space. [l

Example 1.1.3. On C[0,1] := {f : f is continuous on [0,1]}, let f,g € C[0,1],
then for p > 1,

1
dp(f.g):= 'i//o lf(x)—gIPdx and  du(f.8):= S%Pﬂlf(X)—g(X)l
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Chapter 1. Metric Space

are metrics on C[0,1]. The verification of d, being a metric follows from the celebrated
Minkowski inequality, and that of d is easy. In fact, (C[0,1],d) is a complete metric
space which we may discuss in the future (roughly speaking, a space is said to be
complete if any Cauchy sequence has a limit in that space). It can be checked that in
Riemann integral, the following holds for f € C[0,1],

1 1/n
Tim < /0 |f<x>|"dx> = sup |f()l,

x€[0,1]

this inspires the definition do. (]

Example 1.1.4. All normed vector spaces are in particular a metric space. Re-
call that || - || on a vector space V satisfies the following:

@) |IxI|=0and ||x||=0 < x=0; (Positivity)
(i) |lax|| = |a|llx|| for @ € K (K = R or C); (Scaling Property)
@ii) |lx+yll < llxll+ Iyl (Triangle Inequality)

It can be seen that |- || is a metric. Since C[0,1] is a vector space, (C[0,1],d) is in fact
a complete normed vector space which is also called Banach space. (]

Example 1.1.5. Let X,Y be two normed vector spaces, define L(X,Y) to be the
collection of all continuous linear transformations from X to Y (assuming the open
subsets of X and Y are generated by “ball”’s). L(X,Y), by definition, is a vector space
and on which we can define a norm by, letting T € L(X,Y),

TNl = sup{liTx|| - x € X,||x]| = 1}. u

We have had a few examples of metric space. The last 2 examples are intensively
studied in MATH371. You will be asked to verify the norms defined above are really a
norm in presentation.

1.2 Ball, Open Subsets

We define a ball B(a,e) ={x € M : d(x,a) < €} on a metric space M. Different choices
of metric would induce different kind of balls, hence if necessary to distinguish two
balls induced by d and d,, we may write By, (a,€) and By, (a,€) respectively.

Definition 1.2.1. A subset U of a metric space M is said to be open in M if
uelU = B(u,5) C U, for some 6 > 0.
Example 1.2.2. (0,1) is open in (R,]|-[), since when x € (0,1), B(x,min{x,1 —
x}) €(0,1). On (M,dgis), any subset of M is open in M since x € M == By, (x,1) =
{x}. O

Proposition 1.2.3. Any ball in a metric space M is open in M.

Proof. Let x € B(a,¢), then it can be checked that B(x,e —d(a,x)) C B(a,e).

10



1.3. Continuity

Proposition 1.2.4 (Structure of Open Sets). Any open set in a metric space
M is a union of balls.

Proof. Let U be open in M, let x € U, then there must be §, such that {x} C
B(x,05) € U. Hence taking union for all x € U, we deduce that

Utxtc | Bx,6x)cU = U= | B(x.,6). O
xeU xeU xeU

Proposition 1.2.5. The open subsets of a metric space M satisty the following:
(1) 0,X are open.
(ii) Arbitrary union of open subs is open.

(iii) Finite intersection of open sets are open.

Proof. (i) The reason for @ to be open is a kind of vacuous truth discussed in
class, that is trivial. X is also open due to definition of ball, hence (i) is clear.

(ii) Let {Uqy }aea be a collection of open subsets of M, thenu € |J, Uy = ue
Uy,dJo = Bu,6) C U, €, Uq, for some 6 > 0.

(iii) It is enough to prove that U;,U; open == U;NU, open. Let u € Uy NU>,
then there are 6;, i = 1,2 such that B(u,6;) C U;. It follows that if we choose § =
min{d,02} < 81,02, then B(u,6) € B(u,d;), meaning that B(u,0) C Uy NU>. O

Example 1.2.6. Let A C (M,d), let € > 0, then

A€ :={xeM :d(x,a) <e,dac A}

is open. You will be asked to give reason in presentation. U

1.3 Continuity

Definition 1.3.1. Amap f :(X,dx) — (Y,dy) is said to be continuous at a if for
any € > 0, there is a ¢ > 0 such that

dx(x,a) <6 = dy(f(x),f(a)) <e€.

Example 1.3.2. Let f : (X,dgis) — (Y,dy), then f is automatically continuous.
This is because given a € X, then for any € > 0,

dgis(x,a) <1 = x=a = dy(f(x),f(a))=0<e. O

Example 1.3.3. The evaluation map E(f) = f(0) : (C[0,1],dw) — R is continu-
ous since |[E(f)— E(g)| =1f(0)—g(0)| < d(f,g), thus given g € C[0,1], for any € > 0,

dw(f.8) <€ = |E(f)-E(@)| <e. g

11



Chapter 1. Metric Space

Recall that the implication
dx(x.a) <6 = dy(f(x).f(a) <€
is equivalent to saying that
x € Bx(a,0) = (f(x) € By(f(a).e) < x€ ' (By(f(a).e))),

hence continuity of f : (X,dx) — (¥Y,dy) at a is the same as saying for any € > 0, there
is 6 > 0 such that
f(Bx(a,0)) C By(f(a),e).

This observation leads us to the following interesting consequence which turns out to
be a definition of continuous maps between two “topological spaces” (spaces on which
we have defined what we mean by “open”).

Proposition 1.3.4. Consider f : (X,dx) — (Y,dy), then the following are equiv-
alent.

(i) The map f is continuous.
(ii) f~'(U) is open in X for any open setU C Y.
Proof. Assume f is continuous, let U be openin Y, thena € f~1(U) = f(a) €
U = de > 0,By(f(a),e) C U. But from discussion above, there is a ¢ > 0 such that

f(Bx(a,6)) CU <= Bx(a,8)C f~'(U).

Conversely, let x € X and € > 0 be given, by By (f(x),€) is
open, hence V = f~1(By(f(x),€)) is open. Clearly x € V, and hence there is § > 0,

Bx(x,6) CV, we are done. O

provides us with an elegant way to prove the following that is

usually proved in mathematical analysis course.

Corollary 1.3.5. Composition of two continuous maps is continuous.

Proof. Let f: X —» Y, g:Y — Z be continuous, then go f : X — Z is continuous
because for any U that is open in Z, (g o f)~'(U) = f~'(g"'(U)) is open in X. ([l

Example 1.3.6. The subset A of R defined by
A={(x,y,2) € R :1< )c+y2 -7+ 10sinx +4cosxy < 10}

is open in R? because f(x,y,z) = x + y> —z> + 10sinx + 4cosxy is continuous and
A= f£71((1,10)). 0

o)

Definition 1.3.7. Let M be a metric space, {x,};-; a sequence in M and x € M.
We say that {x,},_; converges to x (denoted by lim,, .o x,, = x) provided for any € > 0,
there is an N € N such that

n>N = d(x,,x)<e.

Proposition 1.3.8 (Sequential Continuity Theorem). f:(M;,d))— (M,d»)
is continuous at xy <= for every {x,} in M| that converges to xo, lim,,_,c f(x,) =

f(xo0).

12



1.4. Limit Points

Proof. The proof is essentially the same as real line case. (|

Hence once the sequence {x, } converges and f is continuous, the operation lim,, ;o f(x;) =
fdim,, . x5,) is valid as in the R case.

1.4 Limit Points

Definition 1.4.1. An open neighborhood of a point x in (M,d) is an open set U
such that x € U. A deleted neighborhood of x is an open neighborhood of x without
x (thatis, U \ {x} but x € U).

By[Proposition 1.2.4] any open set must be a union of balls, hence it is convenient
to consider the neighborhood with “minimal” size. Let’s define

B’(a,e) = B(a,e) \ {a}.

Definition 1.4.2. Let M be a metric space. A point x € M is a limit point of
AC M if forall e >0,

B'(x,e)NA#0.
Example 1.4.3. Consider S :={0}U{1 + % :n e N}. 01is not a limit point because

o N
0 1

Figure 1.1: Example of limit points.

B'(X,e)N A =0 when € < 1. 1 €S’ for obvious reason, and there can’t be any more
(for the same reason as 0), hence S’ = {1}. O

Definition 1.4.4. Let A C X, the derived set of A is defined by

A’ ={x € X : x is a limit point of A}.
Sometimes the derived set is also called the collection of accumulation/limit points.
Proposition 1.4.5. Let A be a subset of metric space X, then

x € A’ < there are distinct x1,x»,--- € A such that lim x,, = x.

n—oo

Proof. Assume x € A’, then there is x; € A such that x; € B’(x,1). Define {x,}

inductively satisfying
au 1
X, € B' | x,min< d(x,x,_1),— NA
n

for n > 2, then clearly x1,x5,... are distinct with lim, . X, = x.
The converse is obvious. O

13



Chapter 1. Metric Space

1.5 Closed Subsets

In mathematical analysis we have learnt that a closed set in R contains all its limit
points, and a set is closed in R if and only if its complement is open in R. They still
hold in any metric space and it seems natural to define closed set as follows:

Definition 1.5.1. A subset of a metric space is closed if it contains all its limit
point(s) (in other words, A 2 A”).

Example 1.5.2. (1) Singleton {a} is closed since {a}’ =0 C {a}.
(i) [0,1]is closed but [0,1) is not.

(iii) Uj1[0,1- 11is closed but J;2,[0,1 — 4] is not.

(iv) Both Q and R\ Q are not closed.

(v) For any subset A of a metric space M, A’ is closed. You will be asked to give
reason in presentationm (I

The following gives the relation between open sets and closed sets, it is another
way to define closedness of a set in M.

Proposition 1.5.3. A subset C of a metric space M is closed <= M \C is
open.

Proof. Assume C is closed, then C 2 C’. Take x € M \ C, then in particular
x ¢ C’. By negating the definition of x being a limit point C, there is € > 0 such that
B’(x,e)NC = 0. Recall that ANB =0 < A C B, hence

B'(x,e) S M\C,
thus xe M\C — B(x,e)C M \C.
Conversely, assume M \ C is open. Let x € C’, we claim that x € C. For otherwise

if x € M\ C, then there is § > 0 such that B(x,0) € M \ C, definition of limit point tells
us there is x” € B’(x,6) N C, a contradiction. O

Corollary 1.5.4. A function f : X — Y between two metric spaces is continuous
— f‘l(L) is closed in X whenever L is closedinY.

Proof. Recall thatif AD B, f~'(A\B)= f'(A)\f'(B)and f~'(¥)=X. O
Corollary 1.5.5. The closed subsets of a metric space M satisfy the following.
(i) 0,X are closed.

(ii) Arbitrary intersection of closed sets is closed.

(iii) Finite union of closed set is closed.

(This fails to be true in general topological space!

14



1.5. Closed Subsets

Proof. Recall[Proposition 1.2.5|and De Morgan’s laws:
M\ JUy =(\M\Uy) and M\(\U, = JM \Uy). O

Example 1.5.6. The n-sphere S = {(x1,x2,...,Xn+1) € R+ x% +x% + -+

2 _ . .
x5 .1 = 1} is closed since
2, .2 2
SOLx2, o Xpe ) = XTHX+ 0+ X

is continuous. O

Finally we have a collection of symbols and definitions that are commonly used
in point-set topology.

Definition 1.5.7. Let M be a metric space.
(i) xo is an interior point of S if there is r > 0, B(x¢,r) C S.
(i1) S°={x € M : x is an interior point of S} is called an interior of S.
(iii) S’ as previously defined is called derived set.
(iv) Sisopenin M if §°=S.
(v) S =SUS is called the closure of S in M.
(vi) Sis closed if S =S.
(vii) Sis densein M if S =M.

(viii) A point x € M is an boundary point of S if for all » > 0, B(x,r) has nonempty
intersection with both S and M\ S.

(ix) 0S ={x € M : x is a boundary point of S}.

For any subset S of a metric space, we expect after we fill in all the limit points
of S to form a new set S := SUS’, it becomes closed, and it can be shown easily by

proposition [Proposition 1.5.9} i.e., S is always a closed set containing S. Later on in

exercises we will see that S is the smallest closed set containing S'!
If S is closed, then S = S. Conversely, if S =S, then S is closed by the discussion
above, hence

S is closed — S=S8.

Since § 2 S is always true, to show a set is closed it suffices to show S C S, it is
convenient to have an equivalence of “x € S”.

Proposition 1.5.8 (Sequential Closure Theorem). Let S be a subset of a
metric space M, then

x €S < thereare x1,x2,---€ S, lim x,, = x.
n—oo

15



Chapter 1. Metric Space

Proof. Letxe S:=SUS’. If x € S, take x,, = x forall n e N. If x € §’, there is

such a sequence by proposition [Proposition [.4.
Assume there are x1,x7,--- € S such that lim,, e, x,, = x. If x, = x forsome n € N,

then x € S. Otherwise if x,, # x for all n € N, we take x,,, = x1 and extract a subsequence
{xn, } of {x,} which satisfies d(x,x,,,,) < min{d(x,x,, ),%} for k > 1,then x € §’. We
conclude x e SUS’ :=S. O

Proposition [Proposition 1.5.8|is another characterization of the closure S of S, it

is sometimes useful when dealing with problems which involve continuous function.
While the following characterization of closure can help us in many set theoretical
problems.

Proposition 1.5.9. Let S be a subset of a metric space M, then
x€S < foranye>0, B(x,e)NS #0.

From this the closedness of S immediately follows. For a nice subset in M we can

visualize the statement as in figure | caption.

P N
e N
7 S N
/ \

/ \
/ 7y _ 7 \
/ _ T O N \
4 Y N \
| /oy NI \

I \ !
! I 1) i
_Tn S I

L RS
\ NN ., / y

Figure 1.2: Points in the closure.

Proof. The (=) direction is clear by the definition of S’. For the (<) direction,
we just need to consider two cases, namely, x € S (then we are done) and x ¢ S (pick
xp € B(x,Hns). 0

Example 1.5.10. Let {S,}qca be a collection of subsets of a metric space M,
then

This is because

acA acA

x€ () Se = V€>0,B(x,€)ﬂ<ﬂ Sa> #0

= VYe>0,() (B(x,©)NSy) #0

a€A
= Ve >0,B(x,e)NSy #0,Ya € A

> xeS, VacA

16



1.6. Exercises and Problems

> xe€ ﬂSTY

acA

The equality can not hold in general. To see this, let A =N and for each n € N,
define S, = {1,-L....}. Clearly N),,en Sn = 0 but N,y S = {0}. O

1.6 Exercises and Problems

Exercises

1.1. Let (X,||- |lx),(%,]l - lly) be two normed vector spaces. Let L(X,Y) denotes the
collection of all continuous linear transformations from X to Y. Show that ||T|| :=
sup{||Tx|ly : x € X,||x||x = 1} is a norm on L(X,Y).

1.2. Let A be a subset of a metric space M, let € > 0, show that A€ :={xe M : d(x,a) <
€,da € A} is open.

1.3. Prove the following properties of limit points.
(i) ACB = A'CPB.
(ii) (AUB)Y = A’ UB’ (hence AUB =AURB).
(iii) (AN B)’ € A’ N B’ and the two sides may not be equal.
(iv) A” C A’, and the two sides may not be equal.

Moreover, show that (X \ A)’ may not be equal to X \ A’. Also show that (;2; A;)" =
U2, A} may not hold (therefore we don’t expect U, A = Uq Aa)-

1.4. Let A be a subset of a metric space M. Define for x € M,
d(x,A) =inf{d(x,a) : a € A}.
(a) Check that d(x,A) is a continuous function in x.
(b) Prove that d(x,A) = 0 if and only if x € A.

(c) Show that any closed set in M is an intersection of a countable number of
open set in M (called G set).

1.5. Let M be a metric space and A C M.

(a) Prove that the interior A° of A is open in M and both the set A’ and A are
closed in M.

(b) Prove that A° is the union of all open sets in M contained in A. Prove that A
is the intersection of all closed sets in M containing A.

Remark. This means A° is the largest open set in M contained in A and A is the
smallest closed set in M containing A.

17



Chapter 1. Metric Space

1.6. Let X be a metric space. A collection of subsets {A;};c; is locally finite if for
each x € X, there is € > 0 such that A; N B(x,€) = 0 for all but finitely many A;. Prove
that the union of locally finite collection of CLOSED subsets is closed.

1.7. Let M}, M, be metric spaces. Prove that the following are equivalent:
(i) f: M| — M, is continuous.
(ii) for every A C My, we have f(A) C f(A).

(iii) for every B C M>, we have f~1(B) C f~(B).

Problems
Definition 1.6.1. Define
C.(R) ={f € C(R) : exists a compact set K in R, f|r\x = 0}.

Examples are drawn in figure[caption.6|(need not to share the same compact set). Such
functions are said to have compact support. We then define C}(R) ={f € C.(R) : f >
0}.

ERE NG/ x
el \

support _—

Figure 1.3: Compactly supported functions.

1.8. Given f,g € CI(R), g # 0, show that there are a; > 0 and s; € R such that

f(x) < Zajg(x—sj), Vx eR.
j=1

Definition 1.6.2. Let X be a metric space and A a set of real numbers. A col-
lection of open subsets of X {O,}1en is said to be normally ascending provided for
any A1,42 €A,

0,1] 20,12 when 4 < A5.
1.9. Let A be a dense subset of (a,b), where a,b € R, and {O,} 1A a normally ascend-

ing collection of open subsets of a metric space X. Define the function f : X — R by
setting f = b on X \ U ea O and otherwise setting

f(x)=inf{ld e A:x€O0,}.
Show that f : X — [a,b] is continuous.

18



1.6. Exercises and Problems

[Hint: f: X — [a,b] is continuous <= for each ¢ € (a,b), the sets {x € X : f(x) < ¢} and
{x € X : f(x) > c} are open. This result follows from the notion of subbase of metric topology
on (R,[-]).]

Definition 1.6.3. Let f be a real (or extended-real) valued function on a metric
space X. If
{xeX:f(x)>a}

is open for every real @, f is said to be lower semicontinuous.

Remark. When X is any topological space, the notion of lower semicontinuity is
defined in the same way. The simple example for such a function is the characteristic

function of a open set in X (see definition [Definition 3.3.2]).

1.10. Suppose that X is a metric space, with metric d, and that f : X — [0,00] is lower
semicontinuous, f(p) < oo for at least one p € X. For n =1,2,3,... and x € X, define

gn(x) = inf{f(p)+nd(x,p) : p € X}.
Prove that:

(1) 182 (x) = (VI < nd(x,y);
(i) 0<g<g<---<fand

(1i1) lim, 50 gn(x) = f(x), forall x € X.

19



Chapter 1. Metric Space

20



Chapter 2

Lebesgue Measure on R

Throughout this text i, j,k and n are usually integers, when it is understood in the con-
tent we will simplify #_,,%%2, to *;/%, where = (J,| | or ). We use simplified symbols
to mean the union/series can be both finite or infinite.

2.1 Length of Open Sets

We have discussed what is meant by “open”, we now show that open sets are disjoint
unions (denoted by LI) of countably many open intervals, and the decompositions are
unique.

Proposition 2.1.1. Any open subsets of R is a union of countably many pair-
wise disjoint open intervals. Moreover, the decomposition is unique.

Proof. We first explain the uniqueness of the decomposition. Suppose an open
set on R has two decompositions | |U; = | |V;, where U;,V; are intervals, then U; =
;Ui N'V;). But there is one and only one U; N'V; can be nonempty in the union
(otherwise U; is split into at least two intervals), and hence U; = U; NV}, for some ;.
But for the same reason, V; = V; NU;, hence U; = V.

By any open set O is a union of balls, i.e., we can write O =
Uxeo(ax,bx), where x € (ax,by). We now extend our intervals as large as possible.
Since Ly :={a €R: (a,x] €O} and R, :={b e R : [x,b) C O} are nonempty, define

a,=infL, and b =supR,

(can be Foo) and write I, = (a’,b’.). We show that I, C O. Pick a y € I, and let’s first
assume y < x. Then as a, =inf L, <y, there is small enough a in Ly such thata <y
and (a,x] C O, hence y € O. The case that y > x is essentially the same. Now we can
write O = U0 Ix-

We show that distinct intervals in the union are disjoint. Assume there are x,y € O,
x <y, such that Iy # I,. If I, N1, # 0, then I, U/, is an open interval. As I # Iy,
a’, # a; or b', # b, either one of them is a contradictiorm We conclude I, N1, = 0.

MLets say if a’, < a’y, then since I, U, C Ois an interval, ax € Ly, but a}, :=inf L, < a/, a contra-
diction. ’
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Chapter 2. Lebesgue Measure on R

Let {I, : @ € A} be the collection of all distinct elements in {/, : x € O}. For each
interval I, we choose a value ry € I, NQ and construct a map I, +— rq, which is
injective, hence {I, : @ € A} is countable. O

Due to we can now define the “length” of any open set as fol-

lows:

Definition 2.1.2. The length of an open set U = | |(a;,b;) is

AU) = Y (bi —ap).

If an open set contains an unbounded open interval, its length is co.

As in probability, we expect the length of open sets should satisfy
AUUV)=A20)+AV)-AUNV), (2.1.3)

which is indeed true. To justify the equality, we notice that the proof is complicated
when the open sets are unions of countably infinitely many intervals. Hence we divide
the proof into two cases, finite union and infinite union. The finite version is treated in
the following proposition.

Proposition 2.1.4. Let U,V be finite union of open finite intervals, then

AUUV)=AU)+AV)-aUNV).

Proof. Let E ={ay,...,an}, a; <--- < ap be the collection of distinct end points
of intervals contained in A and B. Let I; = (a;,a;,-1),i=1,2,...,N. Then U,V,UUV,UN
V are union of intervals in 7 := {I; }{\il except possibly finitely many points which are
common end points of two adjacent intervals in 7. Hence

AUNV)= > A (2.1.5)
Iel,ICUVV
= > AD+ D am- D AW (2.1.6)
Iel,ICU Iel,ICV Iel,ICUNV
=AW+ AV)=AUNV). (2.1.7)

(2-1.5) and (2.1.7) are due to definition of length of open sets and the fact that A(; U
Ij+1) =aj—aj-1+ajy1—aj=aji1 —aj-1 = /l(aj_l,aj+2). ll is due to the fact that
the length of 7 contained in UNV is double counted in 3, 7y AU+ 217 1oy A0

We now show that A is “countably monotone” ((i) of |Proposition 2.1.8)) and A
satisfies equation (2.1.3) in general.

Proposition 2.1.8. The length of open sets has the following properties.
() IfU CcUV;, then A(U) < X A(V;).
(i) AWUV)=20)+AV)=AUNV).

Proof. (i) If there is A(V;) = oo, done. Assume for all i, A(V;) < co. Write U =
LI(a;,b;), since V;’s are open, write V; as a disjoint union of open intervals, collect all
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2.2. Length of Closed Sets

such intervals (c;,d;) and express |JV; = J(¢;,d;). Fix an n € N and choose € > 0 small,
define

n
K, = |_|[ai +¢€,b; —€].
i=1

Clearly K, is compact and K,, CU C | |(c;,d;), hence there is a k,, € N such that

kn
K, < J(ci.dy).

i=1
For union of finitely many intervals, it is easy to see that

n

n kn
Dibi—a)—2ne= > [(bi —€)—(a; + &) < > (d;—¢;) < Y (d; — ;).
i=1

i=1 i=1

letting € — 0%, we infer from the last inequality that Y, (b; —a;) < Y(d i —cj), but
this is true for each n, hence 1(U) < Z(dj —cj) = >SAV).

(i) If A(U) or A(V) is unbounded, then we are done. Assume now A(U),A(V) < oo,
let U = | |(a;i,b;),V = I(c;,d;), then construct the finite unions

n n
Un=| |(@i.bi) and V=] |(c;.dy).
i=1 i=1
For finite union of intervals it is proved that
AU, UV,) = AU+ A(Vi) = AU O V). (2.1.9)

Since both A(U) and A(V) are bounded, given € > 0, there is an N such that when
n>N,
0<AU)-AUp) = AU\Up) = 2 A((a;,bi)) <,

i>n

0< AW =A(V) = AV\V,) = ¥ A(cidi) < €.

It is left as exercise to show that
UuV CU,uV,)uU\U,)UV\ V),

UNV CUnNV)UU\U) UV \ V),
it follows from (i) of [Proposition 2.1.8|that when n > N,
AUUV)-AU,UV,) <2 and AUNV)-AU,NV,) <2e.
These prove lim;, oo (U, UV,,) = A(UUV) and lim,, ;0o A(U,, N V,;) = A(UNV), hence
we get desired result from equation (2.1.9). (]

2.2 Length of Closed Sets

For a compact set K and any bounded open set U containing K, we have a decomposi-
tion U = KU(U\K), and thus U \ (U \ K) = K. Note that both U and U \ K are open
for which we have defined their length, we have the following natural definition.
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Chapter 2. Lebesgue Measure on R

Definition 2.2.1. The length of a compact subset K C R is
AK) = AU) - AU\ K),

where U is a bounded open set containing K.

A(K) is well-defined (that is, A(K) is independent of the choice of bounded open
set U 2 K). To see this, let U,V be two bounded open sets containing K, then clearly

U 2UNV 2K, hence by [Proposition 2.1.8]

A =A(U\KH)uUNV))
= AU\K)+AUNV)=A(U\K)NUNV))
= AU\K)+AUNV)=A(UNV)\K),

hence
A)—AU\NK)=A2UNV)—A(UNV)\K).

Interchanging U and V, we immediately we find that A(U) — A(U \ K) = A(V)—A(V'\
K), so the definition is not ambiguous.

Another weird proof for well-definedness can be found in Kin Li’s MATH301
notes, page 105. For completeness, we also define the length of any closed sets.

Definition 2.2.2. The length of a closed set L is

AL) = lim ALN[-x,x]),

2.3 Lebesgue Measure

We try to extend the length to sets other than open and closed ones by approximating
any set from outside by open sets and from inside by compact subsets. These approxi-
mations give upper and lower bounds of the “length” of the set. When two bounds are
equal, there is no ambiguity on the length of the set, so that the length is well-defined.

The following is the definition of Lebesgue measurability and Lebesgue mea-
sure, however, after[Theorem 2.4.5|and [Proposition 2.7.4] we may replace it by
and

Definition 2.3.1.

(i) The Lebesgue outer measure of a subset A C R is

m*(A) = inf{A(U): AC U, U open}.

(ii)) The Lebesgue inner measure of a subset A C R is

m.(A) = sup{A(K) : K € A, K compact}.

(iii) A bounded set A is said to be Lebesgue measurable if m.(A) = m*(A) and
the common value is the Lebesgue measure, denoted by m(A).

(iv) An unbounded set A is said to be Lebesgue measurable if AN [a,b] is mea-
surable for every a < b. In this case the Lebesgue measure of A is

m(A) = 1_121 m(AN[—x,x]).
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2.3. Lebesgue Measure

Throughout this and next chapters “measurable” means “Lebesgue measurable”,
for short.

Proposition 2.3.2. The outer and inner measures have the following properties:
(i) 0 <m.(A) <m*(A).

(i) AC B = m,(A) < m.(B) and m*(A) < m*(B).

(i) m*(JA) < S m*(A)).

Proof. (i) If m*(A) = co, we are done. If m*(A) < oo, we can choose open U 2 A
that has finite length, and the inequality follows from A(K) = A(U) — A(U - K) < A(U)
for any compact subset K C A.

(ii) To get the first inequality, let L € A and K C B be compact, then LUK C
AUB = B, hence

(why?)
AL) £ ALUK)<m.(B),

taking the supremum over all compact L C A, we get m..(A) < m.(B). The second one
can be similarly proved.

(>iii) If m*(A;) = oo for some i, we are done. Assume for all i, m*(A;) < oo, let
€ > 0, for each A; there is an open set U; 2 A; such that A(U;) — m*(A;) < =, then

clearly JU; 2 JA;. By letting U = |JV; and setting V; = A; in (i) of |Proposition 2.1.8|

we get

* * € *
m(Uar) <a(Uui) < Yawp < Y (m'an+ 55 ) < Yim' (A +e.
As € > 0 is arbitrary, we are done. O

The following is an immediate consequence.

Corollary 2.3.3. If m*(A) =0, then A is measurable with m(A) = 0. Moreover,
any subset of a set of measure zero is also a set of measure zero.

Proposition 2.3.4.

(i) Intervals are measurable with the usual length as its measure.

(ii) Let U be open, then A(U) = m.(U) = m*(U).

Proof. (i) The measurability of any kind of bounded interval A = (a,b) can be
obtained by
l[a+eb—€]CAC(a—€,b+e),

it gives us the estimate (b —a) —2e < m.(A) < m*(A) < (b—a) + 2¢, for all € > 0. For
unbounded interval I, I N [—x,x] is measurable. In any case, let I = R, (—c0,a) or
(a,+0), we get

m(l) = xl—iHloom(I N[—x,x]) = +oo.

(i1) Let’s assume U is a disjoint union of bounded open intervals first. Let € > 0
and U = | |(a;,b;), consider
n
|_|[a,~ +e,bi—€e]CUCU,
i=1
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Chapter 2. Lebesgue Measure on R

which tells us Y7, (b; — a;) —2ne < m(U) < m*(U) < Y (b; — a;), and we get desired
equality by letting € — 0* and then taking n = N (if || = | |¥,,) or n — +oco (if || = |2)).
If U contains an unbounded interval, say U =| |(a;,b;) U (a,+o0), then as above the two
sides approximation (k large)

l[ai +e€,bj—€]Ula+e,k]CUCU

-

1

L

implies Y7, (b; — a;) + (k —a)— 2n+ 1)e < m(U) < m*(U) < +oo, the result follows
from first letting € — 0% and then k — +oo. ]

The following shows that outer measure is translation invariant.

Proposition 2.3.5. Let ECR and x € R, then define E+x ={e+x: e € E}, we
have
m*(E+x)=m"(E).

Proof. Let O 2 E be open, then clearly O+ x 2 E + x is also open, hence m*(E +
x) < m*(0O+x) = A0+ x) = 2(0), taking infimum of A(O) over all open O 2 E, one
has
m"(E+x) <m*(E).

We repeat the process for the translation —x, obtaining the reverse inequality. ([

2.4 Carathéodory Theorem

Before we prove Carathéodory theorem we need two technical results. In mathematical
analysis, given a sequence of real numbers {x,}, denote

L ={t € [—00,00] : exists Xp, , klim Xy, =),
—00
we denote lim,,_,, x, = inf £ and lim,, ., x, = sup L, we have for two sequences of

real numbers:

lim (a, + b,) < lim a,, + lim b, < lim (a, + by,).
n—oo n—oo

n—oo n—oo

The following lemma shares the same pattern.
Lemma 2.4.1. If A and B are disjoint, then
m«(AUB) < m,(A)+m*(B) < m"(AUB).

Proof. Consider the right inequality first. If m*(A L B) = oo, we have nothing to
prove.

Assume now m*(AL B) < co. As usual to get a relation with outer measure and
inner measure we approximate AL B from outside and approximate A from inside. Let
€ > 0, then we can find an open U 2 ALl B and a compact K C A such that

AU)-m" (AUB)<e and m.(A)—-A(K)<e.
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2.4. Carathéodory Theorem

Recall that A(K) = A(U)—- A(U\ K), and U \ K 2 B is open, hence adding them up and
rearranging terms, we deduce that

m* (AU B) +2€ > my(A) + A(U) — A(K) = mo(A) + AU\ K) = m.(A) +m*(B).

We let € — 0" to get desired inequality.
We now consider the left inequality, let there be a compact L € ALI B and an open
V 2 B, then L\ 'V is a compact subset contained in A, we claim that

AL) S AL\V)+AV). 24.2)
Let O 2 L have finite length, the inequality is the same as
AO0)—AO\L) < A0)—AO\NL\V)+A(V) < AO\L\V) <A(V)+AO\L)
but this is true since O\ (L\V)=(OnNV)UO\L)CVU(O\L).
From (2.4.2),

AL) S AL\V)+AV) < m.(A)+ AV),

this is true for all open V containing B and compact L contained in AU B, taking
supremum first and then infimum (or reverse the order), we get

m.(AUB) < m.(A) +m*(B). O

Lemma 2.4.3. Let B be an unbounded measurable subset of R and U be open
with finite length, then
m*(BNU) £m.(BNU).

Proof. Write U = | |;(a;,b;), then given € > 0, there is an N such that A(U) -

Zf\il A(a;,b;) < €. Let’s define S = || (a;,b;), our goal is to find the length of inner
approximation of U N B as an upper bound of m*(U N B).

m*(UNB) <m*(SNB)+m" (U\S)NB) <m* (SNB)+¢€

N
<Y m*(lai.bi 1N B) +€
i=1

* € € €
(m ([os g bi= g nB) + 37) e

. € €
m <|:ai+2i+l’b[_2i+1:| OB> +2e.

=L;

IA
.MZ

~
Il

A
.MZ

1=

m.(L;)+2€. (2.4.4)

For each bounded subset L; € U N B, we can find a compact K; C L; such that

mo(Li) < A(K:) + &, hence SN mo(Li) < SV, AKD) + € =2 AN, Ki)+ e, by
244,
N N
m*(UNB) < Zm*(L,-)+26 <A < |_| K,-) +3e <m.(UNB)+3e¢,
i=1 i=1
we complete the proof by letting € — 0*. (]
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Chapter 2. Lebesgue Measure on R

We are in a position to prove one of the main theorems of this section, which
basically says that a set is measurable if and only if it and its complement can be used
to “split” the outer measure of any set.

Theorem 2.4.5 (Carathéodory). A set A is measurable if and only if the Carathéodory
condition

m*(X) = m* (X N A)+m*(X \ A)

holds for any set X.

Proof. (<) Let X be a bounded interval [a,b] with a < b, then by [2.4]

m*([a,b]NA) |+ m*([a,b]\ A) = m*([a,b])

= m.([a,b])

<|m.([a,b]N A) |+ m*([a,b] \ A),

this implies m*(A N [a,b]) < m.(AN[a,b]). Hence A is measurable, no matter it is
bounded or not.

(=) By (iii) of [Proposition 2.3.2} it suffices to show that m*(X) > m*(X N A) +
m*(X \ A) for any set X. We first observe that when m*(X) = oo, the equality is trivial.
So we assume now m*(X) < oco.

We first prove any open set satisfies Carathéodory condition. Let O be open.
Given € > 0 there is an open U 2 X such that A(U)—m*(X) < €. Thus

m*(X) + € > AU) = m*(U) = ma(UNO)+m* U \O) (2.4.6)
=m"(UNO)+m* (U\O) 2.4.7)
>m (XNO)+m"(X\0),

where (2.4.7) follows from m..(U N O) = m*(U N O) by (ii) of [Proposition 2.3.4 We

then let € — 0% to get: For any set X and open set O,
m*(X) >m"(XNO)+m*(X\O0). (2.4.8)

Now we try to prove (2.4.8) is also true when O is replaced by A. We first claim
that

m(UNA)>m"(UNA). (2.4.9)

When A is unbounded, (2.4.9) is true immediately by When A is
bounded, we let X = A and O = U in (2:4.8), then by [2.4]

+m*(A \U) = m*(A) = m.(A) <[ m(ANU) [+ m"(A\U),

we conclude (2:4.9) for any measurable A, and thus if we redo (2.4.6)),

m*(U) > m,UNA)+m*(U\ A)
>m*(UNA)+m" (U\A)>m" (XNA)+m"(X\A).

We complete the proof by letting € — 0*. (]
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2.5 The sigma-Algebra of Lebesgue Measurable Sets

Because of [Theorem 2.4.5| we see that measurability of subsets in R can be charac-
terized by the outer measure alone. Let’s copy and paste that theorem as our new
definition of measurability.

Definition 2.5.1. A set E is said to be measurable provided for any set X,

m*(X)=m" (X NE)+m* (X \E).

In we will redefine Lebesgue measure of A, m(A), to be the

restriction of m* to the collection of measurable subsets, but not now.

For convenience we may write E€ to denote the relative complement of E in R.
Note that (E€)¢ = E, hence by the definition of measurability, E is measurable if and
only if E€ is measurable.

As pointed out in the (=) direction of the [Theorem 2.4.5s proof, a set is mea-
surable if and only if m*(X) > m*(X N A) + m*(X \ A) for any set X. It provides us

with a handy criterion to check measurability of many conceivable sets, for example,
countable union and intersection of measurable sets. We will mention it one by one.

Proposition 2.5.2. The union of a finite collection of measurable sets is mea-
surable.

Proof. It suffices to prove that when A,B are measurable, so is AU B. Let T be
any subset of R, then by the set equalities

TNAUTNA“NB)=TN(AUB) and A°NB°=(AUB),
one has
m*(T) = m*(TNA)+m" (T N A)
=m*(TNA)+m"(T N A N B)+m*(T N A° N B)
>m (TNAUTNA NB)+m* (TNA°NB°)
=m*(TN(AUB))+m*(T N (AU B)°). O

Proposition 2.5.3. Let A be any set and {Ey}};_, be a finite disjoint collection
of measurable sets. Then

n

m* (Am (IQIEk)> =N AN Ey).

k=1
In particular,
n n
m* < U Ek> = Z m*(Ey)
k=1 k=1
and we call m* finitely additive.

Proof. We prove by induction on n, The case that n = 1 is clear. Assume it is true
for n—1, then

w(an(Us)) = (a0 (Us)nka) +m (an (U ) o)
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:m*(Am (kLnJ:lEk mEn)) +m’ (A” (UEk>)

k=1

n-1
=m*(ANE,)+ Y m"(ANE). O
k=1

Proposition 2.5.4. The countable union of measurable sets is measurable.

Proof. Let {E;};_, be a collection of measurable sets. Define Fy = E1 and Fy, =
Ex \Uﬁ-‘:_ll E; for k > 2, then {F¢};7, is a disjoint collection of measurable sets and

Uiz Fr =Ux~; Ex. Let A be any set and define E = J;~ Ek, then by[Proposition 2.5.3|
n

n n c
m*(A) = m* (Aﬂ ( U Fk)) +m* <Am ( U Fk) ) > 3 m*(ANF)+m (AN ES)
k=1 k=1 k=1
for each n € N, hence from |Proposition 2.3.2]

m*(A)2 Y m* (ANF) +m*(ANE®) > m (AN E) +m"(ANE°). 0
k=1

Corollary 2.5.5. The countable intersection of measurable sets is measurable.
Proof. It follows from De Morgan’s laws. O

A collection of subsets of R is called an algebra if it contains R and is closed
under relative complement and finite union. The prefix o refers to properties related to
countable union. For example, a countable union of closed sets is called a F,, set. A
countable intersection of open sets is called a G5 set. A countable union of G sets is
called a G set.

An algebra is called a o-algebra, as defined in if it is further

closed under countable union. We summarize this section by noting that the collection
of (Lebesgue) measurable subsets L is a o--algebra.

2.6 Approximation of Lebesgue Measurable Sets

Measurable sets possess the excision property, that is, if E C A is measurable and has
finite outer measure, then

m*(A\ E) = m"(A)—m"(E),

this follows from the definition of measurability of E. The validity of transposing the
term m*(E) requires it be finite. Note that we have used the following fact many times:

If E has finite outer measure, for any € > 0 there is an open set O such that

m*(0)-m*(E) < e.
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2.6. Approximation of Lebesgue Measurable Sets

In fact the above can also be rewritten as m*(O\ E) < €, and this expression also makes
sense even if E has unbounded outer measure. This observation formulates another
useful criterion of measurability.

Theorem 2.6.1. Let E C R, the following are equivalent:

(i) E is measurable.

(Outer Approximation by Open Sets and G5 Sets)

(ii) For each € > 0, there is an open O containing E for which m*(O\ E) < €.

(iii) There is a Gs set G containing E for which m*(G\ E) = 0.
(Inner Approximation by Closed Sets and F, Sets)

(iv) For each € > 0, there is a closed F contained in E for which m*(E\ F) < €.

(v) There is an F, set F' contained in E for which m*(E \ F) = 0.

It suffices to show that (i) < (ii) & (iii), while (ii) © (iv) and (iii) & (v) easily follow
from the observation that A\ B = B¢ \ A€.

Proof. (i) = (ii) Assume E is measurable, if m*(E) < oo, then (i) follows from
early discussion in this section.

If m*(E) = oo, let’s say E = | |,, E;,, with m*(E,;) < oo, then for any € > 0, there is
an open Oy, such that m*(O,, \ E,) < €/2". Define O = | J,, O,, and hence

m*(O\E) =m*( JOn\ E) m*(JOu \En) <D .m*(Op \ Ep) < €.

(ii) = (iii) Since for each n there is an open O, 2 E such that m*(0, \ E) < % If
we construct G =~ Op, then m*(G\ E) < m*(O, \ E) < %, for all n € N.

(>iii) = (i) Since there is a G5 set G 2 E such that m*(G\ E) =0, hence G\ E is
measurable, this implies £ = GN (G \ E)° is measurable. O

Remark. In the proof of (i) = (ii) the decomposition of E is not necessarily
disjoint. For example, the decomposition E = |J;,_;(E N [—n,n]) will also do.

Example 2.6.2. This is a simple application of Gs set. Let x € R and A C R,
define A+ x ={a+x:a € A}, it is natural to ask if A is measurable, is the translation
A + x also measurable? The answer is positive. Let there be a G5 set G 2 A such that
A =G\ (G\ A) with m(G\ A) =0, then

A+x=G\(G\A) +x=(G+x)\(G\A+x).

However, by [Proposition 2.3.5|outer measure is translation invariant, hence m*(G\ A +
x)=m*(G\A)=0. But G+x =)0, +x =(),(0, +x) is the intersection of open
(hence measurable) sets, hence A + x is also measurable. U
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2.7 Countable Additivity, Continuity of Measure and
Borel-Cantelli Lemma

This section is devoted to introducing important properties of outer measure. Some of
them also hold for Lebesgue measure which will be soon redefined in another equiv-

alent way. We will also prove that when E C R is measurable, then m*(E) = m(E)
(where m*,m are defined in the same way we did in Section , no matter bounded or

not.

Theorem 2.7.1. Outer measure is countably additive over measurable subsets,
that is, if { Ex }_, is a countable disjoint collection of measurable sets, then

m* ( U Ek> = m*(E).
k=1 k=1

Proof. By subadditivity of outer measure we have clearly m*(Uz=; Ex) < > 7.y m*(Ex).

Moreover by |Proposition 2.5.3|we deduce that for all n € N,
o n n
m*(UEk> Zm*<UEk) =Zm*(Ek). O
k=1 k=1 k=1

Definition 2.7.2. Let {E};", be a countable collection of subsets of R.

(i) {Ex}z-, is ascending if Ej C Ey | for each k, and we define

lim Ej = E;.
k—o0 k ]<LJ:1 k

(i) {Ex}z-, is descending if £y 2 Ey  for each k, and we define

lim Ey = () Ex.
k=1

k—o0

Theorem 2.7.3 (Continuity of Measure). Outer measure possesses the fol-
lowing properties:

(i) If{Ag}y_, is an ascending collection of measurable sets, then
* A | =m*( lim Ay | = 1i (Ap).
m <1<U=1 k) m <k1_{20 k> kl_)I{lnm( k)

(@ii) If {Bi}y_, is a descending collection of measurable sets and m*(By) < oo,
for some N € N, then

* B, ) =m*| lim B, | = 1i *(By).
m(ﬂ ) m(iﬁ.z ) Jim m’ (B
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Proof. (i) We have nothing to prove if one of m*(Ay) = co. Let’s assume m*(Ay) <
oo for all k and define A] = Ay, A} = Ag \ A_; for k > 2, then J,, A, = U, A;, and by

m" ( U Ak) = nlggo (m*(A1)+ Z (m*(Ak)—m*(Ak—l))> = nhflom*(A”)'

k=l =me(ap) F2 =m*(A})

(ii) If there is an N such that m(Bpy) < oo, then we get an ascending collection of
subsets {By \ Bx }x>n, hence

m* ( U B~ Bk)) = lim m*(By \ By).

k—oc0
k=N+1

Since Urpn+1(BN \ Bx) = BN \Nren+1 Bx = BN \Ng=| Bk, we are done by using the

excision property of measurable sets. U

Proposition 2.7.4 (Outer Regularity of Lebesgue Measure). IfE CR is mea-
surable, then m*(E) = m(E). Where m* and m are both defined in Section[2.3

Proof. The only case that is unclear is when E is unbounded. For this case,
let E, = EN[-n,n], then clearly E, is bounded and measurable, | J;_, E, = E and

E| CE; C---. Hence by (i) of [Theorem 2.7.3] one has

m*(E) =m* ( U E,,) = lim m*(E,) = lim m(E,) = m(E). O
n=1

Remark. Lebesgue measure is also inner regular, i.e., m.(E) = m(E) for any
measurable subset £ of R, which is left as exercise.

Definition 2.7.5. The Lebesgue measure is the set function m which is the
restriction of outer measure m* to the collection of measurable subsets of R, i.e.,
m=m"|z.

Remark. e Since open set U is a disjoint union of open intervals, hence

measurable, and thus by [Proposition 2.3.4] A(U) = m*(U) = m(U).

e For any closed L, L is measurable as its complement is open. Define L, =
LN[-x,x] and let Uy 2 L, be open and have bounded measure, then A(L) :=
lim A(Ly)= lim (A(Ux)—A(Ux\Lyx))= lim m(UxNLyx)= lim m(Ly)=
X—+00 xX—+00 X—+00

X—+00

m(L).

The above remark actually verifies that Lebesgue measure extends our definition
of length.

Corollary 2.7.6. First two theorems in this section are also true for Lebesgue
measure m. That is, Lebesgue measure is countably additive and has the continuity
of measure property.

Proof. Since m = m*|z, we replace m* by m. O
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Lemma 2.7.7 (Borel-Cantelli). Let{Ey};, be a countable collection of mea-
surable sets for which Y, m(Ey) < co. Then almost all x € R belong to at most
finitely many of the Ej ’s.

Proof. First we observe that

A :={x € R: x lies in infinitely many Ej’s} = ﬂ U E,.
k=1n=k

‘We need to show m(A) = 0. Since Z:’zl m(Ey) < oo, by continuity of measure,

m(A)=m<kh—I>EonL=JkE")=klimm(UE”>:0' 0

—00
n=k

2.8 Equivalence Relation

2.8.1 Brief Review of Equivalence Relation

Recall that an equivalence relation, ~, on a set S is a binary relation that satisfies the
following three conditions: Reflexive: For all x € S, x ~ x. Symmetric: If x ~ y, then
y ~ x. Transitive: If x ~ y, y ~ z, then x ~ z.

For x € S, we introduce the equivalence class [x] :={s € S : s ~ x} and also §/~,
the collection of such classes, i.e., S/~ = {[s] : s € S}, which is read as the quotient (set)
of S by ~. Recall that

a~b < [a]l=[b] and a+b < [a]l#[b] < [a]lN[b] =0,

hence ~ can be used to partition S, this is because S = Uses[s] = | yea[Sa ], where s, €
S is called the representative of the class [s,]. Note that the feasibility of choosing
those representatives follows from Axiom of Choic@ The representative of a class
may not be unique as we can choose (if exists) a uy € [$q]\ {se} such that u, ~ s, and
thus [uy] = [so]. Note that it is natura to fix the representatives to avoid listing the
same equivalence class.

For those who have had acquaintance with group theory the following example
can be skipped, this is an example from number theory.

Example 2.8.1. Let a,b € Z, we can declare a relation ~ on Z by
a~bifa-be2Z:=2n:neZ}.

For reflexivity, if a € Z, then a —a = 0 € 2Z.

For symmetry, if a —b € 27, then b—a € -27 = 2Z.

For transitivity, if a—b € 2Z,b—ce€2Z,thena—c=(a—-b)+ (b—c) € 2Z.
Let’s compute [a] when a € Z. By definition [a] ={n € Z : n ~ a}, so

lal={neZ:n-a=2i3ieZ)=JineZ:n—a=2i}=Jla+2i}=a+2Z.
(€7 i€

@ Axiom of Choice is proved equivalent to Zorn’s lemma whose application can be seen in chapter 0 of
Kin Li’s MATH371 notes (e.g. every vector space must have a basis).
®For example by fixing representatives one can show that any finite subgroups A, B of a group G must

satisfy |AB| = (4151 where AB :={ab:a € A,beB).
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Moreover by noting that [a] = a+27Z = a -2+ 27 = [a — 2], it can be easily checked
that

Z/~={[n]: n € Z} = {{0],[1]} = {{even integers},{odd integers} }. O

2.8.2 Application of Equivalence Relation with a bit Group
Theory

Given an equivalence relation ~ on S, one can say that the collection in S/~ partitions S.
One may also say that elements in an equivalence class [s] are considered the same (or
they are identified), which is a very common notion in mathematics (i.e., the concept of
gluing or identifying things)! Let’s elaborate this point with the help of group theory.

Definition 2.8.2. A group is a set G together with an associative operation s
such that

(i) Ifa,be G, thena*beG.

(i1) There is an element e € G, called an identity of G, such that for all g € G,
gre=exg=g.

(iii) For each g € G thereis anelementu € Gsothat gxu=u=*g =e.

Remark. It is a routine work to check the inverse of g € G is unique: Let u,v € G
be the inverse of g € G, thenu =uxe =u*(g*v) =(u*g)*v =ex*v =v. The inverse
of g is denoted by g !.

Remark. When we say that G is a group, implicitly there is an operation between
elements of G. It is customary to write ab instead of a = b, even though there may be
two groups involved in a discussion. This convention is adopted as long as dropping
“x” does not course any harm.

Definition 2.8.3. A set H is said to be a subgroup of a group G, denoted by
H < G, if it has the following properties:

(i) Closure: If a,be H,abe H.
(ii) Identity: e € H.

(iii) Inverses: Ifac H,a ' € H.

Let G be a group and H its subgroup, we can check that the relation ~ on G defined
by a ~bif b~'a € H (or equivalently, a = bh, for some i € H) is an equivalence relation.

The way we define ~ is an analogue of Now we see that
lal={beG:b~al={beG:a'beH)={beG:beaH)=aH,

where aH is called a coset of G and G/~ ={aH : a € G} =: G/H partitions G. By the
notion of partition we easily check that aH = bH iff b~'a € H, and in this case, we say
that a and b are identified (in fact [a] = [b], so a and b are “glued” together in the sense
that they are squeezed into a set).
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Since we can easily check an arbitrary intersection of groups is again a group, we
can speak of finding the smallest subgroup H of G containing S by defining

(S) is called a subgroup of G generated by S.

Having the preliminary knowledge, we try to find a subgroup H of a group G
such that desired objects are “glued” in the sense that they lie in, or squeezed into, the
same coset. For example, we just want to identify a,b € G and c,d € G respectively,
so we hope after quotienting out G by H, aH = bH,cH = dH, which is the same as
b~'a,d 'c € H, so our group H must contain b~'a and d~'¢! Let H = (b~ 'a,d"'¢c),
then of course b 'a,d !¢ € H, hence aH = bH and cH = dH in G/H, as desired. H is
the minimal possible one to achieve this.

More generally, let 7 be an index set. For each i € 7, we want to identify the
elements in the subsets A; and B; respectively, then let H to be the group generated by
their “difference”s

H=("'a:aecA;,beB;,icT). (2.8.4)

Of course we may take H = G, but the resulting quotient will be too trivial to be inter-
ested.

Example 2.8.5. It is obvious that R is a group under addition. Now we try to
“identify” each a € [0,1] with a+ 1,a+2,..., i.e., a+k, k € N. Then we need to
quotient out R by a nice subgroup, what is that? By (2.8.4) to identify A, := {a} and
B, :={a+k : k € Z}, the subgroup needs to be generated by —(a + k) +a = —k, for all
k €Z and all a € [0,1]. So we need

H=(-k:keZac[0,1])=(Z)=2Z,

hence R/Z is the desired quotient. Geometrically, R/Z is just the segment [0,1)
(a“="a+ k,k € Z) with 0 and 1 identified, i.e., a circle depicted in Figure 2.1 By

0
Quotient — Glue i
TR C 0 Rz 1

R/Z

Figure 2.1: Quotient out R by Z to get S!.

the same concept, it can be shown that R?/Z? is a torus (by the way, R" /Z" is called
n-torus) as in Figure 2.2} O

Definition 2.8.6. A group G is said to be abelian if for each a,b € G, ab = ba.

Example 2.8.7. Let A, B be abelian groups (with + denoting their binary opera-
tions) and let f : A — B be a set map. We want to quotient out B by a nice and smallest
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Glue “. .~ Glue
Figure 2.2: Quotient out R? by Z? to get a torus.

possible subgroup H such that the map

A f B—" L B/H
gi=rof

preserves addition: g(x +y) = g(x)+g(y). Here r is the canonical projection map. To
do this, we want to identify f(x+y) and f(x)+ f(y) for each x,y € A, so we take

H=(f(x+y)=-(f(x)+ f(y): x,y € A).

Then for any x,y € A, f(x+y)=(f(x)+ f(y) € H,s0 f(x+y)+H = (f(x)+ f(y) +
H < gx+y)=gx)+g(y). O

Example 2.8.8. Finally we use the smallest possible subgroup H of a group G
to “abelianizes” G by doing quotient. Suppose G/H is “abelian”, we hope that for each
a,be G, abH = baH, that is, a~'b~'ab € H, for all a,b € G. This can be achieved if
H=(a"'blab:a,beG).

Surprisingly, H is normal in G (i.e., for each g € G, gHg™' C H), so the quotient
G/H is again a grou@ Since H is merely dependent on G, by defining [a,b] =
a~'b~'ab, one uses the notation [G,G] to denote such H (i.e., [G,G] = {[a,b] : a,b € G))
and call it a commutator subgroup of G. The abelianized group is usually denoted by
G/1G,G] (equipped with the quotient map 7 : G — G/[G,G]) which is the following
universal example: Given an abelian group A and a homomorphis p:G—> A,
there is a unique homomorphism ¢ : G/[G,G] — A such that ¢ = g onr. That said, the
following diagram commutes.

¢G—" . GJIG.G]

¢

A

@We don’t go into detail, the resulting group is called a quotient group which is usually mentioned in
abstract algebra text.
Oie.,a map ¢ between groups such that ¢(ab) = ¢p(a)p(b).
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Chapter 2. Lebesgue Measure on R

We also say that ¢ factors through G/[G,G]. (]

2.9 Nonmeasurable Sets

Theorem 2.9.1. Any subset E of R with positive outer measure contains a sub-
set that fails to be measurable.

Proof. By Problem we can assume E is bounded, otherwise consider its
bounded subset with positive outer measure. Now we define x ~yon Eif x—y € Q, it
is easy to check ~ is an equivalence relation. We partition E by E/~ = {[c] : c € CE},
where E = UcecE [c] and Cg C E, here Cg is also bounded.

For the sake of contradiction let’s assume Cg is measurable. We first prove that
m(Cg)=0. Let Q =Qn[0,1], then Uy (g + Ck) is bounded. Moreover, the collection
{q+CEg}q4e0 is disjoint because if there are g1,¢» € Q such that (g1 + Cg)N (g2 +CEg) # 0,
then there are c¢j,c; € Cg such that g +ci =g+ = ¢c1—-€Q = [c¢1] =
[c2] = c¢1 = 2, and thus g; = ¢». Now by countable additivity of Lebesgue measure

(recall [Example 2.6.2)),
m( |_|<q+cE>) = D, miq+Cp) <o,

q€0 q€Q

however, m(q + Cg) = m(Cg) (by [Proposition 2.3.5| and [Proposition 2.7.4), forcing
m(Cg) =0.

Since E = |_]C€CE [c], if x € E, there is a ¢ € Cg such that x € [c], this implies there
is ¢ € Q such that x = g + ¢ € g + Cg, meaning the inclusion

Ec |J(g+Cp),
q€Q

it follows from subadditivity and translation invariance property of outer measure that

m*(E)< Y m*(q+Cg)= Y, m"(Cr)=0,
q€Q q€Q

a contradiction O

2.10 Further Topic

This section is devoted to the preparation of general measure space. Acquaintence
with more kinds of o-algebra arguably helps create counter examples to show theory
on Lebesgue measure can fail in general measure.

The Cantor-Lebesgue function constructed in this section not only shows us Borel
o-algebra is properly contained in the o-algebra of Lebesgue measurable sets, but also
provides us a concrete example that the composition of measurable functions (will be
defined in next chapter) needs not be measurable.

Finally we end this chapter by providing two propositions which allows us to
understand the structure of measurable sets geometrically.
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2.10.1 Borel sigma-algebra

Definition 2.10.1. Let X be a set. A o-algebra on X is a collection S C 2%
satisfying the following properties:

i XeS.
(ii) fE€ S, then X\ E€S.

(iii) If Ey,Ey,+- €S, then U2 E; € S.

Remark. (ii) and (iii) of |Definition 2.10.1|imply o-algebra is closed under count-

able intersection.

Up til now the only o-algebra we have discussed is the collection of Lebesgue
measurable subsets of R, £, in Section What is any other else on R?

Example 2.10.2 (A list of some o-algebras on R, S).
(i) S ={0,R}, called trivial o-algebra.
(ii) S = 2R, the collection of all subsets of R.
@ii1) If E € Ris a proper subset, S = {0,E,R\ E,R}.
(iv) Let X C R be uncountable, S = {A C X : A countable or X \ A countale}. [

In particular, the o-algebra generated by the collection of open intervals of R in
the way of is called the Borel o-algebra, denoted by 8B, which is the
smallest o-algebra that contains all the open intervals (we call talk about the smallest
one, thanks to Problem 2.17). We call any element of 8 a Borel measurable set, or
simply a Borel set.

Different people may use topologically different “generator’s, the following is for
reference and its proof is tedious and thus omitted.

Proposition 2.10.3. The Borel o-algebra of subsets of R, 8 may be decribed
as the o -algebra generated by these families of subets of R:

(i) Open intervals. (v) Compact sets.

(ii) Open sets. (vi) Leftopen, right closed intervals.
(iii) Closed intervals. (vii) Left closed, right open intervals.
(iv) Closed sets. (viii) All intervals.

Clearly 8 C L because L contains all open intervals and is itself a o-algebra.
However, is B a proper subset of £? The answer is positive, we will prove the existence
of nonBorel measurable set after the construction of Cantor-Lebesgue function in next
subsection.
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2.10.2 Cantor-Lebesgue Function

In this subsection we will recall what is Cantor set, our construction of Cantor-Lebesgue
function will be first defined on the complement of Cantor set and will then be extended
to all of [0,1].

To get the structure of Cantor set straight, it is helpful to get the feeling form its
complement first. Let C,, be the n™ stage of the construction of Cantor set, they are
loosely depicted in Figure[2.3]

G E ] E 1
1 2 1
3 3
G E ] bs ] E ] E ]
1 2 7 8
9 9 9 9
G e O e o o
12 18 1920 2526
2727 2727 27727 2727

Figure 2.3: Cantor set.

In each step we divide each existing closed interval into three pieces evenly and
remove the middle one, with end points left there. Now the collection {C,,} is descend-
ing, we define Cantor set to be the limit of this collection. That is,

n—oo

C:=lim G, := () Cy.
n=1
Observe that m(C,,) = 2" x 3% and then by continuity of measure,

n
m(C) = m(lim c,,) = lim m(C,) = lim (2> - 0.
n—oo n—oo n—oo \ 3
Moreover, C is clearly closed and as C has one-one correspondence with {0,1}x{0,1}x
.-+, it is uncountable. That said, a set of measure zero is not necessarily countable.
Let O, be the open set that is removed in the first n stages of the construction of
Cantor set. That is,

On = [0’1] \Cn-
We define O = {J;,-; O, clearly O is open in R, dense in [0,1] with m(O) = 1. We see
O contains 2F — 1 disjoint open intervals. For detailed discussion we let Oy = ,zi[ ! I{‘

where I¥ denotes the i open interval of Oy counted from the left.
Now we are ready to construct our Cantor-Lebesgue function ¢ : [0,1] — R. For
each k € N, we define
2k 1 ;
‘70|0k = Z 27)([[](’
i=1
where for ACR, ya(x)is 1 when x € A and 0 when x ¢ A. ¢|g, is constant on each

1 ]k and takes the values =, = 2 =1 increasingly. For example,

1
¢lo, =X
1 1 3
®lo, = Xptyxntaxe
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1 1 3 1 5 3 7
Ploy=gXp+ XpTgXp+oXnteXp+ X+ X

It can be seen that ¢|p, ., extends ¢lo, , k > 1.

y

B—

‘ X

Figure 2.4: Construction in the third stage: ¢lo,.

We have thereby defined ¢ on all of O. Now define ¢(0) = 0 and ¢(x) = sup f(ON
[0,x)) for nonzero x € [0,1]\ O = C (it is automatic that ¢(1) = 1).

Proposition 2.10.4. Cantor-Lebesgue function ¢ has the following properties:
(1) Increasing on [0,1]; (ii) Continuous on [0,1].

Proof. (i) follows from the observation that ¢(x) = sup ¢(ON[0,x)) for all x € O.

(ii) ¢ is clearly continuous on O. Let x € [0.1]\ O, as the only discontinuity of an
increasing function is a “jump”, hence it is enough to show ¢ can’t have a jump at x.
Let’s first assume x # 0,1. Since O is dense in [0,1], there must be a,b € O such that
a < x < b. But then there is an N € N so that a,b € Oy . By the ascending property of
{O,.}, for each n > N there must be an index k,, € N such that x lies between I, I?n and
Il?n+1' Choose a,, = supI,Z’n and b,, = ian,Z’nH, we see that

1 1
a, <x<b,, bn—anz—n and tp(bn)—tp(an)zz—n.

3
The process can always continue whenever n > N, thus x cannot be a jump discontinu-
ity. The continuity at 0 and 1 can be similarly proved. U

Remark. ¢ maps [0,1] onto [0,1] by intermediate value theorem.

Proposition 2.10.5. Construct the strictly increasing continuous function s on
[0,1] as follows:
Y(x) = x+@(x).
Where ¢ is the Cantor-Lebesgue function, then y has the following properties:
(i) ¥ maps the Cantor set onto a set of positive measure.

(ii) ¥ maps a subset of Cantor set onto a nonmeasurable set.

Proof. (i) Observe that ¢ is constant on each If and thus ¢ takes I}c onto a seg-
ment with the same length, so m(y(Oy)) = m(Or) —> m(y(0)) = m(O) = 1. On the
other hand, since ¢ maps [0,1] onto [0,2],

2=m([0,2]) = my(O)UY/(C)) = 1 + m((C)) = m@(C))=1>0.

(ii) By [Theorem 2.9.1] that ¢(C) has positive measure implies there is a nonmea-
surable T C /(C), hence N := ¢~!(T) C C is mapped onto y(N) =T. [l
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Remark. In contrast to Problem a continuous function does not necessarily
take a set of measure zero to measure zero.

Proposition 2.10.6. If f is a continuous strictly increasing function of R onto
R, then f maps Borel set to Borel set.

Proof. Itisclear that f takes compact interval to compact interval, thus it suffices
to show that

S:={ACR: f(A) is Borel}

is a o-algebra on R since it already contains all the “generator”s. The detail is left as
exercise. O

Theorem 2.10.7. There is a subset of Cantor set that is Lebesgue measurable
but not Borel.

Proof. Extend ¢ in|Proposition 2.10.5|to ¥ on R increasingly with constant pos-
itive slope outside [0, 1], then ¥ becomes a continuous strictly increasing function from
R onto R. The Lebesgue measurable N in part (ii) of the proof of [Proposition 2.10.5]|
can’t be Borel, otherwise the nonmeasurable W(N) = (N) must also be Borel by
[Proposition 2.10.6| a contradiction. (]

2.10.3 Geometric Structure of Measurable Sets

There are still two facts that are not hard to understand and worth seeing once. They
provide us with a geometric view how a measurable set of positive measure looks.

Lemma 2.10.8. Let E C R be measurable with m(E) > 0, then for any A € (0,1)
there is an open interval I such that

Am(I) < m(INE).

That said, measurable sets with positive measure can always be “squeezed” into
an bounde open interval and “A” acts as a squeezing factor.

Proof. Let’s assume m(E) < oo, otherwise consider its bounded subset. Let A €
(0,1) be given, then for each € > 0 one can find an open U 2 E such that m(U¢) <
m(E)+e€. Let Ue = | |; If, we claim that one of /{’s satisfies our desired inequality.
Suppose not, then for all i,

Am(If) 2 m(IFNE) = 1) m(If) 2 Y. m(If NE) = m(Ue N E) = m(E),

and hence
A(m(E) +€) > m(E).

Since A € (0,1), it is straightforward to see when € is too small, we get a contradiction
that m(E) > m(E). This contradiction arises whenever € < m(E)(% —1), so by taking

€ =0.9999 .- m(E)(% — 1) at the beginning, we are done. ([l

©)This is implicit in the inequality of the lemma as the case m(I) = co does not make sense.
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Theorem 2.10.9 (Steinhaus). Let E C R be measurable with m(E) > 0, let
E-E={x-y:x,yeE},

then there is a § > 0 such that E — E 2 B(0,6).

In other words, 0 must be an interior point of E — E if E has positive measure.

Proof. Let A € (%, 1) be give then by the lemma above one can find a “con-
tainer” (an open interval) / such that E is partially squeezed into [ satisfying

m(ENT) > Am(I).

Let’s notice that when xg € B(0,6), xo € E—E <= (E+x9)NE # (. On account of
the last inequality, it is more preferable to consider the squeezed one (as we know more
about it). In other words, our goal is to choose ¢ small such that (ENI+x9)N(ENI) #
0.

AsI=B(a,r),let’s construct J = B(0,%). Let xo € J, then m((I +x0)N1) > %m(l),
it follows that

m((I+x0)UI) =2m(I)—m((I +x0)N1) < 3m(]).
We claim that (EN 1T+ xg)N(ENT)# 0, suppose not,
3m(I) > m((I+x0)UI)
>m((ENI+x0)U(ENT))
=m(ENI+xp)+m(ENI)
> 2 X Am(I)
> 2% 2m(I)

= 3m(),

a contradiction. O

2.11 Exercises and Problems

Exercises
2.1. Suppose A and B differ by a set of measure zero. In other words,
m*((A\B)U(B\A)) =0.

Prove that A is measurable if and only if B is measurable. Moreover, we have m(A) =
m(B) in case both are measurable.

2.2. Show that if a set E has positive outer measure, then there is a bounded subset of
E that has positive outer measure.

2.3. Inthe text there are two (why?)’s, one is in the proof of[Proposition 2.3.2]and one
is in the proof of they are as shown below, explain.

Let {K;}?_, be a finite collection of compact subsets of R, show that:

(DWe will see why we take it that way in the —4 line of the proof.
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(a) A(Ky) < AK1UK?).
(b) IFK;NK;=0fori#j, Y, AK:) = AL, Ko).

2.4. For a collection of sets {E;} we have shown that m*(J E;) < Y. m*(E;) in
Show that if a collection of sets {A;} is disjoint, then

0o

m*<UAi> > ) ma(A)).
i=1

i=1 =
2.5. Prove the following:
(a) Show that if E, F are measurable, then m(E U F)+m(ENF) = m(E) +m(F).
(b) Consider E C R. Show that there is a Gs set G 2 E such that m(G) = m*(E).
(¢c) Let m*(AU B) < oo, show that if m*(AU B) = m*(A) + m*(B), then AN B is

measurable.

Problems

2.6. Let f: X — R be L-Lipschitz, i.e., there is a constant L such that for all x,y € X,
|f(x)— f(»)| < L|x —y|. Show that the function

F(x):=inf (f(a)+Llx—a
( ) aleX( ( ) | l)
is LipSChitZ on R and extends f

2.7. Let f: X — R be L-Lipschitz, where X C R. That is, there is a constant L such
that | f(x) — f(y)| < L|x — y| for any x,y € X. Show that for any A C X, one has

m*(f(A)) < Lm*(A).

Then prove that a Lipschitz function takes bounded measurable sets to bounded mea-
surable sets. Prove also that it takes any measurable set to measurable set.

[Hint: For measurability you may use ]

2.8. Prove that for any measurable A C R, one has m(A) = m.(A).

2.9. Let E C R. If for each x € E, there is an open interval (x — §x,x + ) such that
m (EN(x=0x,x+0y)) =0,

prove that m*(E) = 0.

2.10. Let E have finite outer measure. Show that E is measurable if and only if for
each open and bounded interval (a,b),

b—a=m"((a,b)NE)+m*((a,b)\ E).
2.11. Suppose f and g are continuous functions on [a,b]. Show that if f = g a.e. on

[a,b], then, in fact, f = g on [a,b]. Is a similar assertion true if [a,b] is replaced by a
general measurable set E?
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2.12. (Dini’s theorem) Let {f,} be an increasing sequence of continuous functions
on [a,b] which converges pointwise on [a,b] to the continuous function f on [a,b].
Show that the convergence is uniform on [a,b].

[Hint: For € > 0 and for each natural number n, show that {E,} defined by E,, = {x € [a,D] :
f(x)— fn(x) < €} is an open cover of [a,b].]

2.13. (MATH301 1998 Final) Write the rational numbers Q = {g1,¢2,¢3,...}. Define

« 1 1
GZnL:J] <qn—nz,qn+nz).
(a) Show that G is measurable and m(G) < oo.

(b) Show that if F is a closed set and Q C F, then F = R.
(c) For every closed set F', show that m(G\ F) > 0 or m(F \ G) > 0.

2.14. Show that E C R has measure zero if and only if there is a countable collection
of open intervals {I; };"_; for which each point in E belongs to infinitely many of the
Ii’sand Y0 A(Iy) < 0.

2.15. (Riesz-Nagy) Let E be a set of measure zero contained in the open interval
(a,b). According to the Problem [2.14] there is a countable collection of open intervals
contained in (a,b), {(ck,dk)};, for which each point in E belongs to infinitely many
intervals in the collection and Zle(dk —ci) < o0, Define

(o)

£ =7 A((ckndic) N (=00,x))

k=1

for all x € (a,b). Show that f is increasing and fails to be differentiable at each point
in E.

2.16. Let E be a measurable subset of R, m(E) < oo and {f,} be a sequence of
measurable functions on E. Let {a,} be a sequence of positive numbers such that
Doy mix € E | f(x)| > @y} < 0. Prove that

noco Qp n—eo @,

for almost all x € E.

2.17. Prove that the intersection of o-algebras is a o-algebra. In particular, for any
collection of subsets, we may talk about the smallest o--algebra that contains the col-
lection.

2.18. Show that the 4™ one in [Example 2.10.2|is a o-algebra. Also complete the

proof of [Proposition 2.10.6] that is, check that S is a o--algebra.

b-a

2.19. Is there a measurable set E such that for any (a,b) C [0,1], m(EN(a,b)) = ?

2.20. (MATH301 2003 Final) Let E be a bounded measurable set in R such that
m(ENI) < %m(l) for every interval /. Prove that m(E) = 0.
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Chapter 3

Lebesgue Measurable
Functions

This chapter is devoted to the study of measurable functions which lays down the foun-
dation of Lebesgue integration. For example, the natural objects like continuous func-
tions, monotone functions and step functions are all “measurable” (to be defined). We
will also establish results concerning the approximation of measurable functions by
simple functions and continuous functions.

3.1 Sums, Products and Compositions

To avoid notations being cumbersome, we will write f ~1(a,b) instead of f -1 ((a,b)),
f7(c) instead of f~!({c}) and m{x : P} instead of m({x : P}).

Proposition 3.1.1. Let the function f have a measurable domain E. Then the
following statements are equivalent.

(i) Foreachc e R, {x € E: f(x) > c} is measurable.
(ii) Foreachc eR, {x € E: f(x) > c} is measurable.
(iii) Foreachc e R, {x € E: f(x) < c} is measurable.

(iv) ForeachceR, {x € E: f(x) < c} is measurable.

Proof. f(x)>c < f(x)>c-1VneNand f(x)>c < f(x)>c+1Tne
N, we see that

{er:f(x)ZC}:ﬂ{er:f(x)>c—1},
n=1 n

(x€E: f(x)>c)= U{er:f(x)2c+1},
n=1 n

hence (i) & (ii), the proof that (iii) & (iv) is essentially the same. That (ii) & (iii) is
obvious. |
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Corollary 3.1.2. With the same hypothesis in|Proposition 3.1.1|and if one of the

4 statements holds, then for each extended real number c, the set {x € E : f(x) =c} =
£~ (c) is measurable.

Proof. When |c| < o0, {c} =N (c— %,c + %), it follows easily from the preced-

ing proposition that

2 11
N r! (c—,c+) , ifel < oo,
n=1 n n

) = (x€E: f(x)>n}, ifc=+co,
1

n

{(xeE: f(x)<-n}, ifc=-c0

s

S
1l
—_

O

is measurable.

Usually we would like to partition the range of a “nice” function f into (small)
intervals whose pre-image is expected be measurable such that we can approximate f
by some “simple” functions for which we can define an integral analogous to Riemann

integral.

preimage measurable?

Figure 3.1: Preimage of measurable function.

tells us one of the conditions suffices to show f is “nice” be-

cause, for example, f~![a,b) = f~![a,+00) N f~!(—c0,b). We call those “nice” func-
tions measurable. We retain the adjective simple to describe such “simple” functions
in[Definition 3.3.11

More often instead of real-valued function we are interested in extended real-
valued function. That is, a function that not only takes the value in R, but also —co or

+oo with the arithmetic defined as follows:

a+00=+00+ag = +00, a#—co
a—00=—-00+qa=—00, a# +oo
a-(£00) = +00-a = +00, a € (0,+o0]
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3.1. Sums, Products and Compositions

a-(x£00) = 00 a = Foo, a € [~00,0)

a4 0, acelR

00

+00

_ = iOO, ac (0,+OO)
a

+00

— = Foo, ae (—00,0)
a

We also adopt the convention that 0-(+o00) = 0. We can denote the extended real
line by [—o0,00], R or R*, some may also denote it by R but it repeats the already
defined set operation - (taking closure) for which R = R.

Handling the “number” oo provides us a higher generality, this is convenience
since, for example, no matter how bad the function fo:l Jfu(x) behaves on E, as long
as m(E) = 0, it is still manageable to ignore E in application.

Definition 3.1.3. A function f defined on E is said to be Lebesgue measur-
able, or simply measurable, provided it is extended real-valued, its domain E is mea-

surable and it satisfies one of the four statements of |Proposition 3.1.1

Remark. The domain of a measurable function is tacitly assumed measurable.
To construct a nonmeasurable function we usually define it on a measurable domain

and argue one of the conditions in cannot hold.

Proposition 3.1.4. Let the function f be defined on a measurable set E. Then
f is measurable if and only if f~'(O) is measurable for each open set O.

Proof. Assume f is measurable. Let O be open, O = | |(a;,b;), where a;,b; €
[—o0,00], then f~1(O) = || f~'(a;,b;) is measurable since (a;,b;) = (a;,00) N (=0, b;).

Conversely, for any a € R, as (a,o0) is open, f ‘1(a,oo) is measurable. Then since
f i (+00) =N, £ (n,00), we conclude for each ¢ € R, {x € E : f(x) > ¢} is measur-
able. O

Proposition 3.1.5. A real-valued function that is continuous on its measurable
domain E is measurable.

Proof. Since f is continuous for each open O, there is an open U C R such that

f ~1(0) = UN E, an intersection of two measurable sets. So from [Proposition 3.1.4 f

is measurable. O

Proposition 3.1.6. A monotone function that is defined on an interval is mea-
surable.

Proof. We leave it as an exercise. O

In measure theory sets of measure zero are considered to be “negligible” sets in
many sense. This point will be made clear in the study of measurable function and
integration. We are interested in whether a function possesses certain properties except
a set of measure zero. This is closely related to the following concept:

Definition 3.1.7. Let E C R be measurable and let P(x) be a property related
to points x € R. If m{x € E : P(x) does not hold} = 0, we say that P(x) holds almost
everywhere (abbr. a.e.) on E, or that P(x) holds for almost every (abbr. a.e.) x € E.
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Remark. If E has finite measure, then
P(x) holds a.e. on E < m{x € E : P(x) holds} = m(E),
this is because m(E \ {x € E : P(x) holds}) = m(E) —m{x € E : P(x) holds}.

Proposition 3.1.8. Let f be an extended real-valued function on E.
(i) If f is measurable on E and f = g a.e. on E, then g is measurable on E.

(ii) For a measurable subset D of E, f is measurable on E if and only if the
restrictions of f to D and E \ D are measurable.

Proof. (i) Let Eg C E be such that f = g on E\ Eg and m(Ey) = 0. Let c € R, then

{(xeE:gx)>cl={xeE\Ep:g(x)>clU{x e Ey:g(x)>c}. (3.1.9)
The measuability follows by seeing {x € E\ Ep: g(x) > c}=(E\Ep)N{x € E: f(x) > c}
and m{x e Ey: g(x)>c}=0.
(i1) Just observe that

(xeE: f(x)>cl={xeD: f(x)>clu{xe E\D: f(x)>c}. U

For two measurable functions on a common domain E, the sum f + g may not
be properly defined when one takes the value +co while another one takes —co. But if
they are finite a.e. on E, then there is an Ey C E such that f,g are finite on E \ Ej but
m(E()) =0.

Theorem 3.1.10. Let f and g be measurable functions on E that are finite a.e.
onkE.

(i) Forany a,B €R, af + Bg is measurable on E.

(ii) f-g is measurable on E.

Proof. Let Ey C E be such that m(Ep) = 0 and f and g are finite on E \ Ej.

(1) If @ =0, then a f is clearly measurable. If @ #0, then {x € E\ Ey : o f(x) >
ct={x € E\Ep: f(x) S c¢/a} is measurable by (ii) of [Proposition 3.1.8] i.e., af is
measurable. It suffices to consider the case @ = 8 =1.

Now foreachx € E, f(x)+g(x)>c <= f(x)>c—gx) < f(x)>r>c—-gx)
for some r € Q, hence

{(xe E\Ep: f(x)+g(x)>c}

={xe€eE\Ey: f(x)>r>c—gx),AreQ}

= JUx€E\Ey: f(x)>rin{x € E\Ey:r>c—g(x)],
reQ

therefore the measurability of f + g is clear.
(ii) The identity f-g = 3 ((f +£)* — f> — &%) tells us it suffices to study the mea-
surability of 2. It just takes some time to fill up the detail. (]

Proposition 3.1.11. Let g be a continuous real-valued function defined on all

of R and f a measurable real-valued function defined on E. Then the composition g o f
is measurable on E.
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Proof. We use[Proposition 3.1.4] Let O be open, then (go £)~1(0) = f~1(g~1(0)),

but g71(0) is open in R, f~!(g~'(0)) is then measurable by measurability of f. O

Remark. The above proposition can be false if (i) g is merely measurable; (ii) g
is measurable and f is continuous. See Problem [3.5]

Proposition 3.1.12. For a finite family {f}}}_, of measurable functions with
common domain E, the functions max{ f1,..., f,} and min{ f1,..., f,} are measurable.

Proof. Let f(x) = max|<j<y, fi(x), then f(x) > ¢ <= thereis j €{l1,2,...,n}
such that f;(x) > ¢, hence

n

(xeE: f(x)>c)=|JIx€E: fj(x)>ch

j=1
n
Similarly {x ekE: lrsnilsnnfi(x) < c} =jL:Jl {x eE: fi(x)< c} . O

Any function f can be split by its positive part and the negative part defined
by f*(x) = max{f(x),0} and f~(x) = max{—f(x),0} respectively. Here f* and f~ are
both nonnegative and their difference is f. That is,

f=r-f.

When f is measurable, [Proposition 3.1.12|tells us f* and f~ are also measurable. The
decomposition plays an important role in defining Lebesgue integral of measurable
functions. Sometimes a proof can be simplified by noticing that properties possessed
by nonnegative measurable functions may also be translated to general measurable ones
by a careful modification.

3.2 Sequential Pointwise Limits

Let’s define our common terminology as follows, these two modes of convergence are
studied in mathematical analysis course.

Definition 3.2.1. Let {f,} be a sequence of functions with common domain E,
a function f on E and a set A C E, we say that

(i) The sequence {f,} converges to f (denoted by f,, — f) pointwise on A pro-
vided

Jim f(x)=f(x), VxeA.

(i) The sequence {f,} converges to f (denoted by f;,, — f) pointwise a.e. on A
provided it converges to f pointwise on A\ B with m(B) = 0.

(iii) The sequence {f,} converges to f uniformly (denoted by f, =2 f) on A
provided for each € > 0, there is an N such that

n>N = |f—ful<e€onA,

where | f — f,| < € on A means | f(x)— f,,(x)| < € for all x € A.
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In other courses we may run into other modes of convergence (some of which
cannot be described by balls induced by metric), for example, norm convergence, weak
convergence (both in L? space) and also convergence in measure. To distinguish them

II1) . .
they are denoted by —, 5 and 5 respectively. Usually by f,, — f (without the word
“pointwise””) we mean norm convergence when the collection of functions of interest

is normed@l

Proposition 3.2.2. Let {f,} be a sequence of measurable functions on E such
that f,, — f pointwise a.e. on E, then f is measurable.

Proof. By possibly excising a set of measure zero from E, let’s assume f,, — f
pointwise on all of E. Let ¢ € R, we see that f(x) >c¢ <= An e N,AN e N,Vj >
N.fj(x)>c+1 thus

D)

i 1
ek fw>=a=U U {vepipseet). o

n=1

Il
b4

1j

Proposition 3.2.3. For a sequence {f,} of measurable functions with common
domain E, each of the following functions is measurable.
inf f,, supf,, lim f, and lim f,.
nx>1 n>1 n—oo n—oo
Proof. Letc€R, inf,» f,(x) < ciff f;(x) < c for some j € N. We note also that

lim,, e fu(x) = lim, e inf;>, f;(x) and limy oo frn (%) = limy—se0 sup;s,, fj(x). The
rest is left as exercises. O

3.3 Simple Approximation

Definition 3.3.1. A real-valued function ¢ defined on a measurable set E is
called simple provided it is measurable and takes only a finite number of values.

Definition 3.3.2. For any subset A of R, the characteristic function of A,
X is defined as follows:

oo [1ifrea
XAYZ00, ifx g A

It can be verified directly that y 4 is measurable if and only if A is measurabl
Assume ¢ is measurable and only takes the values ay,as,...,a, on E. By defining
A; = <p‘l(a[) fori=1,2,...,n, we have | |_; A; = E and a canonical representation

of ¢:
n
$= ZaiXAlw
i=1

(DWe have seen an example in the first chapter that do, is a norm on Cla, b].

@ Also denoted by 14 and also called indicator function.

380 we have our first example of nonmeasurable function, the characteristic function of a nonmeasurable
set.
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In particular, we call a simple function a step function when A; are open intervals.

Definition 3.3.3. A step function on [a,b] is a function s such that s(x) = ¢; for
Xxi—1 < x < x; and the collection {xg,x,...,x,} forms a partition of [a,b] (x¢g = a,x, =
b).

Lemma 3.3.4 (Simple Approximation). Let f be a measurable real-valued
function on E. Assume f is bounded on E, then for each € > 0, there are simple
functions ¢ and ¢ defined on E which have the following approximation properties:

Ye<f<y¢Ye and 0<ZyYye—¢pc<eonkE.

Proof. Let € > 0 be given and [c,d) a bounded interval that contains f(E). Let
{y0,¥1,-..,yn} partition [c,d), where c = yg < y1 <y <--- < fy =d and y; —y;_1 <€,
for i = 1,2,...,n. Define A; = f‘l[yi,l,y,-), then {A;}!, is a disjoint collection of
subsets of E such that | |, A; = E. Now construct simple functions

n n
Pe = Z)’i—lXA[ and ¢ = ZinAi-
i=1 i=1

Since for each x € E, x € Ay for some k and thus f(x) € [yx_1, V), this implies

Ye(x) = yr—1 < f(x) < yi = Ye(x),

and 0 < Ye — e < maxj<j<,(¥i —yi-1) < €. O

Remark. The simple approximation lemma tells us every bounded measurable
function is a uniform limit of a sequence of simple functions. Also from the proof of
the lemma when f is nonnegative, we can choose ¢¢ > 0.

Theorem 3.3.5 (Simple Approximation). An extended real-valued function
f on a measurable set E is measurable if and only if there is a sequence of simple
functions {¢,,} on E for which ¢,, — f pointwise on E and has the property that

lox] < 1f| on E for all n.

If f is nonnegative, we may choose {¢,} to be increasing with ¢, > 0.

Proof. By |Proposition 3.2.2| the if-direction is clear. For the converse let’s first

assume f > 0, the general case is left as exercise. Define E, = {x € E : f(x) < n}
where n € N, then f|g, is a bounded measurable function on E, and thus by simple
approximation lemma there are ¢,, and ¢,, on E,, such that

OSQOnS.ﬂEnS!,l/n and OSd’n_90n<%.

Extend ¢, on E\ E, by defining ¢,|g\g, = n, we claim that ¢, is our desired simple
function.

Case 1. Let x € E be such that f(x) = oo, then x ¢ E,, for all n, hence ¢, (x) = n,
thus limy, e ¢, (x) = 00 = f(x).

Case 2. Let x € E be such that f(x) < oo, then x € Ep for some N € N, so for all
J2N,x€E;j = 0< f(x)—¢j(x) < %, hence lim; e ¢;(x) = f(x).
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Now the general result follows from considering the positive and negative parts.
In case when f is nonnegative, we may replace ¢, by ¢, := max{¢i,¢2,...,¢n}
to get an increasing sequence of simple functions. (]

Remark. As R = J,en[—7,1] and each m([—n,n]) is finite, thus R is o-—ﬁnite{@]
and hence we can replace each ¢, by ¢, := ¢, ¥[-n,n]- That is to say, we can further
assume each ¢, vanishes outside a set of finite measure. We describe such functions
have finite support.

3.4 Littlewood’s Three Principles

For Lebesgue measure Littlewood’s Three Principles are roughly the following.

e Every (measurable) set is “nearly” a finite union of open intervals (Theo-|
rem 3.4.1));

e Every pointwise convergent sequence of (measurable) functions is “nearly”
uniformly convergent (Egoroffs Theorem);

e Every (measurable) function is “nearly” continuous (Lusin’s Theorem).

It is worth noting that among the three principles Egoroff’s Theorem can be gen-
eralized to arbitrary finite measure space (X ,2,,u

Theorem 3.4.1 (The First Principle). Let E have finite measure. Then for
each € > 0, there is a finite disjoint collection of bounded open intervals {I; }}}_, such
that

m(EA(LEZ, Ix)) < €.

Proof. Let € > 0 be given. Since m*(E) = m(E) < oo, there is an open U 2 E
such that A(U) —m(E) < 5. Write U = | |(a;,b;), if the union is already finite, done.
Assume the union is infinite, then there is an N such that | |72, 2((a;,b;)) < €/2,
write O = Ufil(ai,bi), now

m(O\E)<m(U\E)<¢€/2

and

(e8]

mE\NO) <mU\O) = Y A(ai,b)) < €/2. m

i=N+1

Theorem 3.4.2 (Egoroff). Assume E has finite measure. Let {f,} be a se-
quence of measurable functions on E that converges pointwise on E to the real-valued
function f. Then for each € > 0, there is a closed set F' contained in E for which

fn=fonF and m(E\F)<e.

@A measure space (X, X, p) is said to be o -finite if there are X, X, --- € ¥ such that X = {J;2; X; and
p(X;) < oo foreach i.

®)One of the troubles in translating facts in terms of Lebesgue measure to general measure space X is that
X may not be complete. That is, the o--algebra of subsets of X does not necessarily contain all subsets of a
set of measure zero. In such incomplete measure space we do not have f = g a.e. on X and f measurable
= g measurable (Proposition 3.1.3), nor {f,, } a sequence of measurable functions and lim,, e fr = f a.€.

on X == f measurable lEroposition 3.2.2).
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Proof. This theorem actually holds in a much general setting, we defer the proof
to[Theorem 5.1.13] with a little change of notations. O

Let A C R be a subset and f a real-valued function defined on A. The upcoming
proposition requires us to recall what is meant by continuity on arbitrary A, where A
is given so called subspace (metric) topology (the collection of “open” sets induced by
that in the larger space containing it). Continuity between metric spaces is described
simply by balls which is still what we concern the most in the subspac Those open
balls in the subspace A are of the form

Ba(a,r):={x€A:d(x,a) <r}
={xeR:d(x,a)<r}nA
= B(a,r)NA.

Moreover, given metric spaces X and Y, a function f : X — Y is said to be contin-
uous if and only if for each x € X and for any open ball V in Y containing f(x), there
is an open ball U in X containing x such that

f)cv. (3.4.3)

In case when it holds at a point x € X, we say that the function f is continuous at x.

This criterion is also true when U and V are topological bases elements. Metric
space always has a metric topology (a natural topology generated by the collection of
balls, an example of base). The similar criterion holds for general topological spaces
(where V is open set in Y and U is open set in X). See page 104 of the book TOPOL-
OGY (2" edition) written by James R. Munkres.

Remark. For metric spaces X,Y, a continuous f: X — Y and a Z C X, the restric-
tion f|z : Z — Y is also continuous (of course, with respect to subspace topology of
Z). This is easily proved by the ball-ball argument given in (3.4.3). This is also true for
general topological spaces. Note that “f is continuous on Z” and “f|2 is continuous”
are totally different matters.

Lemma 3.4.4. Let f be a simple function defined on E. Then for each € > 0,
there is a continuous functions g on R and a closed set F contained in E for which

f=gonF and m(E\F)<e.

Proof. Let f = Z?:l aix a,, where | |!_; A; = E. Then for each i there is a closed
F; € A; such that m(A; \ F;) < =, it implies m(E \ F) < €, where F = | |F; (clearly
closed). It remains to define a continuous function on R that agrees with f on F.

Let’s define g := >, ai xr;, then g = f on F. We now try to prove that g| is
continuous on F, after that by Problem@]we can extend g to a continuous function
on R. For each x € F there is an i such that x € F;, but this implies x € R\I_l#i Fj,
meaning there is a ¢ > 0 such that B(x,0) SR\ |_|j¢l« Fj, then B(x,0) N F' C F; on which
g is constant and thus by the criterion in (3.4.3), g|F is continuous on F. U

Theorem 3.4.5 (Lusin). Let f be areal-valued measurable function on E. Then
for each € > 0, there is a continuous function g on R and a closed F C E for which

f=gonF and m(E\F)<e.

(®Recall that a subspace of a metric space is still a metric space.
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Chapter 3. Lebesgue Measurable Functions

Proof. We only prove the case when m(E) < oo, the case that m(E) = oo is left as
exercise.
As f is measurable on E, by the simple approximation theorem there is a sequence

of simple functions {¢,} such that ¢,, — f pointwise on E. Now by |Lemma 3.4.4| for
each n € N there is a closed F,, C E and a continuous function g,, on R such that

¢n=gnonF, and m(E\F,) < 2n—€+1
Let Fy = ,=; Fn, then ¢, — f pointwise on Fy, ¢,, = g, on Fy and m(E \ Fy) < €/2.
In order for f be equal to a continuous function pointwise on some subset, we expect
the convergence ¢, to be uniform. Here Egoroff’s theorem can do the task.
By Egoroff’s theorem, there is a closed F' C Fj such that ¢,, = f on F and m(Fp\
F) < €/2. Moreover, the inequality

1f ) = FOII <1 () = @n (O + 160 (X) = dn (W] + [0 (¥) = fF (V)]
=11 (0) = ¢n (Ol +18n(X) = gn NI + | (¥) = f(V)I

implies f|r is continuous on F (detail can be found in the following remark), of course,
with respect to the subspace topology, so by Problem we can extend f|r to a
continuous function on R. Finally m(E \ F) = [m(E) — m(Fy)] + [m(Fp) —m(F)] < €.

Remark. e The continuity of f|r on F can be argued as follows.

Let xg € F be fixed, then for each € > 0, the uniform convergence of {¢,} on
F implies there is an N such that |[f — ¢ x| < €/3 on F. For this choice of N
there is a 6 > 0 such that y € B(x9,0) = |gn(x0) —gn(¥)| < €/3. Hence
when y € B(xg,0)NF, |[f(x0)— f(y)| < €/3+€/3+¢€/3 = €. The implication
actually means for any € > 0, there is a 6 > 0 such that

S1F(B(x0,6) NF) € B(f(xo),€).
That satisfies the criterion given in (3.4.3).

e Sometimes when m(A\ B),m(B \ C) are small, we expect m(A\ C) is also
small. The approach used in the last line of the proof in Lusin’s theorem is
not applicable in general as it requires m(Fy) and m(F) be finite. To overcome
this difficulty we observe that for any set A,B and C, A\C C (A\ B)L(B\C)!

e To prove Lusin’s theorem in the case that m(E) = oo it is not a good way to
extend the result on E,, := EN[—n,n] successively.

e By the method we use in Problem we see that for closed L and a con-
tinuous function f : L — R, the extension F' : R — R of f can be chosen so
that

|[F(x)| < sup|f(L)|.

In other words, when f is bounded measurable and real-valued on E, there
is a continuous extension F' on R whose magnitude is as large as f.

As an application of Lusin’s theorem let’s identify all real-valued measurable
functions on R that preserves addition.
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Proposition 3.4.6. Let f : R — R be a measurable function such that for any
x,y R,

fx+y)=f(x)+ f(y),

then f is a continuous function on R.

It is a simple exercise in mathematical analysis that such continuous functions
must be of the form f(x) = f(1)x. We thereby complete the classification of additive
measurable functions.

Proof. Let’s first observe that f(0) =0 and f(x+ h)— f(x) = f(h), it follows that
f is continuous on R iff f is continuous at 0, let’s focus on neighborhoods of 0. By
Lusin’s theorem, there is a measurable £ C R with m(E) > 0 such that there is g € C(R)
and f|g = g|lg. We can find a compact K C E such that m(K) > 0, then since g is
uniformly continuous on K, for any € > 0, we can find ¢ > 0 so that

xryeK|x-yl<é = [flx-yI=1fx)-fyI<e.
We are almost done, by Steinhaus Theorem|2.10.9} 0 is an interior point of K — K,
hence there is ¢’ > 0 such that (—¢’,6”) € K — K. So whenever |z| < min{5,5’}, there are

x,y € K such that |z] = |x —y| < ¢, and

lf@I=1f(x=y)l<e,

from which we conclude f is continuous at 0. O

3.5 Exercises and Problems

Exercises

3.1. Prove that: For a sequence {f,} of measurable functions with common domain
E, each of the following functions is measurable.

infnzlfna Supnzlfna mnzlfn and ﬁnzlfrp

3.2. Suppose f is a real-valued function on R such that f~!(c) is measurable for each
c € R, is f necessarily measurable?

3.3. Prove that if f is measurable on E, then so is f2. Let g be defined on a measur-
able E and g2 be measurable, show that if {x € E : g(x) > 0} is measurable, then g is

measurable on E.

3.4. Prove the following:

(a) Let F be a family of continuous functions on (0, 1), show that
gx)=sup{f(x): feF} and h(x)=inf{f(x): feF}
are measurable functions on (0, 1).
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Chapter 3. Lebesgue Measurable Functions

(b) Forevery neN, let f;, : R — [0,1] be a measurable function, show that the
set

A= {xeR: lim A1+ 20+ -+ nfu(x)

n—oo n2

does not exist}

is measurable.

3.5. Prove the following:
(a) From Section [2.10.2] we know that there is a strictly increasing and con-
tinuous A : [0,1] — [0,2] with 2(0) = 0 and A(1) = 2 which maps a set N C
Cantor set C [0,1] onto a nonmeasurable set 2(N). Weextend hto H: R —» R
which is strictly increasing and maps R onto R (let’s say we extend it lin-

early with constant positive slope), then we get a continuous inverse H~!.
Construct f : R — {0,1} as follows (recall that H(N) = h(N))

f) = xnoH ™ (2),
show that f being a composition of measurable functions is not measurable.

(b) Suppose g and & are real-valued functions defined on all of R, g is measur-
able and /£ is continuous. Is the composition g o & necessarily measurable?

3.6. Let I be an interval and f : I — R be increasing. Show that f is measurable
by first showing that, for each natural number n, the strictly increasing function x —
f(x)+ 7 is measurable.

3.7. Let g be a mapping from R onto R for which there is a constant ¢ > 0 such that
lgw)—gW) =clu—v|, Yu,veR.

Show that if f : R — R is Lebesgue measurable, then so is the composition fog : R —
R.

3.8. Prove the following:

(a) The product and linear combination of finitely many simple functions on E
is still a simple function.

(b) The product and linear combination of finitely many step functions on an
interval [ is still a step function.

3.9. Prove the following approximation properties:

(a) Let I be a compact interval and E a measurable subset of /. Let € > 0, show
that there is a step function 4 on / and a measurable subset F of I for which

h=ygonF and m(I\F)<e.
[Hint: Use the first principle.]
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(b) Let I be a compact interval and i a simple function defined on /. Let € > 0.
Show that there is a step function / on I and a measurable subset F' of [ for
which

h=yonF and m(I\F)<e.

If m <y < M, then we can take & so that m < h < M. That is to say, each
simple function on E is “nearly” a step function.

(c) Let I be a compact interval and f a bounded measurable function defined
on I. Let € > 0. Show that there is a step function . on / and a measurable
subset F of I for which

If—hl<e and m(I\F)<e.

[Hint: Recall that step function ¢ on [a,b] has a canonical representation ¢ = .1 a; x 1

where I; are bounded interval.]

3.10. Let E have finite measure and f be a measurable function on E that is finite
a.e.. Prove that given € > 0, there is a subset F of E such that

fisboundedon F and m(E\F)<e.

That is to say, each measurable function that is finite a.e. on a set of finite measure is
“nearly” a bounded measurable function.

Problems

3.11. Express a measurable function as the difference of nonnegative measurable
functions and thereby prove the general simple approximation theorem based on the
special case of nonnegative measurable function.

3.12. Show that the conclusion of Egoroff’s Theorem can fail if we drop the assump-
tion that the domain has finite measure.

3.13. Suppose f is a function that is continuous on a closed subset F of R. Show that
f has a continuous extension to all of R (this is a special case of the Tietze Extension
Theorem|7.1.4).

[Hint: Express R\ F as the union of a countable disjoint collection of open intervals and define
f to be linear on the closure of each of these intervals.]

3.14. Prove the extension of Lusin’s Theorem to the case that E has infinite measure.

3.15. Let {f,} be a sequence of measurable functions on [a,b] and f a real-valued
function on [a,b] such that

@A) |ful <M, forn=1,2,...
(i1) lim, - fn = f a.e. on [a,b].

Show that given any 6 > 0, there is a measurable E C [a,b] and a constant M such that
m(E) <6 and |f1,| f1l,|f2],--- < M on [a,b] \ E.
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Chapter 4

General Measure

In summer 2010-2011 we discussed Lebesgue measure m on R, m-measurable function
and the Littlewood’s Three Principles on R. We also discussed some “geometric struc-
ture” of measurable set on R with positive measure. However, we haven’t discussed
integration and differentiation theory on R.

This year we aim to discuss general measure. After broadening our view point on
measure, we try to go back to measure theory on R”.

Since we seldom deal with the sets like {a — b : a € A,b € B} (which we have
encountered in measure theory on R). From now on the notation “—" between sets is
reserved for set complement, i.e., for twosets Aand B, A-B:=A\B={x€ A:x ¢ B}.

4.1 Quter Measure

In learning Lebesgue measure we start with defining “length” on intervals, we next
define outer and inner measures in terms of “length”. After that we have shown that
Lebesgue measurability is independent of inner measure. This suggests us a general
theory can be built by outer measure alone.

We now define outer measure and next define measurability of subsets with respect
to such measure.

Definition 4.1.1. An outer measure on a set X is a set function u* : 2% — [0, 0]

such that:
1) p* @ =0. (Nonnegativeness)
(i) ACB = u*(A) < u*(B). (Monotonicity)
(i) 1 (U A < D02 1 (A). (Subadditivity)

At the moment we don’t try to construct examples of outer measures. As we

shall see shortly in [Theorem 4.3.1} there are abundant examples of outer measures
generated by set functions defined on any collection of subsets. Concrete examples

will be constructed after that. Let’s first investigate basic properties of outer measures.

Definition 4.1.2. Given an outer measure u* on X, a subset A of X is said to be
M -measurable provided for every subset ¥ of X,

W)= ¥ NA)+p (Y - A).
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Chapter 4. General Measure

In other words, A is y*-measurable iff A and X — A can be used to split the outer
measure of any subset of X. As an immediate consequence of the definition, a subset
A of X is y*-measurable iff X — A is y*-measurable.

All properties possessed by Lebesgue outer measure can be immediately trans-
lated to abstract outer measures, so are their proofs (we just need to replace the letter
m by u). We state the results here without repeating the proofs.

Proposition 4.1.3. Let u* be an outer measurable defined on X.

(i) The union of a finite collection of u*-measurable sets is y*-measurable.
(ii) The countable union of u*-measurable sets is y*-measurable.
(iii) The countable intersection of u*-measurable sets is p*-measurable.

(iv) (Countable Additivity) Let{A};"_, be a disjoint collection of u*-measurable

sets, then
W ( L] Ak) = DK (Ap).
k=1 k=1
We have define o-algebra in here we give another equivalent
formulation:

Definition 4.1.4. Let X be a set. A o-algebra on X is a collection X C 2%
satisfying the following properties:

() X ez
(ii) A,BEY = A-BeX.
(iii) Ap,Ap,-- € = U2, A; €3

Part (i) and (iii) are same as before, given these two, (ii) in[Definition 2.10.1] and (ii) in
[Definition 4.T.4]are equivalent, i.e., X —AeXforall AcZiff A-BeXforall A,BeX.

By definition of u*-measurability and|Proposition 4.1.3|the collection of u*-measurable
subsets of X, X, forms a o-algebra. u := u*|s is called the measure induced by u*. So

a “measure” can be defined once we have an outer measure.
Proposition 4.1.5. Let u* be an outer measure on X, u a measure induced by
U, then u satisfies the following properties:
(1) If u*(A) =0, then A is y*-measurable. Moreover, any B C A is also u*-
measurable with u(B) = 0.
(i) u(A) >0 if A is u*-measurable.

(iii) p(LJAy) = > u(A;) if A;’s are y*-measurable and disjoint.

Proof. ForanysubsetY of X, u*(Y) < (Y NB)+u* (Y -B)=u* (Y -B) < u*(Y),
so (1) follows. (ii) follows from the definition of outer measure. (iii) follows from (iv)

of Proposition 4.1 O

We come back to the discussion of outer measure after we have some notion of
measure. We will see that outer measure is a main tool to extend some “special set
function” (called premeasure) defined on some “special collection” (called semiring),
to a measure defined on a o--algebra containing this “special collection”.
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4.2 Measure, Measure Spaces and Their Comple-
tion

Definition 4.2.1. Let X be a space and let X be a o-algebra of subsets of X. The
couple (X,X) is called a measurable space.

We expect every measure should have properties (ii) and (iii) in [Proposition 4.1.3]

let’s extract them as our definition of measure.

Definition 4.2.2. A measure on a measurable space (X,X) is a set function y :
X — [0,00] satisfying the following properties:
@) @) =0.
(1) u(A)=0forall AeX.
(i) p(LI72) Ay) = X000y 1(A;) for pairwise disjoint A; € X.

By measure space we mean the triple (X,X,u). That is, a measurable space to-
gether with a measure. A set A C X is said to be measurable if X € X

Example 4.2.3. The measure induced by u* is within a class of measure. (]

Example 4.2.4 (Counting Measure). Let X be nonemtpy and consider the
measurable space (X ,2%). For each A € 2%, define

|A|, if A is fintie,
H(A) = e e e
oo, if A is infinite.

u is a measure on X. To prove countable additivity, consider the collection of sets
{Ax}z, in X. If infinitely many of A ’s are nonempty, then both sides of u(| ;- Ax) =
> iei H(Ag) is co. Suppose only finitely many of Ag’s are nonempty, say Ag = 0 for
k > n. Then the equality u(| [}_; Ax) = X5 _; #(Ax) holds obviously. O

Example 4.2.5 (Dirac Measure/Point Mass). Let X be nonempty and con-
sider any o-algebra, X, on X and consider (X,X). Fix an x € X, for each A € X define

1, ifxeA,

Mx(A) = xa(x) = {O, o

The countable additivity can be easily verified. p, is called the Dirac measure concen-
trated at x. Furthermore, for ay,as,--- > 0 and x1,x3,--- € X the set function defined
by

8(x) = Y kb, (x)

k=1

is called a discrete measure. The countable additivity follows from rearrangement of
nonnegative series. Moreover, we also say that ¢ places a point mass ay at xi. O

Proposition 4.2.6. Let (X,X,u) be a measure space. Then u has the following
properties:
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(i) Finitely Additive: u(|Ji_; A;) = 237 pu(Ap).

(i) Monotone: If A C B, then u(A) < u(B).
(iii) Excision Property: If A C B, u(A) < oo, then u(B — A) = w(B) — u(A).
(iv) Subadditive: p(Uj2) Ai) < Doy u(A;).

Remark. Monotone property (ii) + subadditivity (iv) is equivalent to countable
monotonicity: If A,B; € £ and A C ;2| B;, then u(A) < D52 u(By).

Proof. (i) is true by taking Az = 0 for £ > n in the definition of countable addi-
tivity. (ii) is true since u(B) = u(A) + u(B — A) > u(A), and (iii) is true due to the same
identity.

Finally, let B = A; and B; = A; —\JiZ} Ay fori>2. Then B, = JA; and {B;} is
a disjoint collection, hence u(|JA;) = u(UB;) =X u(B;) < > u(A;), so (iv) is true. O

Proposition 4.2.7 (Continuity of Measure). Let(X,X,u) be a measure space.
(i) If{Ag} is an ascending collection of measurable sets, then
lim A ) = A ) = lim u(Ap).
u(kgrolo k ,u<kU_l k) kl_f)fgoll( k)

(ii) If {Ax} is a descending collection of measurable sets and u(Ay) < oo, for
some k, then

li A):: A ) = lim u(Ap).
ﬂ(kgr;o k ﬂ<kﬂ=1 k) Jlim p(Ag)

Proof. We may copy the proof of [Theorem 2.7.3| i.e., replace m* by u. The key
property is countable additivity. a

Lemma 4.2.8 (Borel-Cantelli). Let (X,X,u) be a measure space. Let {Ay ),
be a countable collection of measurable sets for which >, pt(Ax) < co. Then almost
all x € X belong to at most finitely many of the Ay, ’s.

Proof. The proof is same as the case that u = m. |

We mention a useful condition on a measure space, on which many results on
finite measure space can be extended.

Definition 4.2.9. Let (X,X, u) be a measure space. A subset A of X is o-finite if
it is contained in a countable union of sets of finite measure. The measure yu is o-finite
if the whole space X is o-finite.

If the measure u is o-finite, we say that (X,Z, i) is a o-finite measure space. In
case u(X) < oo, (X,Z, ) is called a finite measure space.

Example 4.2.10. Let £ denote the collection of Lebesgue measurable subsets of

R, then (R, £,m) is a o-finite measure space, R is o-finite and m is a o-finite measure
on R. U
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Definition 4.2.11. Let (X,X, u) be a measure space. The measure y is complete
if for every A € ¥ with uy(A)=0,BC A = BeX.

A measurable space equipped with a complete measure is called a complete mea-
sure space.

Example 4.2.12. The counting measure defined in [Example 4.2.4] is always a
complete measure. O

Example 4.2.13. By (i) of [Proposition 4.1.5] a measure induced by an outer

measure is always complete. Hence Lebesgue measure m is a complete measure since
it is induced by Lebesgue outer measure m™. U

Example 4.2.14. A simple incomplete measure space can be constructed by

Dirac measure defined in[Example 4.2.3] Consider a o-algebra
X:=1{0.{1},{2,3},{1,2,3}}

on {1,2,3}. Let u1(A) := ya(1), then 11({2,3}) = 0 but {2},{3} ¢ =. O

Example 4.2.15. Let B be the Borel o-algebra on R and define y = m|g, then
the measure space (R,8B,u) is not complete. To see this, recall that Cantor set C is

Borel since it is closed and p(C) = m(C) = 0, but by [Theorem 2.10.7|there is a subset
of C that fails to be Borel. [l

Each measure space can be completed by enlarging the existing o-algebra. The
way to achieve this is very natural. Suppose u(Z) =0 and B C Z, we wish B was
measurable, once this is true, for any A € X, AU B is necessarily measurable.

Proposition 4.2.16 (Completion of a o-Algebra). Let(X,%,u) be a measure
space. Let Z =Uzes. u(z)-0 2 define

Y={AUB:AcX BeZ)

ForE€X, ie., E=AUB, for some A€ X,B € Z, we define i(E) = u(A). Then Y is
a o -algebra containing Z, 1 is a well-defined measure that extends u, and (X,Z, ) is a
complete measure space.

Before we begin the proof, let’s fix the following choice: Let A; U B; € T, with
A; € X and B; C Z;, for some Z; € ¥ with u(Z;) =0,i=1,2,.... Note that

BeZ < BCZ, forsome Z € £ with u(2) =0,
they are subsets that are “almost” measure zero.
Proof. We first show that T is a o-algebra. First of all, X € X. Secondly,

AlUB;—AyUB>
= (A1 - A= Zo)U ((A1 = A)N(Z, - By)) U(B1 — Ay — By), (4.2.17)

this shows that A; UB; — Ay U B, € 2, so X is closed under relative complement. Finally,
UA; UBy) = (UA;)U(UB;) € Z. We conclude that X is a o--algebra. Of course = 2 X.
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Next we show 1 is well-defined measure on X, let A; U B; = A> U By, then by the
set equality each term in the union must be empty. In particular, Ay — Ay — Z, =
0, hence A1 — Ay C(A1—A)UZy =(A1 — Ay — Zp)U Zp = Z. Switching 1 and 2, we
have A, — A| C Z;, hence

(A1 —A)U(A2-A) S Z1 U2,

so u(A1AAy) = 0, which implies p(A;) = u(Az), thus u(A; UB)) = (A2 UBy). [
extends u by the equality A = AUOQ for A € X. The countable additivity of u inherits
from that of p.

It remains to show X is complete. Assume that i(A; UBj)=0and E C A; UB;.
By definition, u(A;) =0, and hence E = QU E where E C A; U Z;, with u(A;UZ;) =0,
so E€X. O

[Proposition 4.2.16]actually says that a completion can be obtained by inserting all
“almost” measure zero subsets into X.

Definition 4.2.18. The measure space (X,Z,7) defined in [Proposition 4.2.16] is
called the completion of the measure space (X,Z, u).

The completion is minimal in the following sense, which we leave the proof as an
exercise for practice.

Proposition 4.2.19. Let (X,X’,1') be another complete measure space that ex-
tends (X,X, u) in the sense that ¥’ 2 X and /i’|2 = u, and let (X,X, 1) be the completion
of (X,X, ), then (X,X’, ") also extends (X,X, ).

4.3 Extension to Measure

4.3.1 Construction of Outer Measure

In the past, we define Lebesgue outer measure of E C R to be the infimum of the lengths
of open sets containing E. This is not an appropriate choice for general measure theory
since measure space, as we have seen, needs not be an topological space.

However, each open sets O in R can be written as a union of open intervals,
namely, O = | ]I;, on which the “length” is easily assigned. Moreover, 2(0) = >, A(I;),
we have

m*(E) = inf {Z A(LL) : UI,- 2 E,I; are open intervals} ,

here X,U means countable summation and union. [Theorem 4.3.1]|states that this method
of construction of outer measure on R works in general.

Theorem 4.3.1. Let S be a collection of subsets of X such that ) € S and A :
S — [0,00] a set function. Define A(0) = 0 and in case A can be contained in a countable
union of subsets in S, define

vy =int{Yasn: Usi2 A8 €S},

(here ¥ and U are countable) otherwise we define 1*(A) = co. Then A* is an outer
measure (induced by A).

68



4.3. Extension to Measure

Proof. Since 1(0) =0, 0 < A2*(0) < A(0) = 0. To show A* is monotone, let A C B.
If 1*(B) = oo, done. Otherwise let |JS; 2 B, for some S; € S, then |JS; 2 A, hence
A*(A) < > A(S;) for all cover {S;} of B. By taking infimum over all possible covers of
B, one has 1*(A) < A*(B).

Finally we need to show subadditivity. Let {A;};>1 be a collection of subsets in X.
We need to show 2*(|JA;) < DI A%(A;). If there is 1*(A;) = oo, we are done. Assume
A*(A;) < oo for all i. Let € > 0 be given. then for each i we can choose a cover
Uj Sij 2 A; such that 3, A(S;j) = 1°(A;) < €/2". Since U; U; Sij 2 UA;, we have

/l*(UAi)S DA =D ASH DY AN (A e,
i=1 i=1

(i,7)eNxXN i=1j=1

Since the choice of € can be relaxed, we are done. O

Also since [Theorem 4.3.1|is a basis of this chapter, from now on S always con-
tains {0}, unless otherwise specified.

Definition 4.3.2. In the same setting of [Theorem 4.3.1] the measure A that is

the restriction of 1* to the o--algebra of 1*-measurable sets is called the Carathéodory
measure induced by A.

We now use[Theorem 4.3.1|to construct important examples of outer measures.

Example 4.3.3. Let X be a set and S = {finite subset of X}, define A : S — [0,00]
to be A(A) = |A[%. The outer measure 1* induced by A counts the element in A. Since
any subset A of X satisfies the Carathéodory condition, 2% is the collection of 1*-
measurable sets, hence 1* = A is a measure on 2%, called counting measure.

This example shows that the Carathéodory measure A induced by A does not nec-
essarily extend A. U

Example 4.3.4. Let S ={(a,b) : a,b € [-o0,0],a < b}, define A(a,b) =b—a in
case a,b € R, otherwise A(a,b) = co. Then A* = m* is the Lebesgue outer measure, and
A is the Lebesgue measure. U

Due to outer regularity of Lebesgue measure, consideration of G, sets becomes
an indispensable tool in the integration theory on R. We can define an analogue in a
general setting:

Definition 4.3.5. Let S be a collection of subsets of X. We denote S, a collec-
tion of subsets of X that are union of countably many members in S. We denote Sy
the the collection of subsets that are intersection of countably many members of S, .

Proposition 4.3.6. Let A : S — [0,00] be a set function on a collection S of
subsets of X. Let A be the Carathéodory measure induced by A, E a subset of X such
that 1*(E) < oo, then there is a subset A of X such that

A€Sys, ECA and A*(E)=1*(A).

Moreover, if E and each member in S are 1*-measurable, then sois A and A(A—E) =0.

Proof. We leave the proof as an exercise. The technique has been used many
times in measure theory on R. (]
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Chapter 4. General Measure

4.3.2 Premeaure, Semiring and Extension Theorem

Having the experience on R, we try to imitate the construction of Lebesgue measure
in a general setting. To obtain Lebesgue measure on R, we have defined the concepts
of length and outer measure. guarantees the constructibility of outer
measure as long as we have a collection S and “length” defined on each member of S.
And by restricting an outer measure A* to the o-algebra of A*-measurable subsets, we
get a measure, but the story is not yet complete.

In ideal case the measure A should really extend A. But [Example 4.3.3| shows

us the Carathéodory measure A induced by A does not necessarily extend A. This
suggests we have to impose finer structures on S and A such that A actually extends A.
Therefore, there are two problems to be solved:

e When does A extend A?

e If A extends A, when is it unique? i.e., when is A the unique measure defined
on the o-algebra of A*-measurable sets that extend A?

Suppose A : S — [0,00] can be extended to a measure, then by [Proposition 4.2.6]

A has to be countably monotone, finitely additive, hence 1(0) = 0.
Definition 4.3.7. Let S be a collection of subsets of X and A : S — [0,0] a set
function, then A is said to be a premeasure if it satisfies the following:
(i) A©0)=0.
(i) IfS; € Sand | I_; S; €S, then AL, Si) =200, A(S)).
(iii) If S,81,8,,---€ Sand S CJS;, then A(S) < D A(S;).
Definition 4.3.8. A collection S of subsets of X is said to be closed under

relative complement if
ABeS = A-BeS.

Note that if S is closed under relative complement, then S is closed under inter-
section since for A,BES, ANB=A—-(A-B).
Now we get a partial solution to question 1.

Theorem 4.3.9. Let S be a collection of subsets of X and 1 : S — [0,00] a
set function. If S is cli)sed under relative complement, A is a premeasure, then the
Carathéodory measure A extends A.

Proof. We need to show that each S € S is A*-measurable and A(S) = 1*(S) =
A(S). Let’s fix S € S.
For every A € X, we need to verify

(A) = A*(ANS)+ A*(A-S).

It suffices to check those A with 1*(A) < co. For each € > 0 there are S; € S such that
US; 2 A and 2%(A) + € > >, A(S;). By assumption S; N S,S; — S € S, hence by finite
additivity of premeasure, A(S;) = A(S; N S) + A(S; — S). Moreover, J(S;NS)2ANS
and |J(S; — §) 2 A- S, by definition of outer measure,

X(A)+e> > AS) =D A8 NS+ AS; =) 2 (AN )+ 1" (A=)
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4.3. Extension to Measure

for all € > 0. We conclude S is A*-measurable.
A(S) = A*(S) is a direct consequence of countable monotonicity. [l

The natural collection like intervals on R is not closed with respect to relative

complement, so we need to expand the existing collection S in order to apply
Motivated by the collection of intervals on R, one natural choice is to define

{|_| S; :{S; € S}, is a disjoint collection, n > l} (4.3.10)

but additional structure of S must be imposed. To see this, let {A;},{B;} be finite disjoint
collections in S, then

|:§

n

U Av—Bl—---—Bm),
we hope successively A; — B1 = | e A7> A7 — B2 = | injee A7 - .., where A7, AY,---€ S,
so that after finitely many steps, | |/2; A; —|Ii-; B; € Sy, this is the notion of semiring
defined below.

||[:§

1l
—

i

Definition 4.3.11. A collection S of subsets of X is said to be a semiring if it
satisfies the following:

(i) If A,BeS,then ANB€S.

(i) If A,B € S, then there are Sj,...,S, € Ssuchthat A-B =[S

Condition (ii) implies @ € S and condition (i) provides us a technical convenience
when defining premeasure on S;;. We shall see this in the next proposition.

Proposition 4.3.12. Let S be a semiring of subsets of X. Define S, as in

(4.3.10), then

(1) Sy, contains S and is closed under relative complement.

(ii) Any premeasure on S has a unique extension to a premeasure on Sy;.

Proof. (i) It follows from the discussion preceding [Definition 4.3.T1]

(ii) We let 2 : S — [0,00] be a premeasure. For E = | [, S; € S|, define ¢(E) =
Duimy A(S;). We need to check that ¢ is well-defined. Suppose | |- S; = E = |2, T;,
for some 7; € S, since

m n
Si=|@SinTy) and T;=| |SinTy),
Jj=1 i=1

then by finite additivity of premeasure,

DIAS) Z ASiNT}) ZZ ASiNTy) = > AT)).
i=1 i=1 j=1 j=1

so £ is well-defined. We need to show ¢ is finitely additive and countably monotone.
The finite additivity of € inherits directly from that of A. Next, let A,B1,B,,--- € S, be

||M§
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such that A C U7z, B;. Write A = | | A;, for some A; € S and let

UBj= B u||Bi-Bi—-—Bi_1)=| | B}
! LBy U Bij !

Then
(A=) AA) DY AANB) =D (ANB) < UB),
j=1 j=1

i=1 i=1j=1
the last inequality holds since finite additivity implies monotonicity. Since Z;O:] U(B}) =
D (21 K(Bij)) < > t(B;), € is countably monotone.

Finally uniqueness is clear as premeasurs on S, are finitely additive. (]

Definition 4.3.13. The set function A : S — [0,c0] is o--finite if X = (J;_; Sk,
where S; € S and A(Sy) < oo.

Now we are in a position to answer questions 1 and 2.

Theorem 4.3.14 (Carathéodory-Hahn). Let A : S — [0,c0] be a premeasure
on a semiring S of subsets of X.

(i) The Carathéodory measure A induced by A extends A.

(i) If A is o -finite, then so is A and A is the unique measure on the o-algebra of
A*-measurable subsets that extends A.

Proof. (i) By [Proposition 4.3.12] the premeasure A extends to a premeasure A’
on Sy,. By[Theorem 4.3.9L A’ induces a Carathéodory measure A’ that extends A’. We
now show that (1’)* = 1%, so that 1 = A’ extends A.

Let E C X, we observe that E can be covered by countably many members in S
iff E can be covered by countably many members in S;;. Let’s assume |JS; 2 E, for
some S; € Sy, we can write S; = | ]; S;;,5i; €S, so

DIAEH=D D A8 = AN(E).
j

By taking infimum, (1”)*(E) > A*(E). For the reverse inequality, let |JS; 2 E, where
S; €S, then Y A(S;) = 2, (S;:) = (A)*(E), so that 1*(E) > (X')*(E).

(i) A is o-finite as it extends A. Suppose there is another measure u defined on
the o -algebra of A*-measurable subsets that extends A. Since there are X € S such
that X = Uz~ Xk, 1(Xx) < 0. By countable additivity of measures it suffices to check
that A and u agree on measurable subsets of Xi, for each k.

Let A C X be A*-measurable, then A(A) < oo and thus bythere
is a Sy set S 2 A such that A(A) = A(S). Taking intersection if necessary, we assume
S C Xi. Denote S* = {S € S: S C X;}, by induction A and u agrees on finite union of
subsets in S*. By continuity of measure A and y agrees on S{‘T. Since S{; is closed
under finite intersection, by continuity of measure again A and u agree on S’C‘,_ 5 As
S=SNXy, SeSk,, s0

A(A) = A(S) = u(S) = u(A) + u(S — A). (4.3.15)
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4.3. Extension to Measure

As A(S—A) =0=1%(S - A), so for each € > 0 there is a O € S-,0 2 S — A such that
€ > u(0) > u(S - A), thus u(S—A) = 0. By (4.3.15)) we conclude A and u agree on all
A*-measurable subsets of X. O

Let’s summarize what we have done so far:

semiring S and induced outer
_
premeasure A measure A*

Carathéodory mea-
sure /1 induced by 4

The following corollary follows from the technique in the proof of|
we leave it as an exercise.

Corollary 4.3.16. Let S be a semiring in X and o (S) the smallest o-algebra

in X containing S. Let py,uy be two measures on o (S) such that u|s and us|s are
o -finite, then | = pp on o(S) iff uy = pup on S.

4.3.3 Different Settings for Extension Theorem

It is useful to know the following commonly used terminology.
Definition 4.3.17. Let S be a collection of subsets of X.
(1) Sisaring if it is closed under finite union and relative complement.
(i) Sisan algebra ifitisaringand X € S.

(iii) S is semialgebra if it is a semiring and X € S.

o-algebra —— algebra ——  ring

NN

semialgebra ———— semiring

We can make use of the diagram to show certain collection of subsets is a semiring.
The situation is very similar to proving a commutative ring is a UFD, it is sometimes
simpler to prove it is an ED (e.g., F[X], F is a field) or a PID (e.g., F[[X]], F is a field)
with the help of the additional structure with which an object is endowed.

Up to now we have developed desired extension theorem for several purposes.
It is worth noting that there are different approaches and settings to get an extension
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theorem. Some start with a semialgebra and some start with an algebr@ instead of
a semiring. Even the definition of premeasure is different from that defined
[tion 4.3.7]

We need to worry about the term “premeasure” when reading other texts. Some

books (e.g., [?]) replace the conditions (ii) and (iii) in [Definition 4.3.7] of premeasure

by

| JaieSs = ,1<|_|A,-) =D A(4)). (4.3.18)
i=1 i=1 i=1

That is, finite additivity and countable monotonicity on S are replaced by countable

additivity on S. It requires little more effort to show these definitions are indeed equiv-

alent when the set function is defined on a semiring. We are going to prove it in

[Proposition 4.3.22] after|Lemma 4.3.19|and [Lemma 4.3.20}

Lemma 4.3.19. Let A:S — [0,00] be a finitely additive set function on a semir-
ing S. Let A,A1,A,...,Ay €S be such that | |_; A; C A, then

DA < A(A).
i=1

Proof. As remarked in the last paragraph right before [Definition 4.3.11| there
are S1,52,...,Sn € Ssuchthat A— A —Ay—---— A, =™, S;, hence A= (J2, S;)U
(L2, A;) € S. By finite additivity of 2 on S,

A(A) = i/l(S,-) +Zn“z(Ai) > Zn:/l(Ai). O

i=1 i=1 i=1

Lemma 4.3.20. Let A : S — [0,00] be a finitely additive set function on a semir-
ing S. Let A,A1,As,...,A, €8 be such that A C|J, A;, then

n
A(A) < DT A4)).
i=1
Proof. Write A =J_(AN A;), define
A1=ANA; and A:- =ANA;—Ay—---—A;_yfori>1.

We can find S;1,S;2,...,Sin; €Ssothat A, =| 1%, S;j, hence A=| |- Al =l |_|;‘;'l Sij-

Note that |_|;.l;'1 Sij € A;, hence by [Lemma 4.3.19|and finite additivity of 4,
n n; n
AA) =), (ZA(S,-J-)) < >lA4), (4.3.21)
i=1

i=1 Nj=1

as desired. O

(DWe have used the idea implicitly in extending the premeasure on a semiring. In the first sentence of the
proof of Carathéodory-Hahn[Theorem 4.3.14} we extend the premeasure on a semiring S to a premeasure on
Sy by |Proposition 4.3.12} S, is in fact a ring since it is closed under finite union and relative complement.
If we allow X € Sy, then Sy, is an algebra. What is nice in the semiring setting is that semiring needs not
contain X so that sometimes we don’t need to worry about unbounded length which we often encounter in
checking a set function is a premeasure.
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4.3. Extension to Measure

Proposition 4.3.22. Let 1 : S — [0,00] be a set function on a semiring S, then
A is finitely additive and countably monotone iff A is countably additive.

Proof. Assume A is finitely additive and countably monotone on S. Since count-

able monotonicity implies subadditivity, by and exactly the same way
as A is countably additive.

Conversely, suppose A is countably additive on S, then it is finitely additive. Let

A,A1,Az,--- € Sbe such that A C |J;2, A;. Note that we cannot use [Lemma 4.3.20} but
we can imitate its proof. Since A is assumed countably additive, (4.3.21) holds even if

n is replaced by oo, so A is countably monotone. (|

4.3.4 Lebesgue-Stieltjes Measure on R

We have seen that Lebesgue measure is a countably additive set function on R, in fact
there are other possible choices other than the one induced by length of intervals. As
an application of the extension we are going to construct them in
[Proposition 4.3.24]

Note that the collection of left-open, right-closed intervals

S:={(a,b]:a,beR,a < b} (4.3.23)

forms a semiring on R. Our aim is to construct a premeasure on it. Now we begin to
construct a large family of Borel measures as follows:

Proposition 4.3.24. Let F : R — R be an increasing function. Let up : S —
[0,00) be defined by:
pr(a,b) := F(b) - F(a)

(1) ur is a finitely additive set function on S.

(ii) If F is right-continuous, yr is countably additive on S.

Note that by [Proposition 4.3.22] (ii) of [Proposition 4.3.24]implies uf is a premea-
sure on S, and hence ur can be extended to a unique Borel measure on R because
ur(n,n+1] < co. When F(x) = x, ur reduces to Lebesgue measure on R.

Proof. (i) Let (a,b] be a finite disjoint union of members in S, we may assume
(a,b)=UY (a;-1,a;1 witha=ag < a; <ap <--- < a, = b, then

pr(a,bl = F(b)— F(a) = Y (F(ai) = F(ai-1) = ), pr(ai-1,ail,

i=1 i=1

so ur is finitely additive.
(ii) Assume F is right-continuous, let {(a;,b;]} be a countable disjoint collection of

intervals in S such that (a,b] = | |72 (a;,b;]1 € S. By|Lemma 4.3.19|since | |I_,(a;,b;]1 €

(a,b] for each n, we have

n o
> ur(aibi) < pr(a,b] foreachn = 3 ur(aibil < pur(a.bl.
i=1 i=1

To prove the reverse inequality, let € > 0 be given, then by right-continuity we can find
a 6 > 0 such that
ur(a,bl—urp(a+06,b] <e. (4.3.25)
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Now (a + 6,b] C [a+6,b] C |I;2,(a;,b;], again by right-continuity we can find §; > 0
such that F(b; +6;) — F(b;) < €/2. Now

[« n
[a+6,b1C | |(ai.bi +6;) = [a+06,b]C | [(ai,bi +6;)
i=1 i=1

for some n, and hence (a + 6,b] C | [ (a;,b; + 6;]. So by |[Lemma 4.3.20}

pr(a+8,b1< Y up(aib;+6;1 <) (F(b; +6;)— F(ap)

i=1 i=l1
< D (F(bi)=F(ay)+€/2") = Y (F(b)— F(a;)) +e.
i=1 i=1

Combining with (4.3.25)), ur(a,b] < X5 pr(ai,bi]l+2e, for each € > 0. O

We have shown that given an increasing function, we get a finitely additive set
function ug. Further, if it is right-continuous, then we get a measure ur on R. In fact
the converse is also true!

Proposition 4.3.26.

(i) Let u:S — [0,00) be a finitely additive set function such that u(a,b] < co for
every a,b € R, then there exists an increasing function F : R — R such that

u(a,b] = F(b) - f(a).

(i) If p is also countably additive, then F is right-continuous.

Proof. (i) Suppose such F exists, then by fixing @ = 0 and letting b vary, we have
u(0,b] = F(b) — F(0), which motivates the following definition:

u0,x], x>0,
F(x):=<0, x=0,
—u(x,0], x<0,

then u(a,b] = F(b)— F(a).
(ii) Let x, > x decreases to x, then since (x,x1] = |g=,(xx,Xx—1], by countable
additivity we have

F(x1)-F(x) = E(F(kal)—F(Xk)) = lim (F(xp) = F(xn)),
k=2

hence F(x) =1lim,, 0 F(xy). O

Let S be defined as in (#.3.23), F be increasing and right-continuous and let i}
denote the outer measure induced by pr : § — [0,00). Let £r denote the collection
of y-measurable subsets of R. Since the measure on Xr that extends ur is always
unique, we shall always denote ur = uk|s,. and bear in mind that ur is a complete
measure defined on Xz D Br. Foreach A € Xp,

pr(A) = inf{EMai,bi] UJaibil 2 A}.

i=1 i=1
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We now show that those left-open, right-closed intervals can be replaced by open in-
tervals, and then we show that ur also enjoys some useful regular properties as in
Lebesgue measure.

Lemma 4.3.27. Foreach A € X,

wr(A) = inf{Z,uF(ai,b,-): Utai.bi) 2 A}. (4.3.28)

i=1 i=1

Proof. Denote the RHS of (4.3.28) by u(A). Let {(a;,b;)};2; be an open cover of
A, then

pr(A) < Y ur(aiby),
i=1
hence up(A) < u(A). Conversely, let [ J;2,(a;,b;] 2 A. For each i we may find 6; > 0
such that ur(a;,b; +6;1— ur(a;,b;] < 6/2i, then

H(A) < ZﬂF(ai’bi +0;) < Z/JF(ai,bi] +e

i=1 i=1
for each € > 0, so u(A) < Y72, ur(ai,b;] and hence p(A) < up(A). O
Theorem 4.3.29. Foreach A€ Xp,

ur(A) =inf{up(U): U 2 A, U open} (4.3.30)
=sup{ur(K): K C A, K compact}. (4.3.31)

Proof. Let U be open, and U 2 A, then as ur is a measure, up(U) > ur(A).

By for each € > 0 we can find an open cover {(a;,b;)} of A such that
> ur(ai,bi) < up(A)+e. Let U = J(a;,b;), then U is open and up(U) < pup(A)+e,

so (@.3.30) holds.

Assume first that A is bounded, then so is A. To do inner approximation of A, we
do outer approximation of its complement relative to a larger set. Let € > 0 be given,
by we can find an open set U such that U D A— A and up(U) < up(A—A)+e,
then A—U C A is compact and

ur(A) = pup(A=U) = pp(ANU) = pp(U) = pp(U = A) < up(U) - up (A= A) < €.

Together with ur(K) < ur(A) for each compact subset K of A we have shown that
(4.3.31) holds when A is bounded. For general A € X let € > 0 be given and let
A, = AN(n—1,n]. Then for each n we can find compact K,, C A,, such that ur(A,) -
ur(K,) < €/2"". Now for each N,

N N
ﬂF( U An>g3€+ﬂF< U Kn>,
n=-N n=—N

hence by taking N — oo, we are done. (]

The last two theorems are analogous version of theorems on Lebesgue measure.
We leave the proofs as exercises for readers.
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Chapter 4. General Measure

Theorem 4.3.32. Let A CR, then the following are equivalent:
(i) AcZF.

(ii) A= G— Ny, where G is Gs and up(Ny) = 0.

(iii) A= FUN,, where F is F; and u(N;) = 0.

Theorem 4.3.33. If A € X and u(E) < oo, then for every € > O there are open
intervals I,1,. . .,I, such that ur(AA]_, I;) < €.

4.4 Exercises and Problems

Exercises

4.1. Show that the set functions defined in[Example 4.2.4]and [Example 4.2.5|are mea-
sures.

4.2. Suppose X — X is an invertible map such that S € S iff ¢(S) € S and A(¢(S)) =
A(S). Prove that the outer measure u* induced by A satisfies p*(¢(A)) = u*(A).

4.3. In[Example 4.2.15|we have seen that (R, 8B, u) is not complete. Show that (R, £,m)

is its completion.

4.4. Prove|Proposition 4.2.19]

4.5. Prove[Corollary 23,16

4.6. Prove that given a collection S of subsets X and (i) of holds,
then (ii) in of semiring:

“If A,B € S, then there are Si,...,S, € Ssuchthat A-B=[]|",S;”

is equivalent to

“If A,A; € S such that A; C A, then there is a disjoint collection {A; C
X —A}}_,inSsuchthat A=| [ Ax”

4.7. Let (X,7x) be a topological space. For a subset Y of X, let 7y denote the sub-
space topology of Y induced by X and let o(7x),0(7y) denote the Borel o-algebra
on X and Y respectively. Show that

ocTy)=0cTx)NY ={UNY :Ueo(Tx)}.
4.8. Let f: X — Y be a function and X a o--algebra on Y, show that
@)= Aey)
is also a o-algebra.

4.9, If f: X — Y is a function between two sets and S is a nonempty collection of
subsets of Y, then

a(f 18 = ().

78



4.4. Exercises and Problems

4.10. Let X be a topological space, show that
S:={LNU: Lisclosed, U is open} = {A— B : A,B are closed}
forms a semiring of subsets of X.

4.11. Prove that an intersection of semirings is not necessarily a semiring. Give an
example by considering X := {1,2,3}.

4.12. Let S ={(a,b),(a,bl,[a,b),[a,b] : a,b € R,a < b}. By definition, S contains {0}
and {{a} : a € R}. Show that each of the following collections is a semiring:

(i) Sitself.
(i) SxS 2% defined by {S; XS5 : 51,5, € S).
(iii) The n-fold products of S, i.e., 8" :=SX--- xS C oR™

n times

4.13. (Generalize Problem [6.3.28) Let S and 7~ be semirings of subsets of X and Y
respectively. Then SX7 :={SXT : S € S,T € T} is a semiring of subsets of X XY. We
call Sx 7 a product semiring.

4.14. Show that a collection S of subsets of X is a semialgebra iff the following holds:
@1 0,X eS.
(i) fA,BeES,ANBeS
(iii) If A€ S, X — A is a finite disjoint union of members in S.
4.15. Let X =Q, S={(a,b]NQ:a < b}and Sy ={U~; Si : S; € S,n > 1}. Define
A(a,b] =0 ifa < band A(Q)=0if a = b.

(a) Show that S is closed under relative complement and A : S — [0,00] is a
premasure.

(b) Show that the extension of A to the smallest o--algebra containing Sy is not
unique.

This problem tells us o-finiteness in (ii) of Carathéodory-Hahn theorem cannot
be dropped.

4.16. Let F be increasing and right-continuous and let g be the Lebesgue-Stieltjes
measure induced by F. Show that

ur({a}) = F(a)—F(a"),
urla,b)=F(Ob™)-F(a"),
urla,b)=F(b)-F(a™),
ur(a,b) = F(b™) - F(a).

4.17. Prove[Theorem 4.3.32

4.18. Prove
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Chapter 5

Measurable Functions and
Integration

We have mentioned in Chapter [3| that measurable functions are the natural class of
functions for which we can do another type of integration analogous to the Riemann
one. Namely, we want to approximate measurable functions by simple functions and
define the integral of measurable functions in terms of simple functions.

In this chapter X denotes a o-algebra on a space X and u denotes a measure on X.
We will not mention it in each of the results. Some results do not require a measure, as
indicated in the statement.

5.1 Measurable Functions

Many results concerning Lebesgue measurable functions can be translated directly to
measurable ones with respect to a o-algebra on a space X. However, since it is too
restrictive to assume the measure space to be complete, changes have to be made.

In the past for E € £, on (E,LN E,m) we say that a property P(x) holds a.e. on E
if m{x € E : P(x) doesn’t hold} = 0 (Definition 3.1.7). This definition works very well
for complete measure space, but not for incomplete ones because we don’t even know
whether or not {P(x) doesn’t hold} is measurable! We need to reformulate our notion
of “almost everywhere” so that the concept of “negligible sets” can be carried to the
study of general measure space.

Definition 5.1.1. Let (X,X,u) be a measure space. If there is a set Xy € ¥ such
that a property related to points x € X holds on X — X and u(Xp) = 0, then we say that
the property holds almost everywhere (abbr. a.e.) on X or that the property holds for
almost every (abbr. a.e.) x on X.

The proofs from [Proposition 5.1.2| to simple approximation are

all almost identical to those in Chapter 3] we leave them as exercises and don’t repeat
the proofs all over again.

Proposition 5.1.2. Let f be an extended real-valued function defined on X.
Then the following statements are equivalent:

(i) Foreachc eR,{x € E: f(x) > c} is measurable.
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Chapter 5. Measurable Functions and Integration

(ii) Foreachc e R, {x € E: f(x) > ¢} is measurable.
(iii) Foreachc e R, {x € E: f(x) < c} is measurable.
(iv) ForeachceR, {x € E: f(x) < c} is measurable.

Any one of the above statements implies for each extended real number c, f~'(c) is
measurable.

Definition 5.1.3. Let (X,X) be a measurable space. A function f is measurable

if it is extended real-valued and one of the 4 conditions in [Proposition 5.1.2] holds.

As mentioned in Chapter [3| measurable functions is a class of functions whom we
can approximate using simple functions. Measurability of f is a key point to construct

such simple functions (recall the proof of[Lemma 3.3.4).

preimage measurable?

Figure 5.1: Preimage of a measurable function.

Until we arrive to [Definition 5.2.37} by measurable functions we mean extended

real-valued measurable functions. To emphasize a measurable function f is real-
valued, we say f is real-valued measurable function.

Proposition 5.1.4. Let f be a real-valued function on X. Then f is measurable
iff for each open O C R, f~1(0) is measurable.

Proposition 5.1.5. Let {fi}}_, be a finite family of measurable functions on a
common domain E € ¥, the functions maX<k<, fx and min<x<, fx are measurable.

Hence as remarked before, the functions

fT=max{f(x),0},  f7 = max{-f(x),0}

are both nonnegative measurable and f = f*— f~.

Proposition 5.1.6. Let (X,X,u) be complete, Xy € ¥ a set with u(X — Xo) =0,
then an extended real-valued function f on X is measurable iff f|x, is measurable.

As a consequence, if X is complete and f,g are extended real valued functions
such that f = g a.e., then f is measurable on X iff g is measurable on X.

Remark. |Proposition 5.1.6|can be false if X is incomplete. For example, if there
iISE¢Zbut ECZeX u(Z)=0,then 0= yg except possibly on Z.
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5.1. Measurable Functions

Proposition 5.1.7. Let f,g be measurable real-valued functions on X. Then:
(i) Foreach a,B € R, af + Bg is measurable.

(ii) f-g is measurable.

Proposition 5.1.8. Let f be a measurable real-valued function on X and g :
R — R continuous, then the composition g o f : X — R is measurable.

Proposition 5.1.9. Let {f,} be a sequence of measurable functions on X such
that f,, — f pointwise a.e. on X. If (X,XZ,u) is complete, or the convergence is point-
wise on all of X, then f is measurable.

Remark. [Proposition 5.1.9|can be false if X is incomplete, can you give an ex-

ample? We have discussed some examples of incomplete measure spaces.

Proposition 5.1.10. Let{f,} be a sequence of measurable functions on X, then
the following functions are measurable

Supfn’ inf,fn’ mf‘n and mfn,
n>1 nxl n—oo n—o0

Lemma 5.1.11 (Simple Approximation). Let f be a measurable real-valued
function on E € . Assume f is bounded on E, then for each € > 0, there are simple
functions ¢ and ¢ defined on E such that

Ye<f<¢Ye and 0<Yec—ype<eonk.

Remark. The simple approximation lemma tells us every bounded measurable
function is a uniform limit of a sequence of simple functions. Also from the proof of
the lemma when f is nonnegative, we can choose ¢, > 0.

Theorem 5.1.12 (Simple Approximation). A function f on X is measurable
if and only if there is a sequence of simple functions {¢,} on X for which ¢, — f
pointwise on X and
lonl < |f] on X for all n.

(i) IfX is o-finite, we can further assume each ,, vanishes outside a set of finite
measure. We describe such functions have finite support.

(ii) If f is nonnegative, we may choose {¢,} to be increasing with ¢,, > 0.

Theorem 5.1.13 (Egoroff). Suppose u(X) < oo and f, f1,f2,... are measur-
able real-valued functions on X such that f,, — f a.e., then for every € > 0, there is
E C X such that f,, = f on E and u(X — E) < €.

Loosely put, f, = f on E € X iff we can find a sequence of positive integers {rny}
such that for each x € E, for any k and for each m > ng, | fn(x) — f(x)] < % that said,
iff

(o) (e8] 1
Ec() N {xeX:Ifm(x)—f(x)|< k}.
k=1m=ny
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If RHS can be constructed such that its complement has py-measure less than €, we may
take E to be RHS. To construct RHS, it is same as constructing its complement

U u {xexilfm(X)—f(x)lz ]1{}

k=1 m=ny

Proof. WLOG let’s assume f, — f pointwise on X. Define E, (k) = U, _, {x €
X |fm(x)— f(x)| = %}. By definition, E, (k) is descending in n, N, E; (k) = 0 and
u(X) < oo, by continuity of measure lim,_,o, u(E, (k)) = 0. So for given € > 0, we can
choose ny large enough so that u(Ey, (k)) < €/2%. Define X — E = Ur=i Ey, (k), we
have (X — E) < €, and f,, == f on E by construction. ]

Remark. Egoroff’s theorem is also true when f, f1, f2,... are complex measur-

able functions defined in [Definition 5.2.37

5.2 Integration

In summer 2010-2011 we didn’t have enough time to do integration theory. It is a
chance to present all important results on Lebesgue integration in general setting.

In Chapter 3] we notice that each measurable function f can be written as a differ-
ence of nonnegative measurable functions, i.e., f = f* — f~. To define integration of a
measurable function, it suffices to do so for nonnegative measurable ones.

5.2.1 Integration of Nonnegative Functions

Definition 5.2.1. Let ¢ be a nonnegative simple function, say ¢ = >.""_, a; x4,
a; € R, A;’s € ¥ are disjoint and partition X, we define

[ odu= aiutan.
X i=1

Note that [y ¢ du takes value in [0,00]. We need to check that the integral in

Definition 5.2.1|is well-defined. To do this, assume »}/’; a; xa, = ¢ = >.7_; bj xB;,
i:] i= = ?:]Bj,then

m m n n m
DLai(A) =D ai Y p(AiNB) = > aiu(Ai N B))
i=1 i=1  j=1 j=li=l1
=Z bj/l(AiﬂBj)=ijZﬂ(AiﬁBj)=ijﬂ(Bj),
j=li,A;nB;#0 j=1 =l j=1

showing that [ ¢ du is well-defined, so is the following definition.

Definition 5.2.2. If ¢ is a nonnegative simple function on X and E € X, define

/Eff’dll=/XXE¢dll-
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5.2. Integration

Having the definition of integration of simple functions, one may, traditionally,
define the integration of measurable function f : X — [0,00] over X by

/ fdu= sup ¢du. (5.2.3)
X osp=r X
simple

However, this definition seems weird at the beginning because we are just doing “inner
approximation”. In order to convince ourself this is a suitable definition, we define
integration of measurable functions in another way under which some basic properties
of integral can be easily verified. Our goal is to show that our choice of integration of

fin takes the same value as (5.2.3). Before showing our definition is

well-defined, we need some preliminary results.

Proposition 5.2.4. Let ¢,¢, and ¢, be nonnegative simple functions and a > 0,
then:

(i) 0< [y ¢pdu < oo.
(i) [y addu=a [y pdu.
(iii) If ¢ > ¢p on X, [y d1du> [y dady.
(iv) [x(d1+¢2)du= [y prdu+ [x ¢2du.
(v) WE):= [ ¢du is a measure on . If p(E) = 0, then v(E) = 0.
Proof. (i), (ii) They are immediately true by definition.

(iii), (iv) We write ¢1 = 332 ) a; xa, and g2 = 377_, bj x B, then (iii), (iv) follows
from the representations

$1—¢2=Y > (@i —b)x(AiNB;) and ¢1+¢y =) > (ai+bj)x(AiNBy).

i=1j=1 i=1j=1

(v)Let ¢ => " ci¢c, and E = | |y, Ex,Ey € Z. The only nontrivial property to
check is countable additivity, but

n n &Y n (o9
W)= [ Yieixenc du=Y,anEnC=Y) [ Y cixc,du= Y Eo,
Xi=1 i=1 =17 Ex iz k=1

so v is a measure. It is clear that u(E) = 0 implies v(E) = 0. O

Proposition 5.2.5. Let {¢,} be an increasing sequence of nonnegative simple
functions such that ¢,, — ¢ pointwise on X, for some nonnegative simple function ¢,

then
[ odu=tim [ 6udu
X n—oo Jjx

This is a special case of monotone convergence theorem. The technique in this
proof will be used again to prove the general case, as long as the integration of a
measurable function can be defined.
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Chapter 5. Measurable Functions and Integration

Proof. Since ¢, < ¢, for all n, one has lim [y ¢, du < [y ¢ du. To show the re-
verse inequality, fix ¢ € (0,1), then X, :={x € X : c¢ < ¢, } € Z is an ascending collection
with U;-; X, = X, hence

c/ ¢dyzlim/ c¢d;1slim/ ¢nd,uglim/ on du,
X X, X, X

the first equality used the fact that A — [, ¢ du is a measure. As ¢ € (0,1) is arbitrary,
we obtain [y ¢du <lim [y ¢, dy. O

Now we can define our integration:

Definition 5.2.6 (Version 1). Let f : X — [0,00] be measurable, then there is
an increasing sequence of nonnegative simple functions {¢, } such that ¢,, — f point-
wise on X, we define the (Lebesgue) integral over X by

/fduz lim | ¢,du.
X n—eo Jx

Different from the definition of integral in (5.2.3), the measurability of f is obvi-
ously important for the integral defined in

Proposition 5.2.7. The integration in[Definition 3.2.6|is well-defined.

We introduce some useful notations. For a,b € R, we define a V b = max{a,b}
andaAb= min{a,b]m For functions f,g : X — [—o00,00], we define a function fV g
pointwise by (f V g)(x) = f(x)V g(x). f A g is defined similarly.

Proof. Let {¢,} and {¢}} be two increasing sequences of nonnegative simple
functions, ¢,,,¢,, — f pointwise on X. We need to show lim,, e [y ¢ dp =1im, 0 [y ¢, dp.
Fix an m € N, clearly {¢;, A ¢,};,-, is increasing and converges to ¢, pointwise on X,

hence by [Proposition 5.2.5}

/¢;nd,u= lim/ By A dp < lim/ ¢n du.
X n—oo Jx n—oo Jx

But m is arbitrary, so lim, e [y ¢}, du <lim,_,e [ ¢n du. Reversing the roles of ¢,

and ¢;,, we get the reverse inequality, so that|Definition 5.2.6|is well-defined. ]

Now we can justify (5.2.3) is a suitable definition of integration.

Proposition 5.2.8. Let f : X — [0,00] be measurable, then

/ fdu= sup | ¢du. (5.2.9)
X Os(_;&gjl" X
¢ simple

Proof. Denote RHS of (5.2.9) by 3. Let {¢,} be an increasing sequence of non-
negative simple functions, ¢,, ,/* f. By definition [y fdu =lim [y ¢, du < B. Next
there are two ways to show B < [y fdu.

(To memorize them, recall that the operation U always enlarges a set and N always shrinks a set.
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5.2. Integration

Method 1. B being a supremum, there are nonnegative simple i, < f such that
B =1im, e [y ¥n du. Fix an n and integrate both sides of ¢, <, V ¢y, One has

/Xwnd,us/Xwnvsbmdusrﬂnm/anwmdy:/deu.

We relax the choice of n so that 8 < [y fdu.
Method 2. Fix a nonnegative simple ¢ < f and fixa c € (0,1). Let X,, ={x € X :
ey < ¢y}, itis easy to see {X,,} is ascending and X = [J X,,, hence

c/ wd,uz/ cwd,uzlim/ ctﬁdyslim/ ¢nd,uSlim/ (bndy:/ fdu,
X UXn Xn Xn X X

e, c[ywdu< [y fdu. Asthe choice of ¢ can be relaxed, [y ¥ du < [y f du, also the
choice of ¢ can be relaxed, B < [y fdu.

374 direct proof. Define i, as in method 1, then we construct an increasing
sequence of simple functions by ¢, =¥ Vi V- Vi, V ¢n@ Then

B [ Wndus [ endu<p. ) 0u0) < a0 < F2)
X X

implies 8 =1lim [y ¢, du= [x fdu. d

Henceforth we have two (equivalent) definitions of integration, they are used in-
terchangeably to deal with different situations.

Definition 5.2.10 (Version 2). Let f : X — [0,00] be measurable, the (Lebesgue)
integral of f over X is

/ fdu= sup [ ¢du,
JX 0<p<f JE
¢ simple

and for each E € X, we define the integration of f over E by

/;Efdﬂ = /X XEf du.

Now we extend some basic properties of integration of nonnegative measurable

functions listed in [Proposition 5.2.4] except for (v) which we will prove very soon.

Proposition 5.2.11. Let f,g be nonnegative measurable functions and « > 0,
then:

(i) 0< [y fdu<co.

(i) [yafdu=a [y fdu

(i) If f>gonX, [y fdu> [ygdu.
(iv) [x(f+gdu= [x fdu+ [xgdu

(v) v(A):= [, fdu is a finitely additive set function on X.

(Z)Ifa1 <bj,ar<by, thena; Vb <aryVby,takea| =y V-V, ar =YV VYpni1,b1 =, br =
dn+1, 50 that {¢,, } is increasing.
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Chapter 5. Measurable Functions and Integration

Proof. (i) It is immediately true.

(iii) Let’s fix a nonnegative simple function ¢ with ¢ < g. Then since ¢ < f,
Jx ¢du < [y f du. Since the choice of ¢ can be relaxed, [y gdu < [y fdu.

(i), (iv) Let’s choose increasing sequences of nonnegative simple functions {¢, }
and {¢,} such that ¢,, — f and ¢,, — g pointwise on X. For (ii),

/ afdu:lim/ a¢nd,u=alim/ (l)nd,uza// fdu.
X X X X
For (v) by (iv) of Proposition 52

/X(f+g)du=lim/x(¢n+s0n)du=lim </X¢nd/1+/xtpnd,u>.

(v) Let A= {_; A, then v(A) = [y xafdu= [x 2= Xa, fdu, and the result
follows from (iv). ([l

Next we can discuss the interesting part of the integration theory. They tell us
limit operations are easier to handle in Lebesgue integration.

Theorem 5.2.12 (Lebesgue’s Monotone Convergence). Let {f,} be a se-
quence of nonnegative measurable functions on X. If {f,} is increasing and f, — f
pointwise on X, then f is measurable and

lim fndpz/ fdu.
n—eo Jx p'e

We just need to modify the proof of Note that a crucial step is
to apply (v) of we try to “shrink” a simple ¢ < f by a multiplicative

constant.

Proof. The measurability of f is guaranteed by By (iii) of
[Proposition 5.2.11} lim [y f, du < [y fdu.

To prove the reverse inequality, let’s fix a nonnegative simple function ¢ < f and
¢ €(0,1). Consider X,, :={x€ X : c¢ < f,,} €%, itis ascending and | J;,—; X, = X. Thus

by () of Proposiion 5.2,
/c¢dp=1im/ c¢d,uslim/ fnd,uslim/ o m
X Xn X'l X

By relaxing the choice of ¢, [y ¢ du <lim [y f, du. Finally, by relaxing the choice of
¢, Jx fdu <lim [y fn du. U

Theorem 5.2.13. Let f,, : X — [0,00] be measurable forn =1,2,..., then
[ tudu= Y [ fud
Xn:l n=1 X

Proof. Letgy = Z,I:le fn» then by (iv) of [Proposition 5.2.11} [y gn du = 22]21 Jx fn(x)dp.
By monotone convergence theorem,

/ngn(x)dﬂz/XlimgNd/J=1im/XgNd/1=r§/an(x)dﬂ_ 0
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5.2. Integration

Lemma 5.2.14 (Fatou). If{f,} is a sequence of nonnegative measurable func-
tions, then

lim f,du< lim [ f,du.

X n—oo n—oo

Proof. Define g, = inf;>, f;, then limg, =lim f,,. As {g,} is an increasing se-
quence of nonnegative measurable functions, by monotone convergence theorem,

[ tim i dya= [ timg, du=1tim [ g du<tim [ £, du. 0
X X X X

Remark. The inequality cannot be reversed in general. To see this, let X =
[0,1], fn = nx"1 and u = m be Lebesgue measure. Then lim,,_,. f, = 0 a.e. and

f[o’l]fn dm =1 (by[Theorem 5.2.21J), hence f[o’llliimfn dm=0<1= hﬂf[o’l] fndm.
Now we extend property (v) of
Theorem 5.2.15. Suppose f : X — [0,00] is measurable, then

v(E):=/Efd,u

is a measure on X. Moreover, for every measurable g : X — [0,00], we have

[ gav= | efdu

Proof. To show v is a measure, it suffices to show v is countably additive. Let
E =1 Ex, then xg = Y0 XE, » thus

V(E):/Efdﬂ:/XXEfdﬂ:/)(I;)(Ekfdﬂ:ZV(Ek),

k=1

so v is indeed countably additive.

Next by simple approximation theorem, there is an increasing sequence {¢,} of
nonnegative simple functions such that ¢,, — g pointwise on X. Combined with mono-
tone convergence theorem and linearity of integration, it suffices to check the last as-
sertion for g = y 4, for A € ¥, which is obvious. O

5.2.2 Integration of General Measurable Functions

Let f : X — [0,00] be measurable, then f*,f~ are nonnegative measurable functions
for which [y f*du and [y f~ du make sense. Owing to the equality f = f*— f~ it
is reasonable to define [y fdu = [y f*du— [x f~ du. However, problem arises in the
case [y fTdu= [y f~du = +oo, we introduce the following definition to overcome
this difficulty:

Definition 5.2.16. A function f : X — [—c0,00] is said to be integrable over X
with respect to u (or simply integrable) if it is measurable and both [ f* du, [y f~ du
are finite, moreover, the integral of f over X is defined by

[ rau= [ rrau= [ 5 an
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Since |f| = f* + f~, one can easily verify that f is integrable iff f/* and f~ are
integrable iff | f| is integrable.
There are some usual notations for collection of integrable functions.

Definition 5.2.17. For 1 < p < o0, we denote by LP(X,u) (or by LP(X) or
LP(u)) the collection of all integrable functions f such that [y |f|” du < co. When
p = oo, we denote by L7(X, u) the collection of essentially bounded functlon@ For
f.g € LP(X,u), we define an equivalence relation ~ by f ~ g iff f = g almost every-
where. Then we define

LP(X) = LP(X)/~.

It is customary to write f € LP(X) instead of [f] € LP(X) and for f,g € LP(X), the
notation f = g is understood as f = g almost everywhere.

We now extend the list of properties listed in|[Proposition 5.2.11}

Proposition 5.2.18. Let f and g be integrable over X, a € R, then:
(i) Jxafdu=afx fdu

(i) [x(f+&)du= [x fdu+ [xgdu

(i) If f>gonX, [y fdu> [y gdu.

(@) | [x fdp| < [x|fldp.

(v) v(A):= [, fdu is a countably additive set function on .

Proof. (i) Observe that

. ifa>0, _ af”, ifa>0,
=4 and (afy =4%
—af”, ifa<O, —aft, ifa<O.

(i) follows from considering the cases that @ > 0 and @ < 0.

(i) We have proved (ii) is true when f,g are nonnegative. Now we prove the
general case. Since f,g are integrable, they are finite a.e. (why?), so we let Xo be
such that f,g are finite on X — X with u(Xg) =0. Then (f+g)* —(f+g) " =f+g=
fT—f"+g"—g on X - Xy implies

[+ +f+g =(f+) +f +g"

on X — Xy. Since each term is nonnegative, we integrate both sides over X — X and
rearrange terms, so that (ii) is proved.
(iii) Since f—g >0, [y (f —g)du > 0 by definition, hence the result follows from

(i).

(iv) By definition of integral of general measurable functions,

'/de,u‘=’/xf+d,u—/;(f_d,u SAf+dﬂ+Af_dM:/)(|f|d”'

(v) Since [, fdu= [, f"du— [, f~du, each term is countably additive bym
[orem 5.2.15]and everything converges absolutely, so v is countably additive.

®)j.e., collection of measurable functions f such that there is C > 0, u{x e X :|f| > C}=0.
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Next, as we notice, whenever a set function is countably additive on ¥ we have
continuity of measure on X for ascending collection {X,, € X}, we also have that for
descending collection {Y,, € X} if there is ¥} that has finite measure. Since by measure
we mean a nonnegative and countably additive set function, we modify the name of
our observation a little bit.

Theorem 5.2.19 (Continuity of Integration). Let f be integrable over X.
(1) If{X, €ZX} is ascending, then

/ fdu= lim/ fdu.
U;ozlxn n—eo Xn

(ii) If{X, € X} is descending, then

/ fdu= lim/ fdu.
N=1 Xn n—=0JX,

Proof. The proof is identical to[Theorem 2.7.3 (]

Theorem 5.2.20 (Lebesgue’s Dominated Convergence). Let f, f1, f2,... be
measurable functions on X such that f,, — f pointwise a.e. on X. If there is a function
g integrable over X such that for eachn € N,

|ful <gae onX,

then f is integrable over X and
lim [ fudu= / fdu.
Proof. Since

/ Ifldu=/ 1im|fn|dusm/ Ifnld,uS/ gdy,
X JX X X

f is integrable over X. Moreover, since g — f,,g + fn = 0, by Fatou’s lemma,

[ timGe = f)du <tim [ (= frdu — Tom [ fudus [ fan

/}(h7m<g+fn>d#sh7m/x<g+fn>du — /deﬂsliim/xfndu,

so lim [y f,, exists and is equal to [y f du. O

5.2.3 Relation Between the Lebesgue and Riemann Integrals

In this subsection we would like to explain why Lebesgue integration theory “extends”
the notion of Riemann integrals (strictly speaking, Lebesgue integral extends the Rie-
mann integral of the class of absolutely Riemann integrable functions). After that we
will see how superior the Lebesgue theory is in handling limit operations.

Throughout this subsection we let ¢ = m, as before, denote Lebesgue measure on
R. The Lebesgue integral of f over [a,b] is denoted by f[a’ p1 S dm, and the Riemann

one is denoted by [ ‘f fdx.
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Chapter 5. Measurable Functions and Integration

Theorem 5.2.21. Let f : [a,b] — R be a Riemann integrable function, then f €
L'([a,b],m), moreover,
b
/ fdm =/ fdx.
[a,b] a

Proof. By the meaning of f € Ll([a,b],m), we need to show f is measurable and
Lebesgue integrable, what’s more, two integrals are equal.

Let {P,} be a collection of partitions of [a,b], say Pp ={xp,0,....Xn,k, : @ =Xn,0 <
Xn,1 <--r < Xpk, = b}, we define || P,|| = maxi<j<k,, [Xn,i —Xn,i-1]. Also we construct
the following step functions

xn,iflaxn,i]

kn
en@ =2 ( it ) Ky )
i=1

and
kn

Yn(x) = Z ( sup f(t)) X[x,,,,i,l,xn‘i)(x),

i=1 Ie[xn,ifl’xn,i]

then by Riemann integrability, whenever ||P,|| — 0, one has

b b b
lim / o dx = / fdx = lim / U dx. (5.2.22)
a a a

Now we choose a sequence of partition such that P, refines P, and ||P,|| — O, one
such possible choice is to divide each subintervals into half. Then the limit in (5.2.22)
is achieved, moreover, {¢,} is increasinﬂ and {¢,, } is decreasing with

en(x) < f(x) <Ynlx)

for each x € [a,b). Let ¢(x) = limy, e ¢, (x) and ¥ = lim,, ;o ¥, (x), both limits exist
since f is bounded. Then

/[a,b](w_(’a)dmS/[a’b](l/’"_¢")dm=/abl//nd)€—/abcpndx

for each n, and hence by (5.2.22), [, (¥ = ¢)dm = 0. But ¢ — ¢ > 0, hence ¢ = y
a.e. on [a,b]. As ¢ < f <y, we conclude f =lim,_,« ¢, pointwise a.e. on [a,b], and
hence measurable. We also let Xy C R be such that ¢,, — f pointwise on [a,b] —
and m(Xp) =0

f is Lebesgue integrable because Riemann integrable functions are bounded. By
dominated convergence theorem and (5.2.22)),

/ fdm= fdm—hm/ gondm
a,b] la,b]-

—hm/ t,ondm—hm/ (,ondx—/ fdx. ]

®For example, let x € [a,ﬁ ), then for each n there is a unique interval I,, = [Xp M, » Xn, My +1) suchﬁthat
x €I,. Then @, (x) =inf f(I,,). As Py 41 refines P,,, I,,+1 C I, hence @, 41(x) =inf@(I,,41) > info(I,) =
@n(x).
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5.2. Integration

Remark. In[Theorem 5.2.21|Riemann integrability over [a,b] cannot be changed

to improper Riemann integrability over [a,b]. To see this, consider

g(x):= Z(_l)n_ln)((l/(nﬂ),l/n](x)»

n=I1

then g is improper Riemann integrable but not Lebesgue integrable.

o—e
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I
T + X
I ! 1
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oe
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Figure 5.2: Riemann but not Lebesgue integrable.

In the proof of we have shown that lim,, o ¢, = lim,, 0t/ ON
[a,b] except Xo € [a,b] with m(X() = 0. Which actually shows that:

Corollary 5.2.23. Let f : [a,b] — R be Riemann integrable, then almost every
x € [a,b] is a point of continuity of f.

Proof. We adopt all notations in the proof of [Theorem 5.2.21] Let P =, P

be the collection of all partition points, which is countable. Fix an xo € X — X — P, by
construction lim,, e ¢, (x0) = f(x0) = lim,—e ¥n(x0). So for each € > 0, there is an
N so that

YN (x0) —en(xo) <E€.
As xo € X - P, i.e., xo ¢ PN, so xo must be an interior point of some interval [ :=

(XN,i>XN,i+1)-

y

1 | y=yn

Supf(l)zlﬁN(X())“f——Tff .y
<€
inff(7)=t,0N(x0)~-wfl,, .
¢ — i
AN X0 XN+l
I

Figure 5.3: How f is bounded by ¢ and .
For all x € I, both f(x), f(xo) € [inf f(I),sup f(I)] € [¢n(x0),¥n (x0)], and hence
[f(x) = f(xo)l < ¥ (x0) —pn(x0) < €.
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Chapter 5. Measurable Functions and Integration

That is, x¢ is a point of continuity. So f is continuous on [a,b] except possibly on
Xo U P which has Lebesgue measure zero. We conclude f is continuous a.e.. (]

As you might have seen somewhere, the converse of [Corollary 5.2.23|is also true
if f is bounded, whose proof is divided into several steps in Problem [5.11]

Example 5.2.24. | We try to show that

o Ler—1
;g n(n+1)-- (n+k):/o o

The series converges since for k = 1,2, ﬁ,m < ﬁ and for k > 3,

1 1
AT D) < 2z Now

k k
x(x+1) “(x+k) Z - 1—Z“r H (x+j)s

r=0 r=0  0<j<k
J#r

by choosing suitable x we can deduce that 1 = a,(=1)"r!(k—r)!, ie., a, = (—k1!)r (f),
which implies

k r
! _ 1 (’;) Sl (5.2.25)

nn+1)---(n+k) k!r:() n+r

Since desired answer is an integral, to this end by binomial expansion and integration,

57k (=1 L  n 1 - L o
Z <r> s :(_1) /O (1+x) X dx:/(; (1+x) X d_x:/o X (l_x) dx.

i (5.2.26)
Combining (5.2.23) and (5.2.26), we have -
e XS (& =y
n;k; n(n+1)- (n+k)‘§§? Z(r) n+r
=ii/ o k- x)"ldx
=i / i — )V dx (5.2.27)
:i/l(e — )1 =" dx
n=1
:/Oli(ex—l)(l—x)"_ldx. (5.2.28)

n=1

(5.2.27)) and (5.2.28) are true by monotone convergence theorem, where we have changed
dx to dm and then back to dx implicitly. (]

Ot is a problem found in mathlinks: http://www.artofproblemsolving.com/Forum/viewtopic.
php7E=67&t=275547|
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5.2. Integration

It is important to study the Riemann integral of a function over an unbounded
interval. Having learnt we are also interested in when the improper
Riemann integral [;° f(x)dx of a function f : [a,00) — R agree with [, . f dm.

Since Lebesgue integrability (including integration with respect to general mea-
sures) is a kind of absolute convergence, some of improper Riemann integrable func-
tions turn out to be not Lebesgue integrable, as indicated in the following well-known
example.

Example 5.2.29. Consider

(o8]

1
F@) = 3D e ().

n=1

Since i, o) lf1dm =30 % = oo, f is not Lebesgue integrable.
Next we show that f is improper Riemann integrable. It is Riemann integrable

over all interval [0,a], a > 0. Moreover,

) o . 1 B
/Ofdng(—l) 1;_1n2.

To obtain this sum, note that for each x € [0, 1), Z‘:f:] (—1)"‘1)c"_1 = ﬁ and the con-
vergence is absolutely, hence the value of the sum is independent of any rearrangement.
By the following pairing,

2N
gy = 2D = (-4 0 =) e PN 2N,
n=1

1
x+1°

- 1 1
Z(—l)"‘lf:hm/ gNdmz/ limgNdm=/ — dx=In2. O
ol n [0.1) [0.1) o T+x

{gn} is increasing, and limgy = hence by monotone convergence theorem,

Figure 5.4: f is Riemann integrable due to cancellation.

However, if the improper Riemann integrability is also absolute, then two types of
integrals agree.

Theorem 5.2.30. Let f : [a,00) — R be Riemann integrable over [a,b], for each
b> a@ Then f is Lebesgue integrable iff the improper Riemann integral [ |f(x)|dx

exists, and in that case,
[ iftam= [ ifidx
[a,0) a

©1t is also called locally integrable.
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Chapter 5. Measurable Functions and Integration

and
/ fdm:/ fdx. (5.2.31)
[a,o) a
Proof. f is Lebesgue measurable because for each ¢ € R (pick N > a),
e = | ((F e nlan]) = [ (Flian) ™ (e,00),
n=N n=N

s0 f~!(c,00) is measurable by Riemann integrability over [a,n] for each n.
Assume f is Lebesgue integrable, then f[a’m) |f|dm exists. Let aj,az, - € [a,0)

be such that a,, — co, then by dominated convergence theorem and[Theorem 5.2.21]

dn
[ Atdm= [ tim g, lfldn=tin [ yiaa,lfldn=tm [ ifld,
[a,0) [a,) [a,0) a
(5.2.32)
as the choice of a,,’s are arbitrary, hence |, ;° | fldx exists.

Conversely, if [° | f|dx exists, then we pick a strictly increasing sequence aj,as -+ €
[a,00) such that a, — oo, then each equality in (5.2.32) (from right to left) is true,
where the second equality follows form monotone convergence theorem. Hence f is
Lebesgue integrable.

Finally we consider the last two equalities. The first equality follows also from
(5.2.32). For the second one, let a,, > a with a,, — co. Then define f,,(x) = x[a,q,,1(X)f (%),
by dominated convergence theorem,

an
/ fdm= lim f,, dm = lim fndm = lim/ fdx.
[a,c0) [a,c0) a

[a,e0)

As the choice of a,,’s are arbitrary, hence the improper Riemann integral exists, (5.2.31)
follows. (]

Recall that a function f : [a,00) — R is said to be absolutely integrable in Riemann
sense if f is locally Riemann integrable (then so is | f|) and | ;’o | fldx exists.

Example 5.2.33 (Riemann-Lebesgue lemma). Let f be absolutely Riemann
integrable on R, we can show that

lim 1 : f@ycos(andr = lim 1 : f(t)sin(Af)dt = 0.

We outline the proof briefly without technical detail. It is clear f is measurable on
R. The Riemann integral can be switched to Lebesgue integral. We just discuss the
integral with cos, the one with sin is essentially the same. Let € > 0 be given, there is

an n € N such that
‘(/R—/_n’n])f(t)cos(/lt)dt

By simple approximation theorem and one can find a step function ¢
on [—n,n] such that f[_n’n] |f — #|dm < €, combing this inequality with (5.2.34) one has

<e. (5.2.34)

< 2e.

‘/ fcos(At)dt - /n dcos(At)dt
R -n
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5.2. Integration

Since ¢ is a step function, as 4 — oo, ffn ¢cos(At)dt — 0. That is to say, whenever A
is large enough,

< 3e,

‘/ fcos(Ar)dt
R

as desired. You can fill the gaps by Problem [5.2§] O

When studying improper or proper Riemann integrals one might have tried the
following operations

d B
dy ./zf(x’y) dx = /?@f(x’wdx (5.2.35)

in order to compute certain kind of integrals. This is a very useful trick since some of
the undesired factor in the integrand can be eliminated! For instance, a usual example
or exercise in complex analysis is to evalute the following integral

" sinx
[
Jo x

If we introduce the (convergence) factor e~* (a > 0) to the integrand, then after differ-
entiating [, e™** % dx with respect to a, we can get rid of x in the denominator and
Jo e **sinx is easy to compute (integration by parts twice or evaluate the complex
integral [ e “*sinxdx =Im [ e™%*e'~ dx).

We will see that dominated convergence theorem is enough to justify such kind
of operations in (5.2.35)). To state the result precisely, we use the notation defined in

Definition 5.3.7} For (x,r) € X xR, we define fx () = f(x,f) and f*(x) = f(x,1).
Theorem 5.2.36. Let f : X X (a,b) — R satisty the following conditions:
(i) Foreacht € (a,b), f' € L1(X,p).

(ii) For each to € (a,b), there is a6 > 0 and a g € L' (X, ) such that for a.e. x,
fx(0) is differentiable and | %L (x,0)| < g(x) on (1o — 6,10 +6).

Then [ x f(x,1)du(x) is differentiable, moreover,

d _ [
o [ renduco = [ cnduco.

Proof. Lett #tg € (a,b), write

Jx SO0 dux) = [x f(xt0)du(x) _ [ f(x.0) = f(x.10) dy

D(t) =
@ 1—1to X t—1to

(x).

By definition, there is ¢ > O such that for a.e. x, fy is differentiable and I%(t)l <
g(x) on (to — 6,t0 +0). Let t =t, be a sequence such that ¢, — t9. Define ¢, (x) =

]%{O(X’m), then D(t,) = [y ¢n(x)du. By mean-value theorem, for large enough n

and a.e. x, |¢, (x)| < g(x). Since ¢, (x) — %’;(x,to) pointwise a.e., hence by dominated
convergence theorem,

0
limD(t,,)=lim/xcpn(x)d,u=/Xlimcpn(x)duz/xa—{(x,to)du.
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Chapter 5. Measurable Functions and Integration

Since the limit lim D(z,,) exists for every sequence {¢,} such that ¢,, — ¢, the limit
lim; _,;, D(¢) exists, and we conclude for each t € (a,b),

d

— 0 d

- ( [ s y(x))
It is left as an exercise to use|{Theorem 5.2.36|to evaluate [;° Siﬁ‘cx dx.

5.2.4 Integration of Complex Functions

_[9of
- /X 2 (x,10) ) 0

For completeness we also introduce complex-valued measurable functions. They arise
very naturally. For example, in the study of pointwise convergence of Fourier series,
S(f), of a Riemann integrable function f : [-m,m] — R, integration of complex func-
tions provides a succinct way to express a Fourier series:

S(f):= % + ’; (an cosnx + by sinnx)
1
2n

=) < [ e dm(f})) e = 3 e,
nez [-7.m)

nez

=f(n)

where
1 /= 1 /=
a, = f/ f(@)cosnbdb, b, = 7/ f(8)sinn6 de6.
T J-r T J-r

To study the pointwise convergence, we study the partial sum

N
~ . 1 .
Sn(fyi= Y fove = [ @) Y €m0 dmeo)
Inl<N R A — Y
| ——
_sin(N +1)(x-6))
- sin(%(x—g))

and the difference | f — Sy (f)|. The theory can be developed with the ease of handling
limit in Lebesgue integration, more specifically, by the complex version of Lebesgue
dominated convergence theorem.

Now recall that at the beginning of this chapter, we have fixed the symbols X,%
and u to be the components of the measure space (X,Z, 1), the convention carries over
to this subsection.

Definition 5.2.37. A complex-valued function f : X — C is said to be measur-
able if Re f,Im f : X — R are measurable functions.

Now we have extended our class of measurable functions. We need to be careful
in using the terms “measurable”. If we want to emphasize a measurable function is
extended real-valued, we use the term extended real-valued measurable function
for clarity, likewise we would use the terms real-valued measurable function and
complex measurable function.

The following proposition gives another characterization of the measurability of

f : X — C, which is an analogue of [Proposition 5.1.4
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5.2. Integration

Proposition 5.2.38. A function f : X — C is measurable iff f~'(B) € X for each
Borel set B in C.

The proof is left as an exercise. Note that if C is replaced by R in
the same o-algebra technique also implies f : X — R is measurable iff
f~1(B) € X for each Borel set B in R. A general definition of measurability of func-
tion can be built as follows: Let X be a measure space and Y a topological space, then
f: X — Y is measurable iff £~!(B) is measurable for each Borel set B in Y. We don’t
use this abstraction in this text.

Definition 5.2.39. f: X — C is said to be integrable if both Re f and Im f are
integrable. In that case, we define the integral of f over X by

/ fdu:/ Refdy+i/ Im fdu.
X X X
If A € Z, we define the integral of f over A by

[ fau= [ xafau.

From now on, in case if f : X — C is integrable we extend the meaning of the
symbol LI(X ,u) and say f € LI(X, (). Again, for clarity, we use the terms extended
real-valued integrable function, real-valued integrable function and complex inte-
grable function to distinguish members in £!(y).

As a routine work, we list all basic properties of our newly defined integral.

Theorem 5.2.40. Let f,g: X - Canda,B €C.
G) If f,g € LX), then a f + Bg € L} (X) and

/X(af+ﬁg)du=a/xfdu+ﬁ/xgdy.

(ii) If f is measurable, then f € L'(X) iff|f] € £L'(X). In that case,

‘/deu < [ \fida.

Gii) If fe L'(X)and A€ X, then yaf € L'(X). IFA= A UA,, A,Ar €2, then

_/Afdﬂ=/Alfd#+/Azfdﬂ-

@iv) If fe LY(X)and{A,}isa disjoint collection in Z, then the series Z:,o=1 fAn fdu
converges absolutely and

dy = / d.
/u;gAnfﬂ HZ:]  fdu

Proof. (i) The integrability is straightforward. We break down the proof of lin-
earity into two parts. Firstly, we show that [y @ f du = @ [y fdu. Secondly, we show
that [y (f +8)du = [y fdu+ [x g du, both are simple computations.
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Chapter 5. Measurable Functions and Integration

(ii) Let f be integrable, then |f] = /|Re f|? + |Im f]? < |Ref|+|Imfshows that
|f| is integrable. Conversely, assume |f]| is integrable, then |Re f|, |Im f| < | f| shows
that Re f and Im f are integrable, thus f is integrable by definition. Assume f € £!(X),
we can find an @ € C such that o = 1 and | [y fdu| = a [y fdu = [y Re(af)du+
i [xIm(af)du= [y Re(af)du< [xlafldu= fy|fldp.

(iii) yaf € L£(X) because |y f| < |f|, showing that |y 4 f] is integrable, so is
xaf.Since ya,ua, = XA, + XA, the last equality holds.

(iv) Let A = ||~ Ak, then

‘/X xafdp— /X XU, A S du| < /X xa—xup_, acllfldu.
Since | x A — XL, Ak Ifl1<|fland | x A — XL, Ay lf| = O pointwise on X, by Lebesgue
dominated convergence theorem,

[ xafdu= lim fau=Y [ fau
X n i=1 Ap

—00 n
I—'k:l Ag

Since A = |-, Ak = L= As(x) for every bijection o : N — N, the value of the series
2kt Ja, fduis independent of the rearrangement of the summands, hence converges
absolutely. O

Note that again we have continuity of integration due to countable additivity, as
remarked earlier. Moreover, let f,g : X — R be real-valued integrable functions, by
| [x(f+ig)dul < [x |f +igldu, one has an interesting inequality:

V(/deﬂ)a(/;gdﬂ)zs/xwdﬂ.

Theorem 5.2.41 (Lebesgue’s Dominated Convergence, Complex Form).
Let f, f1,f2,--- : X = C be measurable functions and g : X — [0, 0] integrable such that
fn — f pointwise a.e. on X and

|ful<gae onX,

then f is integrable over X and
lim [ f,du= / fdu.
n—o Jx X

Proof. fe L£!(X)as|f|<ga.e. onX. Since

’/deﬂ—/xfndﬂ

and |f — fu| < 2g a.e. with |f — f,| — 0 pointwise a.e. on X, hence the result follows
from Lebesgue dominated convergence theorem for extended real-valued measurable
functions. (]

S/le—fnldﬂ,

Theorem 5.2.42. Let f € L1(X, ).

DFor x,y 20, yX Ty < VX + VY iff x +y < x +y +24/xy, the latter holds obviously.
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(i) If [ fdu=0 forevery E€X, then f =0 ae. on X.

(i) If| [y fdul = [x|fldu, then there is a constant « € C such that o f =|f] a.e.
onX.

Proof. (i) write f = u+iv, where u,v are real-valued, then [pudu= [rvdu=0
for every E € X, and the rest is left as exercises.

(ii) Since there is a € C with || = 1 such that @ [y fdu =[x f dul, we have
Jx(fl—af)du=0. Write  f = u+iv, then [y(|f|—u)du= [y vdu=0. Since |f| =
lafl=lu+iv]|>|ul >u, so|f| =uae. (on X). This also implies o f = |f|+iv a.e.. As
lal=1,v=0ae.,s0af =|f|ae. O

Theorem 5.2.43. Suppose u(X) < oo, f € L1(X, ), S is a closed set in C and

1 s
@/Efd,ueS

for every E € ¥ with u(E) > 0, then f(x) € S fora.e. x € X.

Proof. We may assume f is a complex measurable function. Since C— S is open,
there are countably many open balls B; such that C — S = |JB;, hence f~1(C-S) =
Uf~'(B)). Let B; = B(x;,r;) CC—S, it is enough to show f~!(B;) has u-measure zero
for each i, suppose not, then

|f(x)—xildu <,

1 1
- du—x;| < —————
‘:u(f_l(Bi)) /f'-l(Bi>f oo <u(f‘1(Bi))/f-1(B,:>

meaning that S N B; # 0, a contradiction. O

5.3 Product Measures

5.3.1 Definitions of Product Measure and Product sigma-algebra

As pointed out earlier the construction of Lebesgue measure can be abstracted to con-
struct many more measures with the help of Carathéodory-Hahn Theorem As
an application, we have used this extension theorem to construct Lebesgue-Stieltjes
measure on R. With the help of this extension theorem again, we will develop an im-
portant fact that given two measure spaces X and Y one can always construct, in a
reasonable manner, a new measure called product measure defined on a nice enough
o-algebra on X xXY. Once this is done, we will also prove the Fubini-Tonelli theorem
which enables us to switch the order of iterated integrals, an important technique even
dealing with integrals which take the form | f fdx!

In this section we fix X,Y, M, N, u,v to be the components of two measure spaces
(X, M, ) and (Y,N,v).

Definition 5.3.1. We define
MxN  ={AxB:Ae M,Be N}

to be the collection of measurable rectangles in X xY.
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E

> X

Figure 5.5: Subtraction of rectangles.

Let AXB,EXF e MXxN, we have (AXB)N(EXF)=(ANE)X(BNF). By
Figure[5.5|we have AX B—Ex F = (AX(B-F))U((A-E)x(BNF)).

Hence M X N is closed under finite intersection and subtraction of measurable
rectangles is a union of finite disjoint unions of measurable rectangles, and hence M x
N forms a semiring.

To get a measure, we first introduce the following set functions on Mx N: If
AX B e MxN, define

A(AX B) = u(A)v(B). (5.3.2)

This definition is natural in the sense that if y and v are Lebesgue measure, then A is
nothing but the area function defined on rectangles in R?. In order to extend it to a
measure, we have to check that A is a premeasure on M X N.

Proposition 5.3.3. 1: MXxN — [0,00] defined in is a premeasure.

Proof. By[Proposition 4.3.22] we only need to show A possesses countable addi-
tivity. Let {A; X B;};2, be a countable disjoint collection in M X N such that AX B =
LI72,(A; X B;) € M X N. Since

XAXBD) = XaxB(X.) = Y. xas, ()= xa, (x5, (534)
i=1 i=1

we integrate both sides of (5.3.4) and apply monotone convergence theorem to obtain

KA = [ a0 m () duo)
e N (5.3.5)
=3 [ a0V = Y (A, )
i=1 i=1

Next we integrate both sides of (5.3.5) and apply monotone convergence theorem once
more to obtain

H(AYV(B) = > u(A)v(By),

i=1

i.e., A is countably additive, proving that A is a premeasure. (]
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5.3. Product Measures

By part (i) of Carathéodory-Hahn [Theorem 4.3.14| we can now extend A to a
measure on the smallest o-algebra containing all measurable rectangles. However,
such extension may not be unique. In order to get a unique extension we should require
the space X XY be o-finite (with respect to the length on M X N).

In the sequel we shall require both X and Y be o -finite (we will indicate this in
each of the results). In that case, A is o-finite because there are X; e M and ¥; e N
such that X = JX; and ¥ = JY; with u(X;),v(Y;) < oo, it follows that

Xxy =X x¥))

J

and A(X; xY;) = u(X;)v(Y;) < co. Let the outer measure induced by A be denoted by
A*. For the moment we shall not deal with the o-algebra of A*-measurable subsets
on X XY, what we are going to do is to develop the theory on a “cleaner” o-algebra
defined by

MON =a(MXN).

Namely, the o-algebra generated by the measurable rectangles. We summarize them
as a definition.

Definition 5.3.6. Let X and Y be measure spaces. We call M® N the product
o-algebra. If X and Y are also o-finite, we denote

UXy = | pmen

the unique measure on the measurable space (X X ¥, M® N) that extends A, called
product measure.

More generally, let (X;,X;,u;), i = 1,2,...,n, be measure spaces, it is easy to check
X XZ, i={A1 X+ XAy, 1 A; €%} is a semiring and the set function A| X---X A, -
u1(Ap)--- un(Ay) defined on it is a premeasure which can be extended to a measure on
a o-algebra containing @7 Z; ;=2 ®--®%, 1= 0(X] X+ - X Zy).

By letting u;,...,u, = m, the Lebesgue measure on R, then the completion of
mX---xm is the n-dimensional Lebesgue measure on R”, which is of our great interest
of course! For that purpose we will study the product of more than two o -algebras
latter. Let’s for simplicity stick with the case n = 2.

5.3.2 Sections of Sets and Functions, Monotone Class Lemma

Definition 5.3.7. Let X,Y be two measure spaces. For E C X XY, we define the
x-section E, and y-section EY of E by

E.={yeY:(x,y)eE} and E”={xeX:(x,y)€E}.

Suppose that f is a function on X XY, we define the x-section f, and y-section f~ of
Jby
Fx() = fY(x) = f(x,y).
For example, consider the closed region D C R? in Figure Given x € R, the
section Dy is those y such that (x,y) € D, i.e., the projection of the dashed segment to

the y-axis.
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Figure 5.6: Example of x-section.

Proposition 5.3.8. Let A be an index set and E,E, ,F,F, be subsets of X XY,
the following holds forallx € X andy €Y.

(1) (xe)x(Y) = xE.(y) and (xE)” (x) = xEv (x).

(i) (Ugea Ea)x = Ugea(Ea)x and (Ugea Ea)” =Ugea(Ea) -
(iii) (Naea Ea)x =NaecaBa)x and (Ngea Ea) = Naeca(Ea)’ .
(iv) (E—F)y = Ex—Fy and (E - F)’ = E¥ — F".

(v) fECF,thenE, CF, and EY C F”.
The proof is left as an exercise.
Proposition 5.3.9.

(i) IFEe M®N, thenE, e N and EY e M, forallxe X,y €Y.

(i) If f is M® N-measurable, then f is N-measurable for all x € X and f” is
M-measurbale forall y e Y.

Proof. (i) Let x € X,y €Y be fixed. Consider the collection
C={ECXXY:E.eN,E” e M)}

Each measurable rectangle AX B € M X N is in C because (AX B), = B if x € A and
= 0 otherwise, similarly (A X B)” € M. It remains to show C is a o-algebra, which

follows easily from [Proposition 5.3.8] hence (i) follows.
(i1) It follows immediately from (i) because for every set E, f L E)=( f “YE)),
and (f)"N(E) = (f /(E)). U

Before we proceed, we need a technical lemma which provides a simple proof to

Theorem 5.3.12| from which [Theorem 5.3.14] almost directly follows. We need some

terminology to begin with.

Definition 5.3.10. Let X be a space, a subset C of 2X is said to be a monotone
class on X provided it has the following properties:
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(i) Itis closed under countable increasing union:

EieCEICE,C-- = UE,-eC.
i=1

(i1) Itis closed under countable decreasing intersection:

E;eCE2E 2 - — ﬂEiEC.
i=1

It is clear that every o-algebra is a monotone class. By direct verification arbitrary
intersection of monotone classes is still a monotone class. So for each subset A of
2% we can speak of the unique smallest monotone class that contains A, denoted by
Mo(A). It turns out that:

Lemma 5.3.11 (Monotone Class). If A is an algebra of subsets of X, then
Mo(A) = o (A).

In particular, as remarked before if S is a semiring then S, U {X} becomes an
algebra, and hence Mo(S, U{X}) = o(SyU{X}) 2 o(S).

Proof. Since o(A) is a o-algebra, Mo(A) C o(A). To show the reverse inclu-
sion, it remains to prove that Mo(A) is a o-algebra. For A C X, define

C(A)={BCX:B-AA-B,AUB € Mo(A)},

it is easy to check C(A) is a monotone class and B € C(A) iff A € C(B). Now if A€ A,
then for each B € A, B € C(A) since A is an algebra, and hence Mo(A) C C(A). But
this is also true for each A € A, hence for every B € Mo(A), B € C(A), forall Ae A,
i.e., A € C(B) for all A € A, and hence Mo(A) C C(B), so for every A € Mo(A),
A—B,AU B e Mo(A). What’s more, X € A, hence X € Mo(A).

It remains to show Mo(A) is closed under countable union. Let A; € Mo(A),
i=1,2,...,then U, A; € Mo(A) for each n, hence we are done. O

5.3.3 Fubini-Tonelli Theorem

Clean Version

Theorem 5.3.12. Let X,Y be o -finite measure spaces. If E € M®N, then the
functions x — v(E) and y — u(E”) are measurable on X and Y respectively. More-
over,

X v(E) = /X V(Ey) dux) = /Y'u(Ey)dv(w. (5.3.13)

Proof. Let C be the collection of subsets of X XY for which the theorem holds.
Since for each AX B € MXN, v((AXB)x) = xa(x)v(B) and u((Ax B)”) = u(A) x (»),
so clearly S := Mx N C C. By finite additivity of measures, S, C C, so it remains to
show C is a monotone class.

We first assume p and v are finite measures. Let Ej,E»,--- € C be ascending and
write E = J E,,. By continuity of measure v((E,,)x) ./ v((E)y) and v((E,,)”) ,/ v((E)”)
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pointwise on X and Y respectively, hence x — v(E,) and y — u(EY) are measurable
and (5.3.13) holds by monotone convergence theorem. Thus C is closed under count-
able increasing union.

Similarly, let E1,E»,--- € C be descending and write E = (E,. Since v((E})x),
H((E1)) < oo, by continuity of measure both x — v(E,) and y — u(EY) are measurable
and as v((E,)x) < v((E1)x) and u((E,)”) < u((Ep)”) for each n, hence holds by
dominated convergence theorem and we conclude C is also closed under countable de-
creasing intersection, so C is a monotone class. Next, C 2 Mo(Sy) = o(Sy) 2 0(S) =
M® N, hence the theorem is true when y and v are finite measures.

Finally when u and v are o-finite. Let £ € M®N and let X; € M,Y; € N be both
ascending such that u(X;),v(¥;) <o and X =J; X;,Y =U;¥;. Then X; XY; is a finite
measure subspace[@] and by the last paragraph,

pux V(EN(X; X)) = /X V((E N (X; X Y)) dia(x) = /Y H(E N (X X V)P ) dv(y),

the theorem now follows from the continuity of measure and monotone convergence
theorem, both twice. O

Theorem 5.3.14 (Fubini-Tonelli, Incomplete Version). Let X and Y be o-
finite measure spaces.

(i) (Tonmelli) If f : X XY — [0,00] is M® N -measurable, then the functions x +—
Jy fxdv andy— [y f¥ du are M® N-measurable. Moreover,

/Xxyfd(ﬂx")=/x [/;fde(y)} d#(x)=/Y Uxfydu(x)} dv(y).

(5.3.15)

(i) (Fubini) If f € L'(uxv), then x — [, fvdv,y = [y f” du are also inte-
grable, f. € L'(v),f> € L(u) a.e. and (5.3.15) holds.

Proof. (i) If f is a characteristic function, then equation (5.3.15) reduces to
(5.3.13)), hence by linearity of integrals (5.3.15) holds for nonnegative simple func-
tions. As f is nonnegative measurable, by simple approximation theorem there is an
increasing sequence of M® N-measurable nonnegative simple functions which con-
verges to f pointwise on X XY, so measurability of the functions in the statement of
the theorem follows from[Theorem 5.3.12] Finally the equalities follow from monotone
convergence theorem.

(i1) If f is integrable over X XY, then apply Tonelli theorem to positive part and
negative part of Re f and Im f to conclude Fubini’s theorem. O

Remark. When writing an iterated integral, we usually omit the brackets and

write (3.3.19) as

/X [/Y}‘xdu(y)] dv(x)=/}(/yf(x,y)dﬂ(y)dy(x)=/X/de#dv_

We omit those x and y when it is understood in the content. Also without confusion
some may also write [y [, and [, [y as simply [f.

®Note that ( MN X;)®(NNY;) = (MON)N(X; XY)).
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Unclean Version

It is worth noting that even u and v are complete, u X v is very rare to be a complete
measure on X X Y. To see this, let A € M with (A) =0and B¢ N,
tellsus AXB¢ MON. But AXB C AXY and uxXv(AXY)=0. Moreover, It is possible
that a function is measurable with respect to M® N but not M® N. That prompts us
to work with completion of a measure in an attempt to enlarge the class of measurable
functions for which the order of iterated integrals of them can be switched.

Hence the statement of incomplete version of Fubini-Tonelli theorem needs to be

reformulated, which we shall see in[Theorem 5.3.18| To prove this, let’s go through the
following lemmas.

Lemma 5.3.16. Let X andY be complete o -finite measure spaces.

(1) IfEe MQN and uxv(E)=0, then v(E,) = u(E¥) =0 for a.e. x and a.e. y.

(ii) If f is M\® N-measurable and f =0 pXv-a.e., then for a.e. x and y, fx =0
a.e. and f¥ =0 a.e..

Proof. (i) Let f = yg in[Theorem 5.3.14] then [y [y fx dv(y)du(x) = 0 implies
/ fedv(y)= / XE. () dv(y) = V(Ex) =0
Y Y

for a.e. x. Similarly u(EY) =0 for a.e. y.

(i) Let {f # 0} = {(x,y) € X XY : f(x,y) # 0}. By hypothesis uXv{f # 0} =0 and
hence there is a Z € M®N such that {f # 0} € Z and uxv(Z) = 0. By part (i) for a.e.
x and a.e. y, v(Zy) = u(Z*) = 0, so by completeness for a.e. x and a.e. y,

v({f # 0kx) = u({f #01) =0.

Since {f #0}x ={fx #0}and {f #0}> ={fY #0}, sofora.e. x and a.e. y, fx =0 a.e.
and fY =0a.e.. U

Although the completion of any measure space (X,X, ) can always be done, the
o-algebra T eventually becomes very complicated. The following result shows that
every X-measurable function can be thought of a X-measurable function if we don’t
worry about a set of measure zero.

LeE1ma 5.3.17. Let (X,Z,u) be a measure space and (X,X,7i) its completion. If
f is an Z-measurable function on X, then there is a £-measurable function g such that
f=gu-ae onX.

Proof. When f = yg for some E € X, then E takes the form E = AU B where
A € X and u(B) = 0. For sure we have f = ya f-a.e. and y 4 is Z-measurable.

For the general case, we apply simple approximation theorem to get a sequence
of simple functions {¢,} such that ¢,, — f pointwise on all of X. As in the first para-
graph we can construct a Z-measurable simple function ¥, so that ¢, =y, except on
Zy,, where i(Z,) =0. Then g := nh_r)rgo XX~y Z¥n 18 Z-measurable and f = g except

possibly on J Z,,. O

Theorem 5.3.18 (Fubini-Tonelli, Complete Version). Let X andY be com-
plete o -finite measure spaces and (X X Y, M® N,y Xv) the completion of (X XY, M®
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N,uxv). Let f be M®N-measurable and consider case (a) f > 0 and case (b)
fe Ll (@xv).

(i) In case (a) and (b), for a.e. x and y, fy is N-measurable and f> is M-
measurable. Moreover, x — [y fxdv andy — [y f¥ du are measurable.

(ii) Furthermore, in case (a), one has

fdva://fyd,udvz//fxdvd,u,
XxY Yy Jx xJy

the equality also holds in case (b).

Proof. (i) By|[Lemma 5.3.17|we can find an M® N-measurable function g such
that f = g uXv-a.e.. By (ii) of|[Lemma 5.3.16|for a.e. x and y, fy —gx =0a.e. and f —
g” =0 ae.. Since g is M® N-measurable, by |Proposition 5.3.9and by completeness

of y and v we conclude for a.e. x and y, f is N-measurable and f~ is M-measurable.
The a.e. defined maps

x!—)/fxdvz/gxdv and yn—)/fyd,uz/gydﬂ
Y Y X X

are both measurable by (i) of Fubini-Tonelli Theorem [5.3.14] and completeness of u
and v.
(i1) Finally in case (a) and (b), since

fdva:/ gd,uxv:/ gd(uxv),
XxY JXxy XxY

the result also follows from incomplete version of Fubini-Tonelli theorem. ]

In application when we try to compute [[ f dudv, we usually try to first compute
J\fldudyv or [[|fldvdu, if one of them is finite, then by Fubini-Tonelli Theorem
JT1f1d(uxv) is also finite, hence f is integrable with respect to the product measure
(or its completion), and hence by Fubini-Tonelli Theorem again we can interchange the
order of integration. Hopefully in one of the orders the integration is easier to compute.

oo 1
Example 5.3.19. We try to compute/ cosxx dx. Write
o xe
©1_ © 1 t=1 oo prl
/ SO gy =2 / — / d (sin(ty/2)) dy = / / ¢ sin(ty) dtdy
0 ye¥ 0 ye¥ Ji=0 0o Jo
1 poo
= / / ™ sin(ty) dydt. (5.3.20)
o Jo

Due to absolute Riemann integrability dy can be replaced by dm(y) and dt can be
replaced by dm(t). For simplicity let’s leave the notation unchanged.

(5.3.20) follows because (x,y) > e~ sin(ty) is L®£—measurabl@ and

oo rl oo pl
/ / le™ sin(ty)|dtdy < / / eVdtdy=1< oo,
o Jo o Jo

) Because the function is continuous, the preimage of (a, co) under this function must be open, and since
L®.L2 Br®Br = By (easily seen by considering open rectangles with vertices lying on Q?), the function
is thus £® L measurable.
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The inner integral in (5.3.20) can be computed by integration by parts twice, thus
® 1—cosx L In2
——dx = / ——dt = —. U
/0 xex T ) 2x1 2

5.4 Product of More Than two sigma-Algebras

We are now able to generalize the theory to product of n (> 3) measures. The idea is
simple, given measure spaces (X;,Z;, ;), We can construct uj X pp on X1 ® X and next
A1 = (U X ()X pz on (X1 ®X,)®Z3. But hang on! We can also construct up X u3 first
and then A, := py X (u2 X u3) on X1 ® (Xp ® X3). The first question is: Do we have

ZI®X)RE3 =210 023)?

If so, we then ask: Are the measures the same? The answer of first question is positive
and we leave the proof that both o-algebras are o(X; X £ X Z3) as an exercise. It
is clear to us if X;’s are all o-finite, then since both 11,1, extend the set function
on “measurable cubes”: AX BXC — uj(A)us(B)u3(C), they are indeed the same by

In this section we aim at giving a more explicit description of these o--algebras.
To this end, we generalize the notion of product o--algebras as follows:

Definition 5.4.1. Let {X,} be an indexed collection of nonempty sets and define
7o | [yea Xa = Xo the coordinate maps. Let X, be the o-algebra on X,,, we define
the product o-algebra on [ [, 4 Xo by

® Zo =0 {n;'(Sa): Sa €Ta,@ € A}.

acA

In particular, if A ={1,2,...,n}, we write Qpcp Za = Q' X;. If further £ =%, =
=%, =X, we write @} Z; = Z¥".

Proposition 5.4.2. If A is countable, then
QZa=04 [[Se:SacZayp.
acA acA

Proof. If S, € Z,, then 7, (Sa) € ®4ea Ta by definition, and hence [ [, So =
Naeca n;l (Sa) € Qqea Za- Conversely, it is obvious that for each S, € 24, ﬂ;I(S(,) is
contained in the RHS. [l

Proposition 5.4.3. Suppose thatX, = 0(Ey), @ € A.
() QueaZa =0(n, (Ey): Eq € Eg,a € Al

(ii) If A is countable and X, € &,, then

®za=a{HEa:Eaeaa}.

a@eA a€cA

109



Chapter 5. Measurable Functions and Integration

Proof. (i) It is obvious that RHS is contained in LHS. To show the reverse inclu-
sion, observe that foreacha € A, {E C X,, : 77(;1 (E) € RHS} is a o-algebra that contains
&, and hence contains X, i.e., ﬂ;I (S¢) € RHS for each S, € X, . This is true for each
«, and hence LHS C RHS.

(i1) This follows from (i) as in the proof of [Proposition 5.4.2 O

Proposition 5.4.4. Let(X;,dy),...,(X,,d,) be metric spaces and let X = ]_[l'-’:] X;
be equipped with product metric defined by

d((‘xl?" '»xn)»(ylv' »)’n)) = max d[(-xi’yi)a
1<i<n

we have:
(i) ®i-1 Bx,; < Bx.
(i) If X;’s are separable, then @;_, Bx, = Bx.

Proof. (i) Since the collection of Borel sets on X; is generated by the topology

on X;, hence by [Proposition 5.4.3] @7, Bx, is generated by elements of the form

H?:l U;, where U; is open in X;, and these elements are open in X, hence they are
contained in By.

(i) Let C; be a countable dense subset of X;. Then C; X --- X C,, is a countable
dense subset of X and each open set in X can be expressed as a union of balls of the
form By((x1,...,X,),r) = ]_L'-l:] By, (x;,r), where x; € C; and r € Q. As there are at
most countably many such balls, hence each open set in X is contained in ®i_; Bx,.0

Corollary 5.4.5. 83" :=Br®---®@Br = Bg~.

Proof. Itis an immediate consequence of [Proposition 5.4.4] |

Proposition 5.4.6. Let (X;,%;,u;), i = 1,2,...,n, be o-finite measure spaces
and let 1 < m < n, show that the product measure spaces

<<HX5>< H Xi>,<§2i®_élzi),<nﬂix 1—[ ﬂi))
i=1 i=m+1 1= 1=m+ i=1 i=m+1

are the same as (| [/_; X;. Q7= Zi, [ 17 pi)-

Proof. Itis left as an exercise. O

5.5 Lebesgue Measure on R”

We have noticed that the Lebesgue measure space (R, £,m) on R is just the completion
of (R,BR,mm It is reasonable to define Lebesgue measure on R" as in the next
definition.

Definition 5.5.1. Let m be the Lebesgue measure on R and (R",L,,,m,) the
completion of (R",Br®: - @ Br,m XX m), then L, is the Lebesgue o -algebra on
R"™ and m,, is the Lebesgue measure on R”.

(19Since each Lebesgue measurable set is a union of a F,, set and a set of measure zero (Theorem 2.6.1).
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Note that we can equivalently define Lebesgue measure space to be the completion
of R",L®---® LmX---xm) (why?). Also by [Corollary 5.4.5 we have 8" = Bgn,
hence each Borel set in R” is .£,,-measurable.

In what follows if we say E C R" is a rectangle, we mean E = [ [\, E;, with
E;’s C R called the sides of E. Further we say E is a measurable rectangle if each of its
sides is Lebesgue measurable. We also remove the subscript letter n in m,, when there
is no confusion.

Definition 5.5.2. Let m; be Lebesgue measure on R, we denote m* : R"
[0,c0] the outer measure induced by [ [\ A; = [ [[_; mi(A;), A; € L.

Let (X;,%;,4;), i = 1,2,...,n, be measure spaces, for A; € X;, let A : H?:l A
H?:l ui(A;). Apart from doing completion, the space X := X X--- X X, equipped with
the outer measure A* induced by A and a o-algebra, ¥, of 1*-measurable sets is also

a complete measure space that extends S and A. It turns out that by |[Proposition 5.5.3

if X;’s are all o--finite, then
(X, X5, A%5) = (X, Qi Zinty X+ X ).

Proposition 5.5.3. Let S be a semiring on a space X, 1 : S — [0,00] a pre-
measure on S and A* an outer measure induced by A. Denote X* the collection of
A*-measurable subsets of X. If A is o -finite, then (X,X*,A1%|5+) is the completion of
(X,0(8), "1 (5))-

Figure 5.7: Completion of o(S) is X*.

Recall that by completion (X, M, 1) of (X, M,u) we mean the unique measure
space that is minimal in the sense that any other complete measure spaces extending
(X, M, u) must also extend (X, M, ).

Proof. For simplicity, let’s write A*[z+ = A*. It is obvious that * D ¢(S) because
¥* 2 o7(S) and is itself complete. It remains to show X* C o7(S). Let E € £*, as 1 is o~
finite, there are X; € S such that X = (J X; and A(X;) < o0, and we have E = J(E N X;).
Define E; = EN X; for simplicity. By when a set has finite outer
measure, we can approximate it by a S5 set from outside. In order to argue E lies in
o (S), we prefer doing inner approximation. To this end, we approximate X; — E; from
outside first.

Since A*(X; — E}) < oo, there is a A; € S5 such that A; 2 X; — Ef and A"(4;) =
A*(X; — E}). But then 1*(A; — (X; — E})) = 0. Furthermore, X; — A; C E], we expect
X;—A; € 0(S) is a “good” inner approximation. Define H; = E] — (X; — A;) and write
E]=(X;—A;)UH;, we have

H;=(E/-X;))U(E/NA;)=E/NA; CA; —(X; - E)).
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Figure 5.8: Approximate X; — E; from outside.

The rightmost one has A*-measure zero, but that means there is a V; € o(S) such that
Vi 2 H; and A%|5s)(V;i) = 0. We conclude E] € 0°(S), and hence E = JE, € 0(S). O

In the case that all X;’s are Lebesgue measure space R, the hypothesis in [Propo-|
[sition 5.5.3is satisfied, and we have

(Rn’Z*’m*|z*) = (Rn 5'£n’m)°
As an immediate consequence:

Proposition 5.5.4. A set E CR" is Lebesgue measurable (i.e., being in L) if
and only if for any set X C R",

m" (X)=m"(XNE)+m*(X -E). (5.5.5)

Having defined m on R”, we deduce some of its basic properties. Specifically, we
will show that m enjoys some regularity and every measurable set is “almost” a G5 and
F set. We have seen their importance from m;.

Proposition 5.5.6. Let E € L.
(i) m(E)=inf{m(U):U 2 E, U open} = sup{m(K) : K C E, K compact}.

(ii) E=FUN; =G - N,, where F is F, G is Gs and m(Ny) = m(N,) = 0.

n

(iii) If m(E) < oo, then for any € > 0, there is a finite collection {R;}}"_,

rectangles whose sides are intervals such that

of disjoint

m(EALIN, R) < e.

Proof. (i) Since m(E) = m*(E), hence given € > 0, we can find nonempty mea-
surable rectangles {R;};2, such that |JR; 2 E and } ,m(R;) < m(E)+ €. For each i, since
R =11 ;Aij, Aij € L, by approximating each A;; from outside by an open set, we can
find a rectangle U; 2 R; whose sides are open set in R such that m(U;) < m(R;) +€/2",
hence

m(UU,-) SZm(Ui)sZm(Ri)+esm(E)+26. (5.5.7)
As JU; is open, we are done. To prove inner regularity, we can imitate the proof of
[Theorem 4.3.29
(ii) The proof is the case n = 1, we leave it as an exercise.
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(iii) We start with with U; defined same as before, i.e., U; = H;’:] O;j and
has finite measure, where O;; is open in R and hence can be expressed as a disjoint
union of bounded open intervals. We can find a rectangle V; € U; whose jth side
is a union of finitely many intervals in O;; such that m(U;) —m(V;) < €/2'. Define
V =UW, V;, then V is a disjoint union of rectangles satisfying for each N,

m(E—V)Qm(GU,-—V) Sm(L]j(Ui—Vi)> +m< O Ui>,

i=1 i=1 i=N+1

and

m(V—E)Sm(UUi—E> =m<UUi> —m(E) < 2e.
i=1

i=1

Since m(Uf\il(Ui -V < Zf\il (m(U;) —m(V;)) < €, by choosing N large enough and €
small enough at the beginning, we are done. U

Remark. In the proof of (i) of we have actually shown that for
any E C R",

m*(E) = inf{m(U) : U 2 E, U open}.

Remark. By part (iii) of we are able to show the collection of

compactly supported continuous functions C. (R") is dense in LP (R",m), as in the case
on R. This will be in Problem [5.41] for interested readers.

When doing Lebesgue measure on R, certain results that are true for open sets
can be almost immediately translated to measurable ones by outer regularity. The main
property of open set in R that we use is: All of them are disjoint union of open intervals.
The story is almost the same in R", except that open sets are not necessarily disjoint
union of open balls any more.

However, from the experience of multivariable Riemann integration when we try
to argue a set “has volume” (or Jordan measurable), we try to do its inner approximation
by filling rectangles contained in it as in Figure [5.9) with the “diameter” of the squares
being smaller and smaller. It turns out that the same approach can be used to fill up all
open sets in R".

Figure 5.9: A step to construct inner Jordan measure.

In what follows, a cube is a rectangle whose sides are closed intervals of equal
length.
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Lemma 5.5.8. Let Q; be the collection of cubes whose sides have length 27%
with vertices lying on the lattice (2% Z)". For E C R", define

J(Ek= | o
Q€eQy.,OQCE

then J_(E,k) is ascending. If E = U is open, then U = | J;, J-(U,k) and U is a count-
able union of cubes with disjoint interiors.

Proof. Let x € J_(E,k), then x is contained in a cube of length 2% contained in
E. By dividing each side of the cube into half, x € J_(E,k +1).

Assume E = U is open, by definition g, J-(U,k) C U. Let x € U, for each
N there is Qn € Qn such that x € Qn. If y € Qu, then ||y — x|l < 27V +/n, hence
we have Qn C B(x,27V+/n). In particular, when N is large enough x € Qn C U, so
ONn € J_(U,N) and thus x € U=, J-(U,k).

Finally U is a union of cubes with disjoint interiors by writing U = J_(U,1) U
U5 (J-(U.k) — J-(U,k — 1)). O

Remark. Combining remark following [Proposition 5.5.6| and [Lemma 5.5.8] we
have for any E C R",

m*(E) = inf{Zm(I,-) : UI,- DE,I’s are cubes} . (5.5.9)

Some authors introduce the theory of Lebesgue measure on R" by defining Lebesgue
outer measure as in (5.5.9) and declare measurable subsets to be those satisfying (5.5.5).
For different kinds of purposes, it is useful to keep these equivalent formulations in
mind.

Definition 5.5.10. A measure defined on the o-algebra of all Borel sets in a
space X is called a Borel measure on X.

Theorem 5.5.11. The Lebesgue measure on R has the following properties:

(i) Let E € Brn and x € R", then x + E € Brn and

m(E)y=m(x+E).
(ii) For every nonnegative Borel measurable function f on R" and y € R",

/ Fxc+y)dm(x) = / FOo) dm(x) = / F=x)dm(x).
R7 R” R7

(iii) Let y be any o -finite measure on Brn such that u(E + x) = u(E), for every
E € Brn and x € R". Suppose

0 < u(Ey) = Cm(Ep) < oo

for some Egy € Brn and for some C > 0, then u = Cm.

Proof. (i) Let E € Bgn, consider the set A:={E CR" : x+ E € Brn }. A contains
all open sets as the map y — x +y is a homeomorphism. By the following set equalities

X+(A=B)=(x+A)—(x+B) and x+|JA; = Jx+A),
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5.5. Lebesgue Measure on R"

it is easy to check A is a o-algebra, hence A 2 Brn, s0 x + E € Bpn.

Next to show m(E) = m(x + E), we make use of the outer regularity of m. For each
€ > 0 we can find an open set U 2 E such that m(U) < m(E) + €. Now by [Cemma 5.5.§|
one can find cubes Q1,0»,... with disjoint interiors such that | JQ; = U, and it is an
easy computation to verify m(x + Q;) = m(Q;), hence m(x + -, Q;) = m(U, Qim
and this implies m(x + U) = m(U). As x+U 2 x+E, so

mx+E)<mx+U)=mU) <m(E)+e,

for all € > 0, hence m(x + E) < m(E), but m(E) < m(x + E) directly follows.

(ii) It suffices to check it for f = y g, where E € Brn. The second equality may
require a bit more work, but the technique used in (i) will do.

(>iii) The statement u = Cm is the same as u(E) = Cm(E) for each Borel set E,
which is the same as

m(Ep)u(E) = p(Eo)m(E)
for each Borel set E, this holds because
mEOE) = [ m(E)xeW)du() = [ mlEo= ) xe()duty)
Rn Rn,

- /R,, /Rn X Eo(x + Y)Y E(y) dm(x)du(y),

by incomplete version of Fubini-Tonelli theorem,

mEE) = [ [ e e dut)dn)
= [ ] e 0xet - dudne
R JR?

= / n /R XEWXE(Y = X)dm(x)du(y) = p(Eo)m(E). 0

(iii) of is a very interesting result. Firstly, any translation in-

variant o-finite Borel measure must be a constant multiple of Lebesgue measure.
Secondly, any such Borel measure must be regular which we cannot tell directly by
looking at translation invariant property. In fact there is a general theory stating that
any finite Borel measure on a complete separable metric space must be regular (see

ILemma 6.3.14)), this generalizes the case that X = R"” by some o -finite argument.

Lemma 5.5.12. ForaeR" andr >0, B(a,r) :={x €e R" : ||x —al| < r} satisfies
m(B(0,r)) = r"m(B(0,1)). (5.5.13)

Proof. The equality m(rE) = r"m(E) holds obviously when E is a cube. By
for every open set U there are cubes Q1,0»,. .. having disjoint interiors

such that U = |JQ;, by continuity of measure one has m(rU) = r"m(U). In particular,
since B(0,r) = rB(0,1), then (5.5.13) can be obtained by setting U = B(0,1). O

By we can extend the result in Problem [2.6]if we insist on using

2-norm.

(DDye to disjoint interior (i.e., pairwise intersection must be of measure zero).

115



Chapter 5. Measurable Functions and Integration

Proposition 5.5.14. Let®:R" — R" be a function that satisfies || f (x)— f(y)||» <
M||x — y||», for some constant M > 0. Then for every set A C R",

m*(®(A)) < M"m*(A).
In particular, ® takes Lebesgue measurable subsets to Lebesgue measurable subsets.

Proof. Since the proof is similar to the case n = 1, it is left as an exercise. O

Remark. The domain of @ in|Proposition 5.5.14| can be replaced by any subset
X of R" because any Lipschitz function on X can be extended to a Lipschitz function
on R". We give the detail in Problem [5.43] The case that X = R" is good enough for
most of the purpose in this section because all n X n (real) matrices are bounded linear
transform, in particular, they are Lipschitz functions on R".

5.6 Linear Algebra and Differentiation of Multivari-
able Functions

Let’s recall some definitions and basic results in linear algebra and multivariable dif-
ferentiation on Euclidean spaces. Knowledge in this section will be used in Section

5.6.1 Basic Results and Operations of Differentiation

We will adopt the following convention: We always denote the coordinate function of
F:R" - R™ by fi,ie., F=(f1,f2,...,fm). For amatrix A:R" — R™ the p-norm
(1 £ p < 00) of A is denoted by

lAll, = sup{l|Ax]lp : x € R",|Ix]l,, = 1}.

I, on R™*" ig called matrix norm or operator norm. Special choices of p do have
specific geometrical meanings, see Section ??, for example. In addition to knowing
definition of matrix norms, we are able to compute them explicitly in some cases. For
example, let a;’s be column vectors of K", from definition it is easy to show that

A=lal--lan] = ||All; = max |la;ll; (5.6.1)
I<j<n
aj
A=| 1 | = |lAlle = max la;ll (5.6.2)
7 1<i<m
a

n

In words, ||A]|; is the maximum (absolute) column sum, while ||Al|o is the maxi-
mum (absolute) row sum.

Definition 5.6.3. If F = (f1,...,fn) is defined near a € R" and there is a linear
transform 7 : R" — R™ such that

IF(x)-F(a)—T(x—a)ll _
lx—all—0 [lx —all

0, (5.6.4)
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then we say f is differentiable at a. Furthermore, such linear transform is uniqu
and denoted by DF(a). The matrix of DF(a) with respect to the usual basis is denoted
by F’(a) or JF(a). We say that F’(a) exists if all its partial derivatives at a exist.

Remark. Recall that all norms on a finite dimensional vector space are equiv-
alent, the differentiability of F is independent of any choice of norm. In particular,
if we define |||l = |-l in the numerator of (5.6.4), then F is differentiable at a iff
all its coordinate functions are differentiable at a. From that we also conclude F' is
differentiable at a implies F is continuous at a.

Remark. When F is differentiable at a, the matrix of T satisfying with
respect to the usual basis is uniquely determined (called the Jacobian matrix of F at
a) and can be computed explicitly. To see this, let 7 be a linear transform that satisfies
(5.6.4), let A € R™*" be its matrix with respect to usual basis {ej,ez,...,e,}. Choose
l[-Il=1I-Il2 in the domain, one ha§™|lim,—.q |f;(x) - fi(a) — e} A(x — @)|/|lx —all = 0.
Let heRand h — 0, then x = x(h) := a+ he; — a and

0= lim fila+he;)— fi(a)— ek A(hej)
h—0 h

fila+hej)—fi(a)

=1
im 7

h—0

t
e;Aej|,

hence eﬁAej = g){j (a)and A = (g}{; (a)),j, which also shows that T is uniquely deter-

mined so that it is unambiguous to write 7 = DF(a).

Remark. We may also write F’(a) = (gx; (a))i,j as Fx(a) or ‘g—g(a). The advan-

tage of these notations is that if we write x = (u,v), then F’(a) can be decomposed into

two block matrices [F,(a) Fy(a)] = [g—g(a) %f (a)].

Definition 5.6.5 (Small-Oh Notation). For functions f: X ->Y andg: X —
Y’ between normed spaces, the notation f(h) = o(g(h)) means for any € > 0, there is
¢ > 0 such that
Al <6 = IIf (DIl < ellg(R)Il.

For example, if a function G is differentiable at a, limy o |G(a + h) — G(a) -
G’(a)hl|/||h]| = 0, so that by definition,

G(a+h)-G(a)- G’ (a)h = o(h).

Proposition 5.6.6 (Chain Rule). Let U C R™ and V C R¥ be open and con-

G
sider the composition U — V N R™. If G is differentiable at a € U and F is differen-
tiable at G(a), then F o G is differentiable at a, moreover,

D(F oG)(a) = DF(G(a))o DG(a).

Proof. By hypothesis G(a+h)=G(a)+DG(a)h+o(h)and F(G(a)+k)=F(G(a))+
DF(G(a))k + o(k), hence

FoG(a+h)-FoG(a)- DF(G(a)) o DG(a)(h)

(2We explain it in the second remark following this definition
(3When we are going to do computation, all vectors are understood to be represented by column vectors.
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=F (G(a) +[DG(a)(h) + o(h)]) — F(G(a)) - DF(G(a)) o DG(a)(h)
= DF(G(a)(o(h)).

Since || DF(G(a))(o(h))|| < [|IDF(G(a))l|lllo(h)||, showing that F o G is differentiable at
a. |

The linearity of “taking derivative” can be similarly proved.

Remark. Let F:R" — R™, for x,h € R", the vector F’(x)(h) is actually a direc-
tional derivative. To see this, for 7 € R, let ¥(¢) = x + th, then ¥(0) = x and ¥’(0) =
SO

F h)—-F
F'(x)(h) = F'(Y(0)¥'(0) = (F o ¥(1)) (0) = M

In other words, F’(x)(h) is the derivative of F at x along the direction A. If F does
parametrize a surface, then F’(x)(h) will be a tangent vector at x.

Proposition 5.6.7. If all partial derivatives a Ji of F: R" — R™ exist near a
point a and are continuous at a, then F is d1fferent1able ata.

Proof. By the first remark following [Definition 5.6.3|it suffices to show when
the partial derivatives of f : R" — R exist near a and are continuous at a, then f is
differentiable at a. To see this, we observe that

f@1x2,.,x0) = flan, a0, an) — Z —a;)

= [f(x1,x2,....x0) = fa1,x2,. --,xn)]+ f(al,Xz,-.-,xn)—f(al,az,---,xn)]

+[f(@r,..oan1,%0) = flar,....an)l = Y, )
i1 O%i
n
f

=> ( -(yD) - oy @ ) (xi—an,

i=1
where y(i) =(at,...,ai—1,Ci,Xi+1,...,Xn), for some c¢; between a; and x;, hence ||y(i) -
all, < |lx —alla. As x — a, y® — a for each i and since |x; — a;| < ||x — al|, the result
follows from the continuity of %’s ata. (]

Remark. The condition of [P 7| can be slightly weakened For ex-

ample, consider X C R2 and f:X->R, 1f (xo Yo) exists and —y is continuous at
(x0,Y0), then f is differentiable at (xq, o). In general we can replace one of the conti-
nuity of z-’s at some point by merely differentiability at some point.

It is a warning that although DF(a) exists implies F’(a) exists, the converse can
be false. The former one implies a linear transform 7 exists, denoted by DF'(a), such
that holds, but the latter one merely implies all partial derivative exists.

Example 5.6.8. Consider map f : R? — R? defined by

e —xzxfyz, (x,3) #0,

0, (x,y) =(0,0).
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f’ exists at (0,0) and f’(0,0) = [0 O] , but f is not continuous at (0,0), hence cannnot
be differentiable there. O

Next, the converse of can also be false:
Example 5.6.9. Consider f : R? — R? defined by

1

2 2N o3

(x"+y )sm7x2+y2, (x,y) #0,

0, (x,y) = (0,0).

fxy)=

f is differentiable at (0,0) but f’(x,y) is not continuous there. U

A little summary is given in Figure[5.10}

Differentiable
C at a S
/ T
All fx;’s /Continuous
exist at a at a
Figure 5.10: A brief relation.
Definition 5.6.10. Let U C R" be open, a function F : U — R™ is said to be
continuously differentiable if F’ exists and continuous on U.
Remark. Note that F’ : x — F’(x) is a mapping from R” to R™*"  in order to

describe the continuity of this map we need to choose a norm on R”*". Let’s choose ||
llco» then F is continuous at @ iff lim [|F’(x)— F'(@)lleo = 0 iff lim max 377 |90 (x)—
xX—a x—al<ism™ - J

%wn = 0iff lim |g—§;(x) - %w =0 for all i, j iff all partial derivatives are contin-

uous at a.

Hence F is continuously differentiable on an open set U iff all partial derivatives
exist on U and are continuous on U, or equivalently, F is differentiable on U and F’(x)
is continuous on U, in that case we may abbreviate it as “F is C! on U™.

5.6.2 Inverse and Implicit Function Theorem

In the sequel we will be preparing for the proof of inverse function theorem.

Proposition 5.6.11. Let F : [a,b] — R" be continuous and differentiable on
(a,b), then there is x € (a,b) so that

I1F(®) - F(@)ll2 < IF"(x)ll2(b - a).

Proof. Let z = F(b)— F(a). Define g(¢t) = z- F(¢), then g : (a,b) — R is differ-
entiable on (a,b) and hence by mean-value theorem for real-valued functions on an
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interval, there is x € (a,b) such that g(b) — g(a) = g’(x)(b—a) = z- F'(x)(b— a). Since
gb)—g(a) = ||Z||%, by Cauchy-Schwarz inequality,

lI2ll5 = llz- F' (0ll2(b = @) < l|zlllF’ (0ll2(b - a). u

[Proposition 5.6.11|is an analogy of mean-value theorem of real-valued function
on real line, it can be directly extended to differentiable functions F : R™ — R™:

Theorem 5.6.12. Let U C R™ be open and convex and F : U — R" a differen-
tiable function on U. For every a,b € U, there is x on the segment joining a and b such
that

IF(B) = F(@)ll2 < IF' (0)ll2llb - allz.

Proof. Let a,b € U, define G(¢t) = F((1 —t)a +tb), then G : [0,1] — R" is differ-
entiable on (0, 1), by |Proposition 5.6.11|there is 7 such that

IG(D) = GO)ll2 < IG" t)ll2.-

Since G(1) = F(b),G(0) = F(a) and G’ (¢9) = F'((1 —tg)a + tob)(b— a), by letting x =
(1 —tp)a+tyb,

IF(®) = F(@llz < IF' ()b - a)ll <[IF'(0)lLllb - allz. u

It is useful to keep in mind when constructing the following im-

portant class of mappings in analysis.

Definition 5.6.13. Let X,Y be metric spaces, a map F : X — Y is said to be a
contraction if there is ¢ € [0,1) such that for every x,y € X,

d(F(x),F(y)) < cd(x,y). (5.6.14)
Recall that a fixed point x of F is an element that satisfies F(x) = x.

Theorem 5.6.15 (Contraction Mapping). Let X be a complete metric space
and F : X — X a contraction, then F has a unique fixed point in X.

Proof. Pick xg € X, define inductively that x,, = F(x,,_1) € X, forn=1,2,.... Let
¢ be a constant such that (5.6.14) holds for all x,y € X. Then for each n, d(xp+1,X,) =
d(F(x,),F(x,-1)) < cd(xy,x,-1), hence d(x,+1,x,) < c"d(x1,x0). A usual telescop-
ing technique shows that for m > n,

d(Xm,Xxn) < d(Xpm,Xmo1) +d(Xm-1,Xn)

IA

< (@ 44w MYd(xy,x0)

c

< d(x1,x0),

1-c¢
showing that {x,} is a Cauchy sequence, hence {x,} converges to x € X. But then
x =lim, 00 X141 = lim, o0 F(xp,) = F(x), so x is a fixed point of F. The fixed point
must be unique since F is a contraction. ]

Proposition 5.6.16. LetT € GL(n,R), if ISl < IT~!|I;', then T - S € GL(n,R).
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Proof. Since T € GL(n,R), T—S =TI -T~'S) is invertible iff I —T~'S does, a
direct computation shows that ano(T_ls)" (which converges absolutely by hypothe-
sis) is continuous and inverse to I —T~!S. O

Remark. [Proposition 5.6.16|proves that GL(n,R) is an open subset of R"*"*. An-
other form of [Proposition 5.6.16]is that given T invertible, if A is a matrix such that
JA=Tl < IT~!|5, then A is also invertible.

Theorem 5.6.17 (Inverse Function). Let O C R" be open and F : O — R"
continuously differentiable on O. If F’(a) is invertible for some a € O, then:

(i) There are open sets U C O and V such thata € U, F(a) €V, F is injective on
Uand F(U) =V, and;

(ii) If G : V — U is the inverse of F|y (exists by (i), then G is continuously
differentiable on V.

Proof. (i) Put A= F’(a). Let y € R", define ®y(x) = x+ A~ (y — F(x)). We
note that y = F(x) iff x is a fixed point ®,. For each y € R", @/ (x) = I - A7VF(x) =

A~'(A—=F’(x)). In view of [Theorem 5.6.12} we can choose an open ball U containing

a small enough such that
, |
xeU = JA-F (0l <5 llA I, (5.6.18)

then x € U implies [|® (x)||> < AT LA = F'(0)ll < 3IIA7 LllAY 5! = 1, from that
we conclude for every u,v € U and y € R",

1
|Dy () — Dy (V)2 < Ellu —V|l2.

Hence @, is a contraction on U, fixed point is unique, namely, there is at most one
x € U such that F(x) = y, showing that F is injective on U.

Next we try to show V := F(U) is open in R". Let yy = F(xg), for some xo € U.
Let B := B(x,r) be such that B C U. Now ®, is a contraction on U and for each x € B,

IDy (x) = xoll2 < [|Dy(x) = Dy (x0)ll2 + [Py (x0) — Xoll2
r _
< 5 +1A7 IRlly = yolk,

hence if we choose y such that ||y — ypll» < m, then ||, (x) - xoll2 < 7, and hence
®, : B — B is a contraction with a fixed point x € B by [Theorem 5.6.15| so that y =
F(x) eV, thus V is open.

(i) Let y,y+k €V and x,x+ h € U such that F(x) =y and F(x+h) =y +k. Then
by [|®y (x + 1) = Dy ()|l = |lh— A~ kIl < §|All2, we have

IAlly < 201A™ ]Ikl (5.6.19)

Let G : V — U be the inverse of F|y. By (5.6.18)) and [Proposition 5.6.16] F’(x)~! exists
for each x € U, while by the formula (f~') (y) = f'(f~'(y))~! we learnt in calculus, a
natural candidate of linear approximation of G at y is

20 GO+ F (G (z-y). (5.6.20)
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We now check that (5.6.20) is a correct choice. Write
IG(y + k)= G(y) = F' (G (B)ll2 = IIF' (x)™ (F(x + h) = F(x) = F'(x)h)ll2,

by using (5.6.19) and differentiability of F at x, we conclude that G is differentiable
at each y € V. Finally since G’(y) = F’(G(y))™', F’,G are continuous and inverse of a
matrix with continuous entries is also continuous, hence G’(y) is continuous. ([l

A map F : X — Y is said to be a diffeomorphism if F is bijective and both F and
F~! are differentiable. We say that F : X — Y is a C!-diffeomorphism if both F and

F~! are continuously differentiable. [Theorem 5.6.17|says that if a map F : U — R" is

continuously differentiable on an open U € R”, then
F’(x) invertible = FisaC l—diffeomorphism near Xx.

Corollary 5.6.21. Let U CR" be open and F : U — R" injective, continuously
differentiable with det(F’(x)) # 0 for every x € U, then the following holds:

(i) F(U) is open in R™.

(ii) F~! exists and is continuously differentiable

Next we also mention a simple consequence of inverse function theorem which
will not be used in this chapter.

Theorem 5.6.22 (Implicit Function). LetO be openinR™*" and F : O —» R"
continuously differentiable. Let (x,y) € R™ xR", if there is (a,b) € R™ xR" such that
F(a,b) =0 and det(F) (a,b)) # 0, then there are an open set U containing a and a unique
map G : U — R" such that for everyu e U:

(i) G(a)=b and F(u,G(w)) = 0.
(i) G'(u) = —[Fy(u,GW))]" Fy(u,Gw)).

Let’s denote 7 : R X R" — R™ the canonical projection map.
Proof. (i) Define H : O — R™*" by (x,y) — (x,F(x,)), then for (u,v) € R" xR",

I | 0
Fe(uv) | Fy(uv) |’
hence H is continuously differentiable on O and det(H'(a,b)) # 0, by inverse func-

tion theorem H is C'-diffeomorphic on some open V, (a,b) € V. Write H™! = (S5,T) :
H(V) — V, and note that

H'(u,v) = (5.6.23)

(x,y) = H™ Y (H(x,y)) = (S(x,F (x,y)),T(x,(F(x,y))),

therefore for convenience we choose S(x,F(x,y)) = x for (x,y) € V.

For (x,y) € V, we note that F(x,y) = 0 iff H(x,y) = (x,0) iff (x,y) = H™'(x,0) iff
(x,y) = (x,T(x,0)) iff y = T(x,0). If we define G(x) = T(x,0), then for each x e 7(V) =:
U, (x,G(x)) is the unique solution to F(x,y) =0. As T is continuously differentiabl@
so is G, thus we are done.

(9 e., by the remark following|Definition 5.6.10} all partial derivatives exist and are continuous.
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(ii) Finally by differentiating the equality F(u,G(u#)) = 0 on U, we have

G'(u) = —[Fy(u,G(u))]_lFx(u,G(u)). (5.6.24)
Here F, is invertible due to (5.6.23) and the fact that (u,G(u)) € V. O

Remark. From the proof, the map (id,G) maps U onto V N F~1(0). We may say
that (id,G) is a local “parametrization” of F~1(0) at (a,b) € F~'(0). Note that if F has
partial derivatives of any order, so is G by the equation (5.6.24). Moreover, (id,G)’(x)
always has full rank.

(id,G)

Figure 5.11: A local parametrization.

Remark. For F:R™*" — R™, replace the condition det(Fy (a,b)) # 0 by det(Fx(a,b)) #
0 in implicit function theorem, we have an analogous statement that there is a unique
map G : V — R on an open V containing b such that for every u € V:

(1) G(b) =a and F(G(u),u) =0.
(i) G'(u) = ~[Fx(Gw),u)]”" Fy (G(u),u).

Indeed, this results from renaming the coordinates. Let v correspond to x and u corre-
spond to y, i.e., v € R™ and u € R". Let A € RO**X(m+1) e quch that A(u,v) = (v,u).
Define F = F o A, then

JFE(u,v) = J(F o A)(u,v) = JF(A(u,v))JA(u,v) = JF(v,u)A = [Fy(v,u)  Fx(v,u)],

so that £, (u,v) = Fy(v,u) and F, (u,v) = Fy(v,u). Now F,(b,a) = Fy(a,b) is invertible,
so that locally v can be “solved” in terms of u, i.e., we can find open V containing
b and a continuously differentiable G on V such that (u,G(u)) solves F(u,v) = 0 (iff
F(G(u),u) =0), G(b) = a and

G'(u) = ~[F,(u,Gu)] ™' F(0,G(w)) = —[Fx(G(u),u)] "' Fy (G(u).u).
Example 5.6.25. Let f(xy,...,xx) be a homogeneous polynomial of degree d,
ie., f(txy,...txp) =t f(x1,...,xx). If ¢ #0, then f~!(c) CR¥ can be locally parametrized

by a smooth (i.e., has partial derivatives of any order) function. To see this, let f(a) =c,
we claim that one of %(a)’s must be nonzero. If Vf(a) =0, then consider F: R - R

defined by F(¢) = f(ta) = tdf(a), one has
dt"' f(a)=F'(t) =V f(ta)-a,

if wetaket =1,
df(a)=0-a=0,
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a contradiction, hence f (a) # 0 for some i. By implicit function theorem x; can
be “solved” (1mphcltly) 1n terms of x;, j #1i, i.e., there is a continuously differen-
tiable g : U — R on some open U C RK-1 containing (ai,...,d;—1,d;+1,...,dx) such
that (x1,...,Xi—1,Xi+1,...,Xk) € U implies

SO X2 1,8(X e X1 X i1 s - 5 XK ) X it 15 - -5 XE) = C.

Finally smoothness of the mapping results from the formula of derivatives of g. (]

5.7 Integration on R”
5.7.1 Linear Change of Variable

Consider a real matrix T € GL(n,R the Borel measure on R" defined by
pr(E) = m(T(E)) (5.7.1)

is also o -finite and translation invariant (recall that 7 is a Lipschitz map). It is interest-
ing to see how the measure of E is changed under the linear transform 7.

Theorem 5.7.2. LetT :R" — R" be a linear transform and E € £,,, then T(E) €
L, and
m(T(E)) = |detT|m(E). (5.7.3)

By [Proposition 5.5.14] a Lipschitz map takes a measurable set to a measurable
set and also a set of measure zero to a set of measure zero. To complete the proof of
[Theorem 5.7.2] it remains to show (5.7.3) holds when E is Borel, and the result can be

directly extended by using (ii) of

Proof. Let E € Brn. If detT =0, we leave it as an exercise to show that subspace
of R" of dimension less than n has m-measure zero.

Assume |detT| > 0. Define yur as in (5.7.1)), then since ur is a Borel measure
that is o-finite and translation invariant, by (iii) of there is a constant
C(T) = 0 such that ur(A) = m(T(A)) = C(T)m(A) for each A € Brn. We need to show
C(T) = |det(T)|.

Let H,K € GL(n,R), the following computation

C(HK)m(A) = m(H(K(A))) = C(H)m(K(A)) = C(H)C(K)m(A),

holds for each A € Brn, hence C(HK) = C(H)C(K). To evaluate C(T), we use 2?
which asserts that there are orthogonal matrices U,V € R™" and a diagonal matrix
Y € R™" such that T = UZV’@ Now C(U) = C(V") = 1 since orthogonal matrices
leave the sphere {x € R" : ||x||> < 1} unchanged. Consider the cube Q :=[0,1]", a direct
computation shows that

CE) =CERMQ) =mE(Q)) =|o1---0y| = |detZ],

hence C(T) = C(U)C(Z)C(V') = |detU]||detZ||det V!| = |det T]. O

(9t is the collection of real invertible matrices, called general linear group.
(901t is called singular value decomposition. Conventionally the diagonal values of ¥ are denoted by
o1, ...,05 >0, called singular values.
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Theorem 5.7.4. Let T € GL(n,R), if f is Lebesgue measurable on R", so is
foT. If f>0or feL'(m), then

/ fol ~ |detT] tTI R fdm (57.5)

Proof. In both cases it suffices to show (5.7.5) holds when f = y 4, where A is
Lebesgue measurable, and this follows directly from u

Example 5.7.6. We are going to explain the geometrical meaning of determi-
nant. Let v{,vp,...,v, be column vectors in R", then the “parallelepiped” spanned by

{vi}is
{Z-xivi X150k € [O,l]} = [vl|"'|Vn] ([O,l]n)s
i=1

m ({invi 1X; € [O,l]}) = ’det [vll---lvn} ’
i=1

by That is, absolute value of determinant is the n-dimensional volume
of the parallelepiped spanned by each of its column vectors. (]

hence

5.7.2 Nonlinear Change of Variable
We now extend with T replaced by nice enough nonlinear functions.

Definition 5.7.7. Let U be an open set in R”. A function G : U — R" is said
to be a change of variable if it is injective, continuously differentiable on U and
det(F’(x)) # 0 for every x € U.

By inverse function [Theorem 5.6.17, G : U — G(U) is a change of variable (on
U) if and only if G and G~! are both continuously differentiable, i.e., G is a change of
variable if and only if G™! does, and (G~!Y'(x) = [G" (G~ (x))]".

Theorem 5.7.8. Let U be an open set in R" and G : U — R" a change of vari-
able. If f is a Lebesgue measurable function on G(U), then f o G is Lebesgue measur-
ableonU andif f >0or f € LY (G(U),m), then

/ f(x)dm(x) = / foG(x)|detG’ (x)|dm(x). (5.7.9)
GU) U

In the simplest case f = y 4, where A C G(U), say A = G(E) with E C U Lebesgue
measurable, the equality becomes

m(G(E)) = /E |detG’| dm. (5.7.10)

This suggests to prove the general case, we may try to prove first when E is a
measurable subset of U. To do this, we first prove the case E is a cube, by experience.

Note that G is a Lipschitz function on each cube contained in U (we shall see this
in the proof). Hence G must take a measurable subset of U to a measurable subset of

G(U) so that it makes sense to write (5.7.10)).
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Proof. Let’s denote ||-|| = || - |l and let T € GL(n,R). ||T|| is the “maximum
absolute row sum” that satisfies ||Tx]|| < ||T|||x||. Let Q C U be a cube with center a € U
and 24 side length, i.e., Q = {x e R" : ||[x —a|| < h}.

Let x € Q, write G = (g1,...,8n)- Leti be fixed, by mean-value theorem there is a

y lying on the segment joining x and a such that g;(x) — g;(a) = Z;‘:l gf; O(xj —aj).

Since G’ is continuous,

0g;
)

Ox;

< hlIG' (VI < hsup|G' W),

18i(x) - gi(@)l <h )]
j=1 yeQ

this is true for each i, hence ||G(x) — G(a)|| < hsupyeQ [|G’(»)|l and
m(G(Q)) < ( sup IIG'(y)II) nm(Q)~
yeQ
Replace G by T~! o G, we have
m(G(0)) = |detTIm(T~" 0 G(Q)) < |det T ( sup IT~"o G'(y)||> "m©@).  (7.11)
ye

Since G’(x) is continuous, for any € > 0 there is a § > 0 such that when u,v € Q
and |ju —v|| < 8, (G’ )" G’ (v)|| < 1 + €. Divide Q further into cubes having disjoint
interiors Q1,0»,...,0n with centers xp,x»2,...,xx such that the lengths of their sides
are at most 6. We replace Q by Q; and T by G’(x;) in (5.7.11), having

m(G(Q;)) < IdetG'(xi)I< squ G (x)] ™o G'(y)ll) nm(Qi) <(1+€)"|detG' (x;)lm(Qy),
yegi

this implies

n N
m(G(Q) < Y m(GQ)) < (1+€)" /Q D 1det G’ (x)lx o, (x) dm(x).
i=1 i=1

For each £ > 0 we can find even smaller ¢ at the beginning such that |detG’(x) —
detG’(y)| < € whenever x,y € Q and ||x — y|| < 6. For this fixed 6, fora.e. x€ Q, x € Q;
for some unique i and hence Zf\il |[detG’(x;)| x o, (x) = |[detG’(x;)| < |detG’'(x)| + &,
hence m(G(Q)) < (1+¢)" fQ(IdetG’(x)I + &)dm(x). Since this is true for every € > 0
and also every € > 0, we conclude

m(G(Q))S/QldetG'(x)ldm(x).

Since U is a countable union of cubes {R;}, with disjoint interiors, write U = |J R;, and
then by monotone convergence theorem,

m(G(U))S;m(G(Ri))Sl;/RiIdetG Idmz/UldetG |dm.

Also if E is any bounded Lebesgue measurable subset of U, there is a descending
collection of bounded open sets O; 2 E such that O; C U and m(O; — E) = 0. Hence
by continuity of integration,

m(GE) <m ((VGON) = limm(G(Op) <lim /O |det G| dm = /E |det G| dm.
' (5.7.12)
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If E is unbounded, we replace E in by EN[-N,N]" and use continuity of
measure and monotone convergence theorem to conclude in general. At this
point it is easy to show is true if “=" is replaced by “<” when f is nonnegative
simple function. Hence for all f >0,

/ f(x)dm(x) < / foG(x)|detG’ (x)|dm(x).
GU) U

Replace f by a function g > 0 on U, replace the role of G by G~! and replace the role
of G(U) by U, then by the same reasoning we have

[ s@dm< [ oG ldet ™Y (),
U GW)
we substitute g = f o G -|detG’| to get
/ foG(x)|detG’(x)|dm(x) < / f(x)dm(x).
U GWU)

Hence the case that f > 0 is done. In the case that f is integrable, we split Re f and
Im f into positive and negative parts. (]

Example 5.7.13 (Polar Coordinate in R?). Let’s denote n; = A, called area
measure. We let x = rcos6, y =rsiné, i.e., (x,y) = G(r,0), where

G : (0,00) X (0,27) = RZ —[0,00) X {0};  (r,0) > (rcos,rsind).

G is injective, C! and |detG’(r,0)| = r # 0. For f >0 or f € L' (R?,A), since [0,00) x {0}
has A-measure zero, we have

/RZ fdA = / fdA= / f(rcos@,rsin@)r dA(r,0).

R2-[0, 00)x{0} (0,00)x(0,27)
Replace f by xrf, where E C R? is Lebesgue measurable, then
/EfdA = / XG-1(g)(r,0)f(rcosf,rsin@)r dA(r,0)
(0,00)%(0,271)

2w poo
Z/O /0XGfl(E)(r,H)f(rCOSG,rsin9)rdm(r)dm(e) (5.7.14)

where G™1(E) :={(r,0) € (0,00)x(0,27) : G(r,0) € Eand finding it becomes a major
task. O

Example 5.7.15. As an application we try to compute |5, e dx for which we
usually pretended we can do change of variable without any justification in calculus
course.

By Fubini-Tonelli theorem as e s nonnegative Bp2-measurable,

( /R e dm(x)>2= /R /R e dm(x)dm(y) = /R e an,

(71t may be confusing, we emphasize it is not the image of the function G~! on R? excluding positive
axis.
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Let E = R?in (5.7.14), G™'(R?) = (0,00) X (0,27), yielding

( /R e dm(x))z - /0 i /O " " v dm(r)dm(0).

Recall that if f is absolutely Riemann integrable on R, then it is also Lebesgue inte-
grable on R and the two integrals agree. Hence under Riemann integration,

) 5 2r oo
/ e dx = / / e rdrdd = . O
—c0 0 0

Example 5.7.16. In[5.5.13| we have shown that

mu(B(0,r)) = r"*m, (B(0,1)).

Let’s compute the value of m,,(B(0,1)). Let G be defined as in In R”,
we define B, (r) := B(0,r) := {x e R" : ||x|] < r} and V,,(r) = m,,(B,,(r)). It’s known
that Vi(1) = 2,V,(1) = n. Consider n > 3, we make use of the complete version of
Fubini-Tonelli theorem. In general mj, Xmy = my .+ (Why?), we have

V= [ xma@dmi= [ [ a0 dm-adma )
Rn RZ Rn,—2
= /R 2 Jona X g, _(NT=a—y2)X) dimn—2(x)dma(u,v)
=/B (1)/RH X g, (a2 (X) dimn2(x)dma(u,v)
2
- /B (1)(1—u2—vz)("_z)/an_g(l)dA(u,v),
2
by (3.7.14) we have
e 2\(n-2)/2
V(1) = Vua(1) /0 /0 X G181y (01 =22 dmy(r,6).
It is straightforward to see G~ (Ba(1)) = (0,1) x (0,27), hence
2 rl 5 /2 o
Vn(l):Vn_z/ / A =rH 212 drd = V5 (1)==.
0 0 n

Splitting into two cases,

n3 o
@, if n is even,
V(1) = . O
2”+17{T(L+1)!
—— 27 ifnisodd.
(n+1)!

Remark. Let u(x) <v(x) on [0,1], where u,v : [0,1] — [0,00) are measurable. To
evaluate

/D FdA, D ={(x.y):y € @)l € [0,1]),
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we can do integrated integral in the following way:

/RzXDfdAZ/R</R(XD)xfxdy> dx:/ol/RXDxfxdde.

Now D, = [u(x),v(x)], hence [, fdA = [01 f:((;)) fdydx. We see that the main task is
to figure out what is D, (or D) in general.

Remark. For f € L', people are used to writing [ fdm as [ f dx without any

confusion for the following reasons: (i) By [Theorem 5.2.30]all absolutely Riemann in-
tegrable functions, say f, are Lebesgue integrable and [ f dm;(x) = [ f dx; (ii) Writing
dm(r)dm(8)dm(--- is cuambersome.

5.8 Exercises and Problems

Exercises

5.1. Give a complete proof of simple approximation theorem.

5.2. Show that in Egoroff’s theorem, the hypothesis “u(X) < 00” can be replaced by
“Ifilfal,+- < g, where g € L' (X, ).

5.3. Show that the statement “If there is a sequence of measurable functions { f,, } such
that f,, — f pointwise a.e., then f is measurable.” can be false if X is incomplete.

Definition 5.8.1. For a sequence of sets {E, }, we define

lim E, = () |J B and nhjn;En:U () Ex.
n=lk=n n=lk=n
5.4. Let {E,} be a sequence of measurable sets in (X,Z, u), show that

limn—wo XEn = an—moEn and liimn—)oo XEn = Xliim,HmEn'

5.5. Let (X,X) be a measurable space, u,v : X — R measurable functions on X and
® : R? > R a continuous function. Define

h(x) = O(u(x),v(x))
for each x € X, show that 4 : X — R is measurable.

5.6. Let f:[0,1] — R be an integrable function. Suppose for every interval J C [0,1]

we have 0 < / fdm <m(J), prove that 0 < f < 1 almost everywhere without using

nor trying to reprove its statement.

5.7. Let f,g > 0 be Lebesgue integrable functions on E such that fg > 1 and m(E) = 1.

Prove that
/fdm/ gdm>1.
E E
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5.8. Let (X,Z,u) be measure space. Suppose f, : X — [0,00] is measurable for n =
1,2,...and f; > fo>--->0and f, — f pointwise on X. If f; € £(X), prove that

lim fnduz/fd,u.
X X

n—oo

5.9. Let E be a measurable subset of R and f € L' (E,m), define Ey, = {x € E : | f(x)| <
%}, show that

lim |fldm = 0.
k—o0 Ex

5.10. (Generalize Riemann-Lebesgue Lemma Slightly) If g,, : [a,b] — R is a se-
quence of measurable functions such that

() lgnl <M on[a,b], forn=1,2,....

(ii) For any c € [a,b], one has lim gndm=0.
n—oo [u’c]

Show that for any f € L!([a,b],m),

lim fgndm=0.

n—oo [a,h]

[Hint: Use[5.28]]
5.11. In this exercise we will extend the result in [Corollary 5.2.23|to complete the

proof of a well-known result that: f : [a,b] — R is Riemann integrable iff f is bounded

and continuous a.e..
Let f : [a,b] — R be bounded and continuous m-a.e@] on [a.b], here m denotes

Lebesgue measure on R.

(a) Let {P,}n>1 be any sequence of partitions of [a,b] such that each P, re-
fines P, and ||P,|| = 0. Let ¢, and ¥, (¢, < f <¥,) be defined as in

Let x € (a,b) be a point of continuity of f, show that
Jim @, (x) = f(x) = lim g, (x).
(b) Using (a) and the dominated convergence theorem, deduce that

/ fdm = lim @ndm = lim Uy dm.
[a,b]

n—oo [a,b] n—oo [a,b]

(c) Show that f is Riemann integrable on [a,b] and

/[a,b]fdm: /abf(x)dx.

5.12. Let (X,%,u) be a measure space and f : X — [—o0,00] integrable over X. Show
that for any € > 0, there is a § > 0 such that for every A € Z,

< €.

U(A) <5 = ‘/Afdﬂ

(8)Some property P holds p-a.e. means P holds except a set of u-measure zero.
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5.13. The purpose of this exercise is to demonstrate that Tonelli’s theorem can fail
if the o-finite hypothesis is removed, and also the product measure on M® N that
extends A X B — u(A)v(B) needs not be unique.

Consider measure space

X =([0,11,2x :={Ae L: AC[0,1]},m),
where L is Lebesgue o-algebra and m is Lebesgue measure. Also consider
Y =([0,1],Zy :=21"1,0),
where c is counting measure. Let E = {(x,x) : x € [0,1]} be the diagonal.
(i) Show that y g is £x ® Zy-measurable.
(i) Show that [y [y xE(x,y)dc(y)dm(x) = 1.
(iii) Show that [}, [y xE(x,y)dm(x)dc(y) = 0.

(iv) Show that there is more than one measure u on x ® Xy with the property
that u(E X F) = m(E)c(F) for all measurable rectangles EX F € Zx X Zy.

[Hint: Use two different ways to perform a double integral to create two different
measures. |

5.14. The purpose of this exercise is to demonstrate that Fubini-Tonelli theorem can
fail if f is neither nonnegative nor integrable (i.e., one of them is necessary).
LetX=Y=NM=N=2Nandu=v=c (counting measure). Define

1, if m=n,
flmn)=< -1, ifm=n+1,

0, otherwise.

Show that [y, |fl1d(px v) = oo, while [y [y fdudv and [y [y fdvdu exist and are
unequal.

5.15. Let (X, M,u) and (Y,N,v) be arbitrary measure spaces (not necessarily o-finite).

(i) Let f: X — C be M-measurable, g : Y — C be N-measruable and define
h(x,y) = f(x)g(y), show that / is M® N-measurable.

(i) If f e L'(u) and g € L'(v), then h e L' (ux v) and

/Xxyhd(/,txv)z (/dey) (/Ygdv>.

5.16. (Chebychev’s Inequality) Let f be a nonnegative measurable function on X
and A > 0, show that

1
,u{xEX:f(x)Z/l}SE/deu.
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5.17. (Hoélder’s Inequality) Let a,b > 0 and p,q > 1 be such that % + 5 = 1. Show

that

1 1
—aP +-b?1 > ab.
P q

Hence, or otherwise, show that if f € LP(X,u), g € L9(X,u), then fg € Ll(X,,u) and

Ifglle <I1flpllfllg,

and then deduce that for all a;,b; € C,

n n n
Dlacbel < 2| Y larlp @) Y Ibila.
k=1

k=1 k=1

5.18. Let(X,X,u) be a measure space and f an extended real-valued measurable func-
tion on X, show that

/ |fldu=0 = f=0a.e. onX
X

and ‘
/ |fldu <00 = f(x) < oo fora.e. xecX.
b'e

5.19. If (X,Z,p) is a measure space and if f is y-integrable, show that for every € > 0
there is E € X such that u(E) < oo and / |fldu < €.
E

[Hint: Partition the range of f.]

5.20. Let (X,X,u) be a finite measure space and 1 < p < ¢ < oo, show that L9(X,u) C
LP (X, ).

5.21. Suppose that {amn};, ,-; is a double sequence of complex numbers for which

at least one of
DD Hamnl and >0 lamal
m n n m

is finite, then both of >, > amn and >, > am, are finite and equal.

5.22. Let A,B and C be o-algebras on spaces X,Y and Z respectively, show that

(ARB)RC =ARBIC)=ABRC.

5.23. Let f € L'(R,m), evaluate lim / fa-m | —2—) dm.
nteo oo T+ 1l

Problems

5.24. Let f(x): [a,b] — (0,00) and 0 < ¢ < b—a, denote I" = {E C [a,b] : m(E) > ¢},

show that
géfr{/Efdm} > 0.
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5.25. Let f be a positive Lebesgue integrable function on [a,b], {E,} a collection of
Lebesgue measurable subsets of [a,b]. Show that

lim fdm=0 = lim m(E,)=0.
n—o00 En n—o0o
5.26. Let F, f1, f2,--- € L'([0,1],m) such that

@) |fu@)|<F(x)forn=1,2,....

(i) lim / fngdm =0 for each g € C[0,1].
n—oo [0’1]

Show that for every measurable E C [0,1], we have lim / fndm=0.
n—o Jp
[Hint: You may use Problem and also consider continuous functions of the form:

Conclude your result to finite union of intervals and extend it to open sets, and then extend it to
measurable sets.]

5.27. Let f:[0,1] — R be a bounded measurable function. Show that

/ x"f(x)dm=0forn=1,2,... = f=0a.e.onl0,1].
[0,1]
5.28. Consider the measure space (R,£,m). Let f : R — [—co,00] be integrable over
R and € > 0. Establish the following three approximation properties.
(a) There is a simple function 7 on R having finite support and [ |f —7nldm < €.

(b) There is a step function s on R which vanishes outside a closed, bounded
interval and [ |f —sldm < e.

(c) There is a continuous function g on R which vanishes outside a bounded set
and [p|f —gldm < e.

Remark. Now the result can be extended to integration over any measurable sub-
set of R.

5.29. Consider the measure space (R,£,m). Let f : R — [—oc0,00] be integrable over
R.

(a) Show that for each ¢,

/_ f(x)dm(x) =/_ f(x+1t)dm(x).
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(b) Let g be a bounded measurable function on R. Show that

lim / g(x)- (f(x) = f(x+1) dm(x) =0.
[Hint: Density of continuous functions.]

5.30. (Generalize Riemann-Lebesgue Lemma) Consider the measure space (R, L,m).
Let f be extended real-valued integrable function on R and g a real-valued bounded
integrable function with period T > 0, then

1

lim_ /]R Fgx) dm(x) = - /[o,ngd’” /]R Fdm.

[Hint: You may need the simple function technique as in[Theorem 5.2.15|]

5.31. (General Lebesgue Dominated Convergence Theorem) Let (X,X,u) be a
measure space. Let {f,},{gn} be sequences of measurable functions on X such that
|fnl < gn for each n. Let f,g be measurable functions such that both f,, — f,g, — g
pointwise a.e. on X. Show that

lim gnduz/gd,u<00 = lim fndﬂz/fdﬂ'
X X n—eo [x X

5.32. Let f, f1,f2,--- € LP[0,1] and f,, — f a.e., prove that
”fn _f”p -0 ”fn”p - ”f”p

5.33. Finish the proof of [Proposition 5.2.38|

5.34. Consider (X,X, 1) with u(X) < co. Let f € L®(X, ) with || f]le # 0. Prove that

I/n f |f|n+1d
. n s X H_
nETw</X'f | d“) RN T
[Hint:

(1) Let f be a measurable function on X. A constant M is said to be an essential upper
bound of f if |f| < M a.e.. We define the essential supremum of f by

[l fllco = inf{M : |f| < M ae.},

a simple checking shows that || f||e is also an essential upper bound. Hence for any
given € > 0, ||fllo — € cannot be an essential upper bound, i.e., u{x € X : |f(x)| >
I /1leo — €} > 0.

(ii) One of the limits directly follows from the definition of || f||«. For another one, you
may use Holder’s inequality proved in Problem [5.17}

1

5.35. Let (X,u) be a measure space and f : X — R measurable.
() If u(X) < oo, show that f € L'(X,u) if and only if

ZZ"/J(XGX ()] = 2"} < oo,

n=1

134



5.8. Exercises and Problems

(ii) If u(X) = oo but f is bounded, show that f € L!(X,u) if and only if

Nk

27" u{x e X |f(x)| 227"} < oo

n=1

5.36. Let f be a bounded measurable function on a measure space (X,Z,u). Assume
that there are constants C > 0 and «a € (0,1) such that

(o
Hx e X |f(x)|> €} < prd
for every € > 0. Show that f € L'(X, ).

5.37. Let (X,X,u) be a finite measure space and f : X — R a measurable function
such that " € L'(X,u) for each n € N.

() Iflim, e [y f™ du exists for each n, show that | f(x)| < 1 for a.e. x.

(ii) Show that there is ¢ € R such that [y /" du = ¢ for each n € N if and only if
f = xa ae. for some A € X.

5.38. Consider measure spaces (X,%,u) and (R,8,m), where X is o-finite, B is the
Borel o-algebra on R and m is Lebesgue measure. Let X X R have the product o-
algebra and f : X — [0,00) be measurable.

(i) Prove that

G(f)={(x,y) 1y €10, f(0)].x € X} = | J {x) x[0, f(x)]

xeX
is measurable, moreover, u X m(G(f)) = / fdu.
X

(i) Hence, show that the graph of f, I'(f) := {(x,f(x)) : x € X}, has uXxXm-
measure zero.

5.39. Prove
[Hint: Use|Corollary 4.3.16}]

5.40. For each n € N, show that there is a subset of R” that is Lebesgue measurable
but not Borel.

5.41. (Density of Continuous Functions) By using part (iii) of [Proposition 5.5.6]

show that for every f € LP(R",m) and for every € > 0, there is a continuous function
g : R™ — C which vanishes outside a compact set such that

=gl = {] [ 1f =gl dm<e.

5.42. Prove|Proposition 5.5.14]
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5.43. Consider ||-|| =|||l>- We note that a map is Lipschitz if and only if its coordinate
maps are Lipschitz. For X € R", we try to extend a function f : X — R satisfying
ILf(x) = fOI < Lllx - y|| for all x,y € X. Let a € X, show that

fa(x):= f(a)+ Lllx—all

is a Lipscthiz function on R”. Also show that
F(x):=inf fa(x)
aeX
is a Lipschitz function on the whole R" that extends f.

5.44. Show that every subspace of R" having dimension less than n is of Lebesgue
measure Zero.

1 tan~!
5.45. Evaluate the integral X dx, where tan~! is the inverse function of
0 xV1—x2
tan : (—/2,m/2) — (—00,00).
L xb_xa 1 1
5.46. Evaluate the integral / I dx, where a € (0,b), also try to evaluate / sin <ln > .
0 nx 0 X
b_ ,a
r dx.
Inx

5.47. Leta; >0fori=1,2,...,nandlet J =(0,1)x---(0,1), show that

1 1
s - dm(x)<oo4:>2—>l.
J X FX " = ai

[Hint: Let Gy ={x e J:x]" <xg* foralli}, then J = U}, G, show that

1 L 1/a;-1)-1
/ deWZ(x)z/ xzk(Z”' P90 )
Gi Xy 0

1
and use the fact that / 57V dt < 0 iff s> 0.]
0
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Chapter 6

Signed and Complex
Measures, Lebesgue
Differentiation Theorem

The aim of this chapter is to discuss countably additive set functions which are not
necessarily nonnegative or even real-valued. These arise very naturally and we have
encountered some of them before. For example, let f : (X,X,u) — [—oo,00] or f :
(X,%, u) — C be integrable, the set function v defined by

v(A) = /Afdy (6.0.1)

is countably additive and enjoys the continuity of integration property.

Since we will be considering a larger classes of additive set functions, in this
chapter, for emphasis, “measures” that are defined in the previous chapters are referred
to positive measures.

6.1 Signed Measures

6.1.1 Hahn Decompositions

Definition 6.1.1. Let (X,X)be a measurable space, a set function A : £ — [—00,00]
is called a signed measure if it has the following properties:

i) A0 =0.
(i1) Either A(E) < oo for each E € £ or A(E) > —co for each E € Z,
(iii) If {E,},,_, is a disjoint collection of members in X, then
/l<|_|E,,) = > AE). (6.1.2)
n=1

n=1

Since finite signed measures only takes value in R, they are sometimes called real
measures.
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Some remarks are in order. Firstly, property (ii) of means that if
v(A) = oo for some A € Z, then v(E) # —oo for each E € X. Similarly, if v(A) = —co for

some A € Z, then v(E) # oo for each E € X.

Secondly, property (iii) of [Definition 6.1.1| means that if |A(| |;,—; E;)| < oo, then

due to the set equality | |5 E; = |l ~; Eo(n) for any bijection o : N — N, the value
of the series must be independent of any rearrangement. In other words, in case
|[A(Un=; En)| < o, the convergence in RHS of must be absolute.

Thirdly, by measures we refer to positive or signed measures. Positive measures
is a proper subclass of signed measures.

Definition 6.1.3. A signed measure A on (X,X) is said to be finite if |1(X)| < oo,
and o -finite if there are X,, € X such that X = JX,, and |A(X,,)| < 0.

Example 6.1.4. If u; and u; are positive measures on X and at least one of them
is finite, then v := u| — wo is a signed measure. O

Although [Example 6.1.4|is simple, it is significant because signed measures will
be proved to be a difference of two positive measures, with one of them being finite. A

precise statement of this result will be made in Jordan decomposition theorem.
Proposition 6.1.5. Let A be a signed measure on (X,X).
(i) If A€ X and|A(A)| < oo, then for any measurable B C A, |A1(B)| < co.

(i) A is finite iff |A(E)| < oo for each E € X.
Proof. (i) Let B C A be measurable, then A(A) = A(B) + A(A— B). As |[1(A)| < oo
and A can take at most one of the values co or —oo, so |1(B)| < 0.

(ii) It is a direct consequence of (i). O

Proposition 6.1.6 (Continuity of Signed Measure). Let A be a signed mea-
sure on (X,X) and {A,,} a collection of members in X.

(i) If{A,} is ascending, then
/l( U A,,) = lim A(Ap).
n=1
(ii) If{A,} is descending and one of A(A,)’s is finite, then
A( (]1 An> = lim A(Ap).

Proof. The proof is identical to[Theorem 2.7.3 O

Definition 6.1.7. Let A be a signed measure on (X,X), a set E € X is said to be
positive w.r.t. A if for every measurable A C E, 1(A) > 0, and said to be negative w.r.t.
A if for every measurable A C E, 1(A) < 0. Moreover, E is said to be A-null if E is
both positive and negative w.r.t. A, i.e., every measurable subset of E has A-measure
Zero.
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We shall drop the reference “w.r.t. 17 in if the signed measure is

unique and understood in the content.
Lemma 6.1.8. Let A be a signed measure on (X,X), then:
(1) Any measurable subset of a positive set is positive.
(ii) Any countable union of positive sets is positive.

(iii) If E is measurable and A(E) € (0,c0), then there is a measurable set A C E
such that A is positive and A1(A) > 0.

Proof. (i) Let E be positive and F C E. To show F is positive, let A C F, then
A CE, and hence A(A) > 0 as E is positive.

(ii) Let E,,’s be positive, let F; = Ej and F,, = E, —E|—---—E,,_1 forn > 2, then
F,, C E,, are still positive by (i), and | |F,, = UE,. Let ACUE,, then A= |[(ANF,),
s0 A(A) =Y A(ANF,)>0.

(iii) If E is itself positive, then we are done. Otherwise there is a measurable
A C E such that 21(A;) < 0. We may find an n € N such that A(A;) < —%, hence we
may define

1
7| = min {n € N : there is measurable B C E, A(B) < —} .
n

Let E| C E be measurable such that 1(E}) < —n%. If E - E; is positive, then we are
done. Otherwise there is a measurable A, C E — E| such that 1(A;) < 0. Thus we can
define

1
ny = min{n € N : there is measurable B C E— E, A(B) < —} .
n

We let E, C E — E| such that A(E») < _n%' Inductively, if the procedure cannot termi-
nate, we can define n; = min{n € N : there is measurable BCE—E|—---—Ej;_;,A(B) <
—%} and let £y C E— E| —---— E;_1 be measurable such that A(Ey) < _%k' Now Ei’s
are pairwise disjoint. Consider the equality

A(E) = Z/I(Ek)+/l<E— |_|Ek>,
k=1 k=1

since |[A(E)| < oo, Zleﬂ(Ek) converges absolutely, so that limg_,c 1 = 0. Next
since Y,y A(Ex) <0, A(E -z~ Ex) > 0 and E — | |, Ex is positive. Indeed, let
ACE—| |y, Ex be measurable, then AC E— Ui:l Ej foreach peN, so A(A) > ——L

np—1

for each large enough p, we conclude A(A) > 0. O

Remark. (i) and (ii) of are also true if positive is replaced by
negative.

Theorem 6.1.9 (Hahn Decomposition). If A is a signed measure on (X,X),

there are a positive set P and a negative set N w.r.t. A suchthat PUN =X and PNN =0.
If P’,N’ is another such pair, then PAP’ = NAN' are A-null.
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Assume such decomposition does exist. Let A be any positive set. Then A(A) =
A(ANP) < A(P), meaning that necessarily A(P) = sup{A(A) : A is positive}. By this
observation, we try to construct a set P such that A(P) is the supremum of A-measures
of positive sets. Hopefully P is positive and its complement X — P is negative.

Proof. WLOG we assume A(E) < oo for each E € X (otherwise consider —A).
Let m = sup{A(A) : A is positive}. Then there is a sequence of positive sets {P,} such
that m = lim,,—,c0 A(Pp). P := ;= Pn is still positive and A(P) = m, therefore m < co.
Let N = X — P, our goal is to show N is negative.

Suppose N is not negative, then there is measurable A € N such that co > 1(A) > 0.
By (iii) of there is B C A such that B is positive and A(B) > 0. But
m>A(BUP)=A(B)+m. i.e., A(B) =0, a contradiction.

Finally if P’ is positive and N’ is negative such that P UN’ = X and P" NN’ =0,
then PAP' =(P-P)U(P'-P)= (PN(X-P))U(P'N(X-P)) = ((X-N)NN’) U
((X -N)nN N) =(N'—=N)U(N—-N’)= NAN’ is both positive and negative w.r.t. 4,
hence A-null. O

Definition 6.1.10. The pair of subsets P,N of X in|[Theorem 6.1.9|is called a
Hahn decomposition for A.

6.1.2 Jordan Decompositions

Hahn decomposition is usually not unique as A-null subset of P can be transferred to
N, and vice versa. But it provides us with a natural and unique way to express A as
a difference of two positive measures. To state this result precisely, we need a new
concept.

Definition 6.1.11. We say that two signed measures 11,4, on (X,X) are mutu-
ally singular (or A, is singular with respect to 1,, or vice versa), denoted by

A1 L Ao,

if there are measurable subsets E,F of X such that ELUF = X, E is Ap-null and F is
Aq-null.

If A(E) =0 whenever ENA =0, or equivalently A(E) = A(ENA) forany E € X, itis
also common to say that A concentrates on Am So put in other way, 4| L A iff there
are measurable E,F such that E LI F = X, and 11,4, concentrates on E, F respectively.
For convenience we sometimes write symbolically 4 — A to mean A concentrates on

A

Theorem 6.1.12 (Jordan Decomposition). If A is a signed measure on (X,X),
then there are unique positive measures A*,A~ such that 1 = A* — A1~ and A7 L A~

Proof. Let P,N be a Hahn decomposition for A such that P is positive and N
is negative. Set A*(E) = A(ENP) and A7 (E) = —A(EN N), then both A* and A~ are
positive measures. Now 1 = 17— 17, 1% - Pand A~ — N, so that 1* L A~, thus we
have established the existence part of the theorem.

By using terminology in Chapter A is a kind of “support” of A.
®Warning! It is not a common notation.
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6.1. Signed Measures

Suppose there are positive measures u and v such that A = y—v and u L v. Let
H,K be such that HUK = X, u —» H and v — K, then H,K forms another Hahn
decomposition for /l@ By HAP = KAN are A-null. Now u(E) =
WENH)=AENH)+v(ENH)=A(ENH)=A(ENP)=A"(E) and similarly v(E) =
VIENK)=w(ENK)-AENK)=-AENK)=-AENN)=A1"(E). O

At A Y v
| | | \
1 1 1 !

P N H K

Figure 6.1: Different concentrations.

The positive measures A* and A~ are called the positive and negative variations
of A, whereas 1 = A% — A~ is called the Jordan decomposition of 2. We further define
the total variation of A to be the measure

[Al= A"+,

Of course if A is positive, then || = A.

In the study of measurable functions, the decomposition f = f* — f~ enables
us to break the proofs of various statements into two steps. One is for nonnegative
measurable functions and one is for the general ones. Usually the second step is a direct
consequence of the first step. The situation is similar due to Jordan decomposition
theorem.

The name of 1,1~ and || are due to the formulas given in the following theorem.

Theorem 6.1.13. Let A be a signed measure on (X,X), then for each E € X:
(i) A*(E) = sup{A(F) : F is measurable subset of E}.
(ii) A7(E) =sup{—A(F) : F is measurable subset of E}.
n
(iii) |A|(E) = sup {2 |A(E)| : {E; Y/, is a measurable partition of E,n > 1}.
i=1

Proof. (i) Let P,N be a Hahn decomposition for A, where P is positive and N is
negative. Now for every F C E,

A(F) = A*(F)— A~ (F) < 1*(F) < A*(E).

Since ENP C E and A(E N P) =: A*(E), hence (i) follows.
(ii) It follows from the formula that 1~ = (=2)™.
(iii) Let P,N be defined as in (i), let {E;}/_, be a measurable partition of E,

DUAE) < Y IAE) = AI(E).
i=1 i=1

®)We indicate different concentrations in Figure
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Consider the measurable partition {E N P,E N N}, one has
JAENP)+|AENN)| =27 (E)+ A7 (E) = |A|(E),
hence (iii) follows. O

Definition 6.1.14. Let A be a signed measure and u a positive measure on (X,X).
We say that A is absolutely continuous with respect to u, denoted by 1 < , if for
every measurable A,
u(A) =0 = A(A)=0.

The name used in|Definition 6.1.14{for signed measures comes from the following

result for finite signed measures.

Theorem 6.1.15. Let A be a finite signed measure and p a positive measure on
(X,X), then A < u iff for every € > 0, there is 6 > 0 such that u(E) < 6 = |A(E)| <.

For simplicity we refer the latter condition to “e-d condition”. The proof requires
a simple observation that given a signed measure A and a positive measure g, 4 < u
iff || < p (detail can be found in part (v) of [Proposition 6.1.16)).

Proof. Suppose the €-§ condition holds, let E be measurable such that u(E) = 0,
then u(E) < ¢ for any 6 > 0, so that [A1(E)| < € for any € > 0, A(E) = 0.

Conversely, assume 4 < u. Suppose the e-6 condition fails, then there is an € >
0 such that for each n € N, there is E, € X such that u(E,) < 2% and |[A(E,)| > €.
The latter inequality implies that |1|(E,) > €, so for each N, [A|(U;=n En) = € and
wUnn En) < 2%\, which is a contradiction as A := limy e U, -5 En has y-measure
zero, but [1|(A) > €. O

Remark. Let u be a positive measure on (X,X) and let f : X — [—o0,00] be in-
tegrable, then a finite signed measure A on X defined by A(E) = [ f du is absolutely
continuous w.r.t. i, hence it satisfies the e-d condition. i.e., for any € > 0, we can find
a ¢ > 0 such that u(E) < 6 =— |fE fd/l| < €. Which is exactly the result in Problem
12

Proposition 6.1.16. Let u be a positive measure and 1,4, and A, signed mea-
sures on (X,X), then:

(i) If 1 — A, then || — A.
(i) If A1 L Ao, then |1] L |A2].

(iii) If Ay L pand Ay L u, then foreachc R, cAdy Luand A1+ Ay L wif A1+ A,
is also a signed measure.

(iv) If A1 < p and Ay < u, then for each c € R, cA; < w and A1 + Ay < u if
A1+ A, is also a signed measure.

(v) A< piff || < u.
(vi) If 11 < pwand A L u, then 11 L Ay.
(vii) If A< pand A L u, then 1 =0.
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Proof. (i) Let E C X — A, and let {E;}}"_| be a measurable partition of E, then
E; CX—-A. AsA1— A, A(E;) =0 for each i. Hence >, |A(E;)| = 0. By formula in
|A(E) =0, 50 2] = A.

(i) If A; L A5, then there are measurable A,B such that ALIB = X with 1; —» A
and A — B. By (i), |[41] = A and [12| = B, so [11] L |15].

(iii) Let A;,B; be such that fori = 1,2, A; LUB; = X, 4; — A; and u — B;. To show
cAy Ly, it suffices to show cA; — Aj. Let EC X — Ay, then 11(E) =0, s0 cA1(E) =0,
as desired. Next, 1| + A» concentrates on A; U Ay because if EC X — A — Ay, 11(E) =
A2(E) =0. We need to show u concentrates on X — A1 U Ay = By N By, which is obvious.

(iv) It is obvious.

(v) Assume pu(E) =0, let {E;}_| be a measurable partition of E, then u(E;) =0 so
that A(E;) =0 for each i and Z?:l |A(E;)| = 0, we conclude |1|(E) =0, so |1] < u. The
converse if obvious since |A(E)| < |A|(E).

(vi) Let A, B be measurable such that ALIB = X, 1 — A and u — B. It is enough
to show 1 — B, that is because for measurable £ C X — B, u(E) = 0, so by absolute
continuity 1{(E) = 0.

(vii) Let A, B be measurable such that ALUB = X and 4 — A and ¢ — B. By the
proof of (vi), 4 = B,so 1 =0. O

6.1.3 Lebesgue-Radon-Nikodym Theorem

Lemma 6.1.17. If y is a o-finite positive measure on (X,X), then there is a w €
L'(X, ) such that 0 < w(x) < 1 foreach x € X.

Proof. Let X =| |;_; X, with u(X,,) < co. For each n we define a function w,, :
X - Rby
1 1
wa(x) =4 2" 1+ u(X,)’
0, xeX-X,.

x € Xy,

Define w = Y377 wy, then 0 <w(x) < I foreach x € X and [y wdu=3 ", [x wndu=
© (Xn)
2inet zn(lllw(xn)) <l 0

By|Lemma 6.1.17|every o-finite positive measure x on X induces a finite measure
wd@ which has the same collection of sets of measure zero with u since w(x) >0

foreach x € X. i.e., [pwdu=0iff u(E) =0.
To describe the general decomposition of a signed measure, we need to introduce
a larger class of “integrable” functions.

Definition 6.1.18. A measurable function f : X — [—co,00] is said to be ex-
tended p-integrable if at least one of [ f* du and [y f~ du is finite. In this case, we

define
[ fau= [ rdu= [ 5 an

®1t is a convention to denote dv := f du a set function defined by v(E) = [ f du. Note that it does not
mean [ g dv = [ gf du, to have this kind of equality we have to be careful.

as before.
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Example 6.1.4|tells us A(E) := [ fdu is a signed measure if f is extended u-
integrable. In fact integration against such functions is a rich source of signed mea-

sures:

Theorem 6.1.19 (Lebesgue-Radon-Nikodym). Let u be a o-finite positive
measure and A a o -finite signed measure on (X,X), then:

(i) There is a unique pair of signed measures A,,4s on X such that
A=A+ s, where A, < uand A5 L u.
If A is positive (and finite), 1, and A are also positive (and finite).

(i) There is an h : X — [—co,00] that is extended u-integrable such that dA, =
fdu. If A is positive (and finite), then h is nonnegative (and integrable). If
K’ is another such function, then h = h’ u-a.e..

The pair 44,4, is unique since if A,,4% is another such pair, then the equality
Ag— A, = — A implies 1, — A, < pand 1, — A, L u,s0 1, = 4., and thus A, = 2.
To be more careful we need some o -finite argument to avoid co — co case. We leave all
specific checkings for exercises.

Proof. We will prove (i) and (ii) at the same time. Assume first that A is a finite
positive measure. Since u is o-finite, bythere is a function w € L' (X, u)
such that 0 < w(x) < 1 for each x € X. The measure d¢ := dd +wdu is finite and
positive, 1 < ¢. For f € L'(¢),

1/2
2 172
‘/deﬂ S/XIfldsoS(/lel dso) (0(X)'2,

so f — [x fdA is a bounded linear functional on the Hilbert space L*(¢p), thus this
functional must be given by an inner product, i.e., there is a g € L?(¢) such that for
each f € L*(¢),

/ fdl= / fgde. (6.1.20)
X X
For each E € ¥ and ¢(E) > 0, we may set f = y g in (6.1.20) to obtain
—_— e [0,1],
@(E) / (E)

hence by [Theorem 5.2.43] 0 < g <1 ¢-a.e. on X. Without affecting (6.1.20), we may
redefine g if necessary on a set of p-measure zero, so let’s assume 0 < g <1 on X. As

w is nonnegative[@ we can rewrite (6.1.20) as

/f(l—g)dﬂ=/ fegwdu. (6.1.21)
X X

Define
={xeX:0<gx)<1}, B={xeX:gx)=1}.

O)If e and v are positive, then for every f > 0or f € L' (u+v), [x fd(u+v) = [x fdu+ [x fdv. Also
if dA = g du, for some g >0, then for every f >0 or f € L'(2), [y fdA = [x fgdu.
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By setting f = y g, u(B) =0, so u — X — B, if we define A;(E) = A(ENB),then 1, —» B
and hence u L A,. For E € £, define 1,(E)=A(ENA)andlet f=(1+g+---+2")xE
in @120).

/ (1—g"+1)d/l=/(g+g2+---+g"+1)wd,u.

ENA E

1-g""' /1onENnAand (g+g>+---+g"*Hw  h >0 on E, where h is measurable,
hence by monotone convergence theorem,

A(E) := A(EN A) =/ hdy.
E

Since A is a finite positive measure, so / is nonnegative and integrable.

If A is o-finite and positive, let X,,’s be disjoint such that X = | |,_, X,, and
A(X;) < o0o. Now A(E) = 22021 AENX,). Define A,,(E) = A(ENX,,) foreach F € Z,
then 4,, is a finite positive measure on (X,X), by the preceding case there are a measur-
able i, : X — [0,00) and a positive measure A L u on X such that A, = h, du+da}.
Hence

ANE) = Zl L(ENX,) = Zl /men hp du+ Z] A(ENX,). (6.1.22)

Leth=Y 0 haxx, and A,(E) =" A"(ENXpy), then A, is a positive measure that
is singular w.r.t. y, (6.1.22)) becomes

A(E):Zl/Eh,,XXn dﬂ+AS(E)=/Ehdu+AS(E).

Note that this time 4 may not be integrable.

Finally if A is a o-finite signed measure, then consider the Jordan decomposition
of ,i.e., A =17 —A1~. Again we apply the preceding case to 1* and A1~. As one of 1*
and A~ must be finite, so the resulting / is extended u-integrable whose uniqueness is
left as an exercise. O

Remark. Actually some effort has to be paid to finish the proof of[Theorem 6.1.19]
WLOG, assume A~ is finite. After writing A* = hydu+ A5 and A~ = hydu+ A’ then
of course A4 — A% is a signed measure. What we are concerned about is if ~; du— ha du
can be expressed as & du, for some extended u-integrable 4. The canonical choice is to
choose h = hy — hy, for this to make sense we can further assume /4, # oo on X.

We need to check (h| — hy)du is indeed a signed measure, after that we conclude

h1 d/J— hz d,u = (h1 - hz) dﬂ (6.1.23)

due to o-finiteness of A. To be specific, the equality (6.1.23) holds for measurable
set that has finite A-measure. Suppose in the worst case [y hjdu = +oo (hy is inte-
grable since A~ is finite), we check that /; — hy is extended p-integrable by showing
that its negative parts is p-integrable, which does because (i — hy)™ = (—(h; — h2)) V
0= %(—(hl —hy)+|hy = ) < hy. now follows from continuity of measure.
Uniqueness of £ also follows from o-finite argument.

The decomposition A = A, + A, where 1, < pand A L yu is called the Lebesgue
decomposition of A w.r.t. . Which is unique by the remark preceding the proof of
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Special case of [Theorem 6.1.19]is of our particular interest. Suppose

A < u, where A is signed and g is positive and both are o-finite, then dA = dA, = f dp,
for some extended p-integrable function f : X — [—oco,00]. The “uniquely” determined

f is denoted by dA/dy, i.e.,

da
dl=—du.
du H

This result is known as Radon-Nikodym theorem and dA/du is called the Radon-
Nikodym derivative.

Let A be a signed measure on (X,X) and write 1 = 2* — A7, then for any measur-
able set E, let f = y g, one has

/dexlz/xfdf—/xfd/l‘.

This formula suggests a (only) reasonable way to define integral of measurable f : X —
[—o00,00] w.r.t. a signed measure.

Definition 6.1.24. Let A be a signed measure on (X,X), a function f : X —
[—o0,00] is said to be integrable w.r.t. A if f is integrable w.r.t. both 4™ and 2~. In
this case we define L1(X,1) = LY(X,2*)Nn LY(X,17) and the integral of f w.r.t. 1 over

EcXis X X
/Efd/l :./Efd/lJ'—/Efd/l‘.

Proposition 6.1.25. Let A be a o -finite signed measure and let v,u be o -finite
positive measures on (X,X) such that A < v and v < p.

@) IffELl(X,/l), thenf-d—/l GLI(X,V) and/ fda =/ f-d—/ldv.
dv X x° dv

di da d
(ii) A < u and @ =7 d—; u-a.e..

Proof. (i) We first assume A is positive. Let E be measurable and put f = yg,
then the equality d14 = (d1/dv)dv implies

da
/de/lzfxf-adv. (6.1.26)

By linearity holds when f is replaced by nonnegative simple functions, and
hence it holds by monotone convergence theorem when f is replaced by nonnegative
measurable functions. If f is general integrable function, then we are done by consid-
ering f = f* — f~ (dA/dv is nonnegative).

In general if A is signed, then A = A* — A~. Since f is integrable w.r.t. both 1*
and A~, we can write

. _
/fd/lz/fd/l+—/ fdl = fd/l dv— fdidvz/fd—/ldv.
X X X x dv x dv x" dv

Here we have used the facts that A < v iff |1] < v iff 27,4~ < v and also that Z—i =

dit _ da- 6)
dv dv

v-a.c (

.. _ + - + -
©This is because [ 92 dv = A(E)= AT(E)-A"(E)= [p L dv - [ Lo dy = [(LL - 4L dv.
for every E with finite A-measure, and hence every E measurable due to o--finiteness of A, so % = ‘2’1 =

da”
dy V-a.c.
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6.2. Complex Measures

(ii) Let w(E) = 0, then v(E) = 0 and hence A(E) = 0, meaning that A <« u. For any
E measurable, fE%d,u:/l(E):fEZ—ﬁdv:fE%ﬁ—;dp. O

6.2 Complex Measures

6.2.1 Total Variation Measure

Definition 6.2.1. Let (X,X) be a measurable space, a set function 1 : X — C is
called a complex measure if it has the following properties:

(i) A(0)=0.

(ii) If {E,},_, is a disjoint collection of members in X, then

A ( || En) = > AE). (6.2.2)
= n=1

As in the earlier issues discussed for signed measure, the convergence in
by definition is absolute. Define A, (E) = Re A(E) and A;(E) = Im A(E), it is obvious
that A, and A; are finite signed measures on X.

We now introduce a positive measure induced by a complex measure A whose
construction is motivated by the following problem: We need to find the smallest posi-
tive measure u that dominates A in the sense that for every measurable set E in (X,X),
u(E) > |A(E)|. Let {E;}_, be a measurable partition of E, one has u(E) > D IAED
so that

W(E) = |AI(E) := sup ) |A(E))]. (6.2.3)
i=1

Where the supremum on the RHS of (6.2.3)) ranges over all partitions of E into finite
disjoint measurable subsets. Inspired by (iii) of theorem [6.1.13]|1] is expected to be a
positive measure on X (which is indeed the case when 4 is a finite signed measure). As
an analogue to signed measures, || is also called the total variation of A. It turns out
that |1]|(X) < oo, which we shall prove shortly, and hence we say that A is of bounded
variation.

Of course to make things complicated we can also redefine || in (6.2.3) by letting
n = co and the supremum this time ranges over all partitions of E into countably many
disjoint measurable subsets. Both definitions are commonly used, meaning that in fact
these two set functions are indeed the same.

To make this precise, for E € ¥ we denote m.(E) the collection of all finite
collection {E;}; which forms a measurable partition of E. We also denote likewise
T (E) the collection of all measurable partition of E, each partition consists of count-
ably many disjoint measurable subsets of E.

Proposition 6.2.4. Let E be a measurable subset of (X,X), then

H(E) 1= sup { Y IAEI: (E;) € men(E) |
= sup { VAEN: (B € 1) } =2 v(E).
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Proof. Since n.o(E) C meo(E), u(E) < v(E). To show v(E) < u(E), let t € R be
such that 7 < v(E), then there is {E;}%Y, € M (E) such that 7 < 3.7, |A(E;)|, so there is
an n such thatt < 31| |A(E;)|. Since {Ey,...,Eqn,E—| |{-| Ei} € m<o(E), one has

n n n
t< Z |A(E)| < Z [A(E)|+ |4 (E— |_| Ei) < u(E).
i=1 i=1 i=1
This is true for each t < v(E), we conclude v(E) < u(E). O

We are free to use any one of the definitions. For convenience we will not be so
specific whether a partition is finite or countably infinite.

Theorem 6.2.5. The total variation |A| of a complex measure A on (X,X) is a
positive measure on X.

Proof. Let E;’s be disjoint and measurable, write E = | |; E;. For each i, choose
at; <|A|(E;), then there is a measurable partition {F;;} of E; such that#; < Zj [A(F; )l

So
Dot <D JAFEI < AIE).
i i j

We can choose #; as closed to |A|(E;) as we want, ) ; [A|(E;) < |2|(E).
To prove the reverse inequality, let {A;} be any measurable partition of E, then

PINZZHEDY <D IAA N ED < D IAED.
J i J i

J
We take supremum on LHS to obtain |1|(E) < Zi |A|(E;). So |4] is countably additive.

DIAANE)

It is obvious that |1|(0) = 0. O
Lemma 6.2.6. Forany z,22,...,2, € C, there is a nonempty subset S of {1,2,...,n}
such that
1 n
Z k| = ; Z |Zk|.
keS k=1

Proof. Let S # 0 be any subset of {1,2,...,n}. Write z; = |zx|e’®*, then for any
0 eR,

S

keS

keS

>|Re ). ze™

keS

> lzxlcos(ax - )

keS

. (6.2.7)

For a fixed 6, we can choose S = S(6) to be the indexes of those ay’s such that cos(ay —
6) > 0 (S(#) can be empty), then becomes

ZZk

keS(6)

n
> D lzlcos(ax—8) = Y lzklcos™ (@k ~ ).
keS(0) k=1

RHS is a continuous function in 6, we may choose 6 = 8y such that RHS attains its
maximum, then for any 6 € R,

n
Z | = leklcos+(ak—0),
k=1

keS(8p)
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the result follows from integrating both sides over [0,27]. (|
Theorem 6.2.8. If A is a complex measure on (X,X), then |2|(X) < oco.

Proof. Assume on the contrary that |1|(X) = co. Then for any N > 0, there is a

measurable partition {A;}?_, of X such that >,/ |[1(A;)| > N. By there

is an A € X (a union of some A;’s) such that
N
[2(A) > —.
Vi

Let B=X— A, then |A(B)| = |A(X) — 1(A)| > |A(A)| - |A(X)| > % —]A(X)|. We choose
an N large at the beginning such that |1(A)|,|A(B)| > 1. As |1] is a positive measure, at
least one of A and B must have oo |1]-measure, say |1|(B) = co.

Let A; = A and By = B. Repeat the same procedure to B, we can find disjoint
As,B> C By such that |[1(Ay)| > 1 and |1|(By) = oo, inductively, we can find disjoint
Ay, By C By such that [A1(Ag)| > 1 and |A|(Bg) = co. Finally

/1( | | Ak> = > AAp)
k=1 k=1
and RHS does not converge absolutely, a contradiction. (]

Given a complex Borel measure on X, we define
1Al = |(X).

As indicated by the notation, || - || defines a norm on the collection of complex Borel
measures M(X) on X. Not only that, (M(X),||-||) is a Banach space.

Now several concepts and results for signed measures can be directly translated to
complex measures.

Definition 6.2.9. We say that two measures (can be signed or complex) 41,4,
on (X,X) are mutually singular (or 1; is singular with respect to 1,, or vice versa),
denoted by

A1 L Ay,

if there are measurable subsets E,F of X such that 1; concentrates on E and A, con-
centrates on F.

Definition 6.2.10. Let A be a complex measure and u a positive measure on
(X,X). We say that A is absolutely continuous with respect to u, denoted by 1 < u,
if for every measurable A,

uA)=0 = A(A)=0.

Proposition 6.2.11. Let u be a positive measure and 1,41 and A, complex mea-
sures on (X,X), then:

(i) If 2 — A, then |1] — A.

@ii) If A1 L Ay, then |A1| L |Ay].
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(iii) If A1 L puand Ay L u, then foreachc € C,cAy L pand 11+ 4> L .
(iv) If ;) < pand Ay < u, then foreachc € C, cA) < pand A1+ Ap < .
(v) A< uiff|A]| < u.

(vi) If 1y < pwand A, L u, then 11 L ;.

(vii) If A< pand A L u, then 1 =0.

The proof is, word by word, same as before.

6.2.2 Lebesgue-Radon-Nikodym Theorem

Theorem 6.2.12 (Lebesgue-Radon-Nikodym). Let u be a o-finite positive
measure on (X,X) and A a complex measure on X.

(i) There is a unique pair of complex measures 1, and A, on X such that

A=A+ s, where 1, < pand A5 L p.
(ii) There is a unique h € L' (X, 1) such that

Aa(B)= [ hdu
JE
forevery E € X.

The uniqueness part of both measures and functions are essentially the same as

but a bit easier this time because everything is finite.

Proof. Write 1 = A, +iA;. Then 4, and A; are finite signed measures on Z, hence

by there are extended real-valued integrable functions A,,/; > 0 and
finite signed measures A, and A7 that are singular w.r.t. 4 such that

dA, =hydu+d2; and dA; = h;du+day.
Define h = h, +ih; and A, = A+ A L,

dA=dA, +idA; = (hy +ih;)du+dA, +id% = hdu+da;. a

6.2.3 Polar Representation

Theorem 6.2.13 (Polar Representation). Let 1 be a complex measure on
(X,X), then there is a complex measurable function h € L'(|A]) such that |h(x)| = 1
for each x € X and

dA = hd|A|.

Proof. It is obvious that 1 < |1, by Radon-Nikodym theorem there is an i €

LY(|A)) such that dA = hd|A|. Let A, = {x € X : |h(x)| < r} and let {E;} be a measurable
partition of A, then

SEN<Y ‘/E hdll
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which implies [2|(A,) < r|2|(A,). Hence if r < 1, |1|(A,) = 0, which implies that |#]| > 1
|1]-a.e..
Let E € ¥ and |A|(E) > 0, then

1 A(E)|
—_— hd|1|| = —= <1,
hﬂ@%@ ll’IM@)S

hence |h| < 1 |1-a.e., so that |k| = 1 a.e.. Without affecting the equality dA = hd|A4|, we
may assume |h(x)| = 1 for each x € X. [l

Theorem 6.2.14. Let u be a positive measure on (X,X), g € L'(u) and define
dA = gdu, then d|A| = |g|du.

Proof. By [Theorem 6.2.13|there is & € L'(JA)) such that |h| =1 on X and dA =
hd|A|. By hypothesis,
hd)a| = g dp,
hence d|1| = hgdy (why?). Since [z hgdu >0 for every E € £, hg > 0 p-ae., so
hg =|g| p-a.e., ie., d|A| = |gldu. [l

Remark. For g € L'(u), where u is a positive measure on X, we may also write
lg dul| = |g|du if we accept the notation A = dA and bear in mind that the only way to
interpret the notation (f du)(E) is [ f dpu.

Equality in provides us with a reasonable way to define integral

w.r.t. complex measures:

Definition 6.2.15. Let A be a complex Borel measure on (X,X) and dA = hd|A],
where & is complex measurable and |k = 1. We say that f is integrable w.r.t. A if it
does w.r.t. ||, and it that case we define the integral of f w.r.t. A over E € X by

/Efd/l:/thdl/ll.

6.2.4 Bounded Linear Functionals on L?

As an application of Radon-Nikodym theorem we try to identify the dual space of
LP(X,u) when u is o-finite, positive and 1 < p < co. It is one of the most concrete
examples in the study of functional analysis. When X = N and u = ¢, the counting
measure,

KWM=LWNO={Wu@wJ:meCé]mW<W},

i=1

(here we implicitly identify the function f : N — K with a sequence (f(1), f(2),...))
again a concrete object that we study in functional analysis.

Theorem 6.2.16 (Duality). Suppose 1 < p < oo, u is a o-finite positive mea-
sure on (X,X), and ® is a bounded linear functional on LP (y). Then there is a unique
g € L9(w) (where q is the exponential conjugate to such that for every f € LP (u),

®m=Aszm|W=M¢

DIf p > 1, g satisfies Jf + £ = 1. 1f p = 1, define g = co.

L
q
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Here L?(p) is either a collection of complex functions or a collection of extended
real-valued functions.

Proof. We first assume u(X) < oo. For E € X, let A(E) = ®(yg), then A is count-
ably additive by dominated convergence theorem, hence A is a complex measure on X.
Also since
AE) <@l ellp = I1PluE) ',

u(E) =0 implies A(E) = 0, meaning that 1 < u. By Radon-Nikodym theorem there is
a unique integrable g € L' () such that dA = g du. Hence

o(f) = /X Fgdy (6.2.17)

holds when f is a simple function, and hence holds for any f € L*(u) since every
bounded measurable function is a uniform limit of a sequence of simple functions. We
now show that RHS of is indeed continuous on L (i) by looking the following
two cases.

Case 1. When p = 1, for any measurable E with u(E) > 0, let f = y g in (6.2.17),

/E gdu<10(ye)) < [Bllu(E),

hence g < [|®|| a.e. so that |g|l < [|DIl. We conclude | [y fgdul <lIgllell 1l

Case 2. When 1 < p < oo, let E,, = {x € X : |g(x)| < n}, then g|g,, is bounded.
Let a(x) be a measurable function such that |a(x)| = 1 for each x and ag = |g|. Let
f=xE,lgl? '@ in (6.2.17), then

. 1/p
/ Iglqdu=q>(f)sll®llllfllp=|I<I>|I( / |g|Q) ,
E, JE,

1/q
( / Iglqdu) <l
E,

As E, is ascending and g # oo a.e., hence ||g]l; < |®]l. By Holder’s inequality (see
Problem[5.17) | [x fgdul <|Ifllpllglly for every f € LP (u).

Now both sides of define bounded linear functionals on LP (x) which
agree on a dense subspace L*(u) of L” (u), hence O(f) = [y fgdu forevery f € LP(u).
Moreover, |O(HIl < I fllllglly implies [|D]| < [Iglly. Together with the bounds found in
case 1 and 2, ||@]| = ||gll,. We have completed the proof when X is a finite measure
space.

Suppose p(X) = oo, then since y is o-finite, by [Lemma 6.1.17| there is a measur-
able w such that 0 < w < 1 on X s.t. dfi:=wdu defines a finite measure on X. Let
i : LP(ji) — LP(u) be defined by i(f) = fw!/P, then i is an isometric isomorphism.
Define ¥ = @ o1, then ¥ is a bounded linear functional on L? (), so by the preceding
case we can find a G € L9(f1) such that for every F € LP (fi),

this implies

Y(F) = /X FGdii.

If p= 1|l = ¥l = IGllL=(@) = IGllL>w)- Alsoif p > 1,

1/q 1/q
IOl = 1]l = (/ |G| dﬂ) = (/ |Gw!/4a d,u> )
X X
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Hence we let g = G if p =1 and let g = Gw'/9 if p > 1 such that g € L9(u) and
IOl = llgll 4 u)- Finally for every f € LP(u), i~'(f) = w™!/P f and

O(f) = (w17 f) = /X FGWIIP gy = /X Fedy. 0

By when y is o-finite, positive and 1 < p < co every bounded
linear functional on L” (X, ) is of the form @, defined by ®,(f) = [y fgdu. Since

|Dgll = llglly, the function i : L9 (u) — (LP ()" defined by i(g) = @, is an isometric
isomorphism, in that case we say that (L” (u))* = L9(w).

When p = oo, generally we don’t have (L*(u))* = L'(u). More specific, we will
show that when X = N endowed with counting measure ¢, or when X = R endowed
with Lebesgue measure m, the theorem fails (these are the important cases we usually
use, at least for computation). Recall that

' = {a = (a,az,...) : llall = ) lan] < oo}

n=1
and
(% ={a=(aj,as,...): |lall =|supfa; : i =1,2,...}] < co}.
[|-1l1 and || || are respectively the norms on them. We define ¢y C € to be the se-
quences that converge to 0. Evidently ¢y C ¢°. In what follows we assume the im-

portant extension result without proof: The Hahn-Banach theorem. The proof of this
standard (not meaning easy!) result can be easily found in any related text.

Proposition 6.2.18. can fail when p = oo in the following two

important cases:

(i) €' can be identified with a proper subspace of ({*°)*.

(ii) L'(m) can be identified with a proper subspace of (L (m))*.

Proof. (i) Define T : ¢! — (£%)* by T(a)(b) = Z:’:l an b, which is an isometric
embedding, as easily shown. Note that ¢y is a proper and closed subspace of £*°, by
Hahn-Banach theorem there is a f € (£*)* such that fl|., = 0 and f # 0. We now show
that T is not onto by showing that T(a) # f, for every a € £'. Assume T(a) = f for
some a € ¢!, then for any b € ¢, Zle anb, =T(a)b) = f(b) =0. Taking b =¢; =
,...,0,1,0,0,...) fori = 1,2,..., then a; = ay = --- = 0, showing that f =0 on £, a
57,]_/
coritradiction.

(ii) Similarly consider the isometric embedding i : LY(m) = (L®(m))* defined by
i) f)= jR fgdm. To construct a functional on L*(m) that is not a image of i, we let

1
Y = {feL“’(m): lim 7/ fdm exists}
r—=0* 1 J,r)

which is a nonempty vector subspace of L*(m) and for f € Y we define L f = lim, o+ % f(o, S dm.
Which is also a bounded linear functional on Y with ||L|| = 1. By Hahn-Banach theo-

rem we can extend L to a functional L on L*(m). If it happens that i(g) = L for some

g € L'(m), then for any x € R, we can let f = y(—co,x) such that

0, x<0,

/ gdm = i(8) Y coo) = L (—oory) = L (conrx) =
(—00,x) 1, x>0.
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Hence g = 0 m-a.e. (see[Corollary 6.3.T1), a contradiction since L # 0. O

6.3 Differentiation on Euclidean Space

6.3.1 Lebesgue Differentiation Theorem

In this subsection the ball B(x,r) € R" is, as usual, induced by the 2-norm.

Definition 6.3.1. For every complex Borel measure A on R" we define the fol-
lowing quotient at x:
A(B(x,r))
m(B(x,r))’

where m is the Lebesgue measure on R". We define the symmetric derivative of A at
x by

(Qr)(x) =

(D)) = lim(Q )(x)

provided the limit exists. We shall study the function DA with the help of maximal
function M A. If A is positive, define

(M )(x) = sup(Q )(x).

r>0

If A is complex Borel measure, we define M A = M|A|.

In general we can write M A and M|A| interchangeably, as they are, by definition,
indeed the same. The convention here is for the sheer purpose that M acts as a function
from L' to another space, we shall define the meaning of M f later to elaborate this
point.

An extended real-valued function f on R” is said to be lower semicontinuous if
for every a € R, then set {f > a} is open. Where {f > «} is a simplified notation for
{x e R" : f(x) > a}, we shall often make use of this kind of simplifications. We first
show that the maximal functions are measurable as follows:

Proposition 6.3.2. Let A be a positive Borel measure on R", the maximal func-
tion M A : R"™ — [0, 0] is lower semicontinuous.

Proof. Let x € {MA > a}, then (MA)(x) > a implies there is r > 0 such that
A(B(x,r)) =tm(B(x,r)), for some t > a. Let ||y — x|| < §, then B(y,r + ) 2 B(x,r) and

AB(,r +6)) = A(B(x,r)) = tm(B(x,r)) = 1 ( #) " m(B(x.r +06)),

Since we can fix a § > 0 such that ¢ (r:(s)" > a, for this § we conclude |y —x|| < &

implies (M A)(¥) = (Qr+s51)(¥) > a, hence {M A > a} is open. O

Our main interest is to the estimate given in for this we need the
following covering lemma.

Lemma 6.3.3. Let C be a collection of open balls in R" and let U = Jpec B. If
¢ < m(U), then there are disjoint By,B;,...,B, € C such that c < 3" Zf:l m(B;).
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Proof. Let ¢ < m(Uy¢c V), then there is a compact K C [Jy oV such that ¢ <
m(K). There are Vi,...,Vy € C such that K C Uf\il V;. Write V; = B(x;,r;). Relabel
them if necessary, we assume ry >y > -+ > 1y,.

Let iy = 1. For i # 1, discard those V;’s that have nonempty intersection with V;
and let V;,, if any, be among the remaining ones that has largest radius. For i # i1,ip,
discard those V;’s that have nonempty intersection with V;, and let V;,, if any, be among
the remaining ones that has largest radius. The process terminates after finitely many

steps and we get a disjoint collection {V;,,V;,,...,V;, }. A simple checking shows that

N k k
UViQUB(xijﬁrij) —_— c<m(K)§3"2m(Vij). O
i=1 j=1 J=1

Theorem 6.3.4. If A is a complex Borel measure on R" and « is a positive
number, then

m{MA > a) <37 Al (6.3.5)

Proof. Let K be a compact subset of {M A > a}. For each x € K, there is r,, > 0
such that (Q,, )(x) = |A|(B(x,rx))/m(B(x,ryx)) > a. Now there are xi,x2,...,X, such
that K C i, B(x;,ry;), hence

m(K) < m(U B(xi,”x,»))

i=1

Let t < m(K), by there is a disjoint subcollection {B(xij,rxij )};‘.:1 such
that7 <3" 35, m(B(x;.ry,)) <3"a' Y5 1AI(B(x;.ry, ) <3"a ™! All. Lett > m(K)",
we have

m(K) <3"a |All.

Since this is true for each compact subset of {M A > «}, (6.3.5) follows. O

Definition 6.3.6. We associate each f € L!(R",m) a (Hardy-Littlewood) max-
imal function define by

(M f)(x) = (M(f dm))(x).
By for every a > 0,
m(Mf>a}<3"a” |Ifdml=3"a""Iflli.
The estimate roughly shows that if the total variation of f from zero relative to the
whole space is small, then the place at which f varies from zero largely in a relative

scale must also be small.

Definition 6.3.7. If f € L'(R"), any x € R” for which it is true that

)If(y) - f(ldm(y) =0

lim ———
r—0 m(B(x,r)) JB(x,r

is called a Lebesgue point of f.
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For example, it is obvious that every point of continuity of f is a Lebesgue point.
It is not so obvious every f € L!(R") has Lebesgue point, the following result shows
that they exist almost ubiquitously.

Theorem 6.3.8 (Lebesgue Differentiation). If f € L'(R"), then almost ev-
ery x € R" is a Lebesgue point of f.

Proof. Define

Arf(x) = lf () = fo)ldm(y).

1
m(B(x,r)) /B<x,r>
We also define A f(x) = lim, 0 A, f(x). Let € > 0 be given, since the collection of con-
tinuous functions on R” is dense in L!(m) (see Problem , we can find a continuous
g on R” such that || f — g||l; < €. Define h = f —g, then ||h]|; < €. Now
Ar f(x) < Aph(x) + A g(x) < (Mh)(x) + [h(x)| + Ar (8)(X),
by taking lim, o on both sides,
Af(x) < Mh(x)+|h(x)|.
Now if we fix an a > 0,

{Af >2a} S{Mh > a}U{|h] > a},

hence m{Af > 2a} < (3" + Da~'||All; < (3" + )a'e. Since € > 0 can be fixed arbi-
trarily, hence m{Af > 2a} = 0, showing that Af =0 m-a.e.. |

A more useful and general form of is in terms of the following

special family of sets shrinking to x.

Definition 6.3.9. A family of Borel sets {E, },~o in R” is said to shrink nicely
to x e R™ if

(1) E» C B(x,r).

(ii) There is a > 0 independent of » such that m(E,) > am(B(x,r)).

Note that we do not require x € E, in the definition. Although @ does not depend
on r, it does depend on x and sometimes we write @ = a(x) for emphasis. For example,
on R the collection {(x,x +r)},-~o shrinks nicely to x. On R” let U be any Borel subset
of B(0,1) such that m(U) > 0, then the collection {x + rU},-~¢ also shrinks nicely to x.

Theorem 6.3.10 (Lebesgue Differentiation). Let f € L'(R") and associate
each x a family of sets {E,(x)} that shrinks nicely to x, then

Lf ()= f(0)ldm(y) =0

lim ————
r=0 m(E(x)) JE,(x)

for every Lebesgue point x of f (hence m-a.e.).
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Proof. For each Lebesgue point x, let @ = a(x) be defined as in|[Definition 6.3.9]
then

! 1
B G S0 O TN S S Ty ) = SN,
the result follows from [Theorem 6.3.3] 0

In the study of Lebesgue measure on R there is usually an exercise stating that if
fe L'[a,b], for some a,b € R and
/ fdm=0
a

for every x € (a,b), then f = 0 m-a.e.. By the experience in a first course to mathe-
matical analysis it is tempting to do differentiation (it is easy when f is continuous).
When f is Riemann integrable, then f = 0 a.e. since f is continuous a.e.. More gener-
ally, [Corollary 6.3.11|states that differentiation can also be done pointwise m-a.e. for
Lebesgue integrable function.

Corollary 6.3.11. Let f € L'(a,b), where a,b € [-c0,00],a < b. Define F €
Cla,b] by
F(x)= fdm,

(a,x)

then for m-a.e. x, F’(x) exists and F’(x) = f(x).

Proof. We may assume f € L'(R) by setting f|r—(q,») =0, then F(x) = f(_oo’x) fdm.
Now

l .
P =P | e oM 20
h - 1

_ dm, h<D0.
m([x + h,x]) [x+h,x]f "

Since both {[x,x + ]}, >0 and {[x — h,x]} >0 shrink nicely to x, hence for every Lebesgue
point x of f, F’(x) exists and equals to f(x). [l

Now we return to the study of DA. We now show that it is possible to compute
the Radon-Nikodym derivative when A < m is a complex Borel measure on R”.

Theorem 6.3.12. Let A be a complex Borel measure on R" and A <« m. Then
DA =dA/dm m-a.e..

Proof. Radon-Nikodym asserts that dA/dm € L'(R™). At every Lebesgue point
x of dA/dm,

o AB@) ] . dd
DO =l )~ i By Jacer dm ™ am ™ B

The differentiation of absolutely continuous measures is understood, next we deal

with measures that are singular w.r.t. m. This can be done with the estimate given in
[Lemma 6.3.19 Before that we need to introduce:
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Definition 6.3.13. Let A be a positive Borel measure on R”. Define the upper
derivative of A at x by

(D) (x) = }ijn(l)(Qr A)(x).
Evidently DA < MA. D2 is also measurable. To see this, since

D))= lim (sup QD).

O<r<l/n

each supg., 1,,(Qr )(x) is a measurable function in x by exactly the same argument
as in and thus DA is measurable. To show DA vanishes somewhere,
we need the estimate given by To prove this, we need an elementary
result that justifies any finite positive Borel measure on R” is regular. As usual the

Borel o-algebra on X is denoted by Bx.

Lemma 6.3.14. Let (X,d) be a complete separable metric space and let u be a
finite positive measure on By, then u is regular: For every E € By,

M(E) =inf{u(U) : U 2 E is open} (6.3.15)
=sup{u(L): L C E is closed} (6.3.16)
=sup{u(K) : K C E is compact}. (6.3.17)

(6.3.13)) and (6.3.16)), as we shall see, do not require the completeness and separa-
bility of X (but finiteness of y is crucial). The most useful one is (6.3.17) and conditions
like completeness and separability will come into play. Note that for x, both (6.3.13)
and (6.3.16) hold if and only if

for any given € > 0, there are a closed set L and an open

set U such that LC EC U and u(U - L) < €. (6.3.18)

We leave this easy verification as an exercise. To show (6.3.18) holds for each Borel
set we follow the usual strategy: Our first step is to show that the collection of sets for
which (6.318) holds forms a o-algebra, and the second step is to show that all closed

sets satisfy (6.3.18).

Proof. We show that each Borel set satisfies first. Of course 0 satisfies
(6:3:18). Let Ey,Es,. .. be subsets of X for which (6.3:18) holds, then X — E; satisfies
(6:3-18) immediately. Let € > 0 be given, then there are a closed set L; and an open set
U; such that L; C E; C U; and u(U; — L;) < €/2"*!. Since y is finite,

o n (o] (o] (o)
lim u(UEi—UL,-) =,u(UE,-—ULi) SZ,U(Ei—Li)< %
n—0oo
i=1 i=1

i=1 i=1 i=1
Hence we can find an n such that uy(UE; —U/; L;) < €/2. Let U =J;2, U; and L =
n
T
=141

pU—-L) < pU-UE)+uUE; - L) < §+§ =e.

Hence |J E; also satisfies (6.3.18)). We conclude those sets satisfying (6.3.18)) forms a
o-algebra. Since each closed set L in X is a countable intersection of open sets, closed

sets satisfy (6.3.18), and our two steps are completed.
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6.3. Differentiation on Euclidean Space

To show (6.3.17), let € > 0 be given and L a closed subset of E € Bx such that
UE—-L)<e. LetC:={c,cp,...} € X be a countable dense subset. Foreach @ >0, X =
UB(c;,a) as C is dense. Let a = 1/n, where n € N, write B(x,r) ={y € X : d(y,x) < r}
and write

L=J®B(ci,1/m)nL).
We can find a k,, € N such that

kn
_ €
L—-{ J(B(ci,1/m)NL) | < —.
u( U}( (ci,1/n) )) o
These closed subsets are already very close inner approximation of L, so is K :=

[ Uf;’l(ﬁ(c,-,l/ n) N L), which is closed and totally bounded and hence compact.
Moreover,

00 kn
uL-K)< )] ,u(L— U(B(ci,l/n)ﬂL)> <e,
n=1 i=1

hence u(E—K) < u(E— L)+ u(L - K) < € + € = 2¢, thus holds. O

Lemma 6.3.19. Let A be a finite positive Borel measure on R", E € Bgn and
a > 0, then
m{x € E: (DA)(x) > a} <3"a ' A(E). (6.3.20)

Proof. We imitate the proof of [Theorem 6.3.4| by considering a compact set K
and an open set V such that K C {x € E : (DA)(x) > a} and V 2 E. We further assume

those balls in the proof satisfy B(x,r,) C V, now we repeat the proof and arrive to
m(K) < 3"~ A(V).

Since R” is a complete separable metric space and A is finite and positive on Bgn, by

A is regular, (6.3.20) follows. O

Corollary 6.3.21. Associate to each x € R" a family {E,(x)},~o that shrinks to
x nicely. If A is a complex Borel measure and A L m, then for m-a.e. x € R",

AE(x
im AE, () = (6.3.22)
=0 m(E; (x)

Proof. Since we can express A as a linear span of two finite signed measures, and
each finite signed measure have a Hahn decomposition. So it is enough to prove the
case that A is finite positive Borel measure on R”, let’s assume that is the case. Since

/l(Er(x))< A(B(x,r))
m(E,(x)) = a(x)m(B(x,r))’

it is also enough to prove the case that E,-(x) = B(x,r).
As A L m, there are disjoint Borel sets A,B such that ALUB =R", 1 — A and

m — B. Since A(B) =0, shows that DA =0 m-a.e. on B. Since m(A) =0,
(6.3.22)) holds m-a.e.. 0

‘We combine the results so far to conclude:
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Theorem 6.3.23. Associate to each x € R" a family {E,(x)},~o that shrinks
to x nicely. Let A be a complex Borel measure and dA = fdm + dA the Lebesgue
decomposition of A w.r.t. m, then for m-a.e. x € R",

A(E (X)) _
fim ) f(x) and Dag(x)=0.

6.3.2 Application

We can construct a continuous function on an open interval which fails to be differen-
tiable at any point (due to Karl Weierstrass), so we would ask: Which kind of functions
can be differentiable, say, at least one point? With the machineries developed so far
this question can be quickly answered!

Theorem 6.3.24. Let f : R — R be increasing and let F(x) = f(x*). Then F(x)
is differentiable m-a.e. and if F’(x) exists, so does f'(x) and f’(x) = F'(x).

Proof. Since F is right continuous, we associate F with a Lebesgue-Stieltjes
measure ur. Let k € N, then ' (E) := urp(EN(k,k +1)) is a finite Borel measure on
R. Let h, > 0, lim,,_,c h,, = 0 and x € (k,k + 1), then for large enough n,

F(x+hy)—F(x)  pp((x,x+hy))
hn B m((x,x+hy))

Theorem 6.3.23[asserts that RHS of (6.3.25) exists for m-a.e. x € R, so lim;,_,c W

exists m-a.e. on (k,k +1). Likewise for k, <0 and lim,_,c k, =0, the limit Z&Xa)=FC)
exists m-a.e. on (k,k + 1), we conclude F’(x) exists m-a.e. on (k,k +1). Since this is
true for each fixed k € Z, F’(x) exists m-a.e. on R.

Next we give an elementary proof to second half of the theorem which is due to
me: Assume F’(x) exists for some x € (a,b).

(6.3.25)

Claim. f is continuous at x.

Proof. Let €,6 > 0 be given, by continuity of F we can find x” < x such that
|x’ — x| < ¢ and |F(x") — F(x)| < €/2. Next, by right-limit definition we can find x”
close to x” such that x” < x”” < x and |F(x")— f(x")| < €/2,and also x —x"" < x—x’ < 6.
Combining these two estimates, we have shown that given €, > 0, there is x”” < x with
|x”" — x| < ¢ such that

|F(x) = f(D < IF(x) = FO +[F(x) = f(x")] < €.

Hence we choose € = 6 = % and some x” = x,, < x so that [x — x,| < % and |F(x)—
flxp)l < %, ie., f(x7) =lim,oe f(xn) = F(x) = f(x*), so f is continuous at x and
f(x) = F(x). O

Our focus now turns to existence of f’(x). By the existence of a := F'(x) =
limy o F(x++)_f(x) given € > 0 we can choose § > 0 (small enough that (x —8,x + ) C

[a,b]) such that

Yy €(=6,6)—1{0},

al < €
(6.3.26)

. f(x+y+s)—f(x)_a’:‘F(Hy)—f(x)_

£-0* y+e y
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By the right-hand limit in (6.3.26),
fx+y+e)-flx)

yt+e

Vy € (=5,6)—{0},35, > 0,Ve € (0,5,), al<e.  (63.27)

Here we choose 6, small such that 6, < min{|y|,6 — y} to avoid y +& = 0 and ensure
y+0y < 6 (we want everything happens in (-¢,6)). Define

Az{Ze[a,b]:’M_a <E},
b4
by for each y € (—6,6) —{0}, y +(0,6y) = (y,y +6y) C A, hence
U= U (y,y+6y) CA.
Y€(=6,6)—{0}

Now U C (—6,6) is open, there are a;,b; € (—6,6) such that U =| |(a;,b;), where i’s are
positive integers.

Claim. Let E ={0,q; : all i}, we have (-6,0)—E CU.

Proof. Let x € (—6,0) — E, then (x,x + ) C U implies (x,x + dx) C (a;,b;), for
somei. Asx &€ E, x#a;, wehave a; <x,soxeU. O

Claim. A’ := AN(=46,9) is dense in (=6,0).

Proof. Asaresult of the last claim, by U C A” we have (—6,6)—E CU C A’, hence
E 2 (-6,6)— A’, so undesired points are those in E. Since E is countable, m(E) = 0,
this implies m ((~6,6)— A’) =0, so A’ is dense in (~6,0). O

Finally let 6,, — 0, consider

 fx+6n) - f(x)
nim

We show a,, converges by considering two cases (i) all 6,, > 0 and (ii) all §,, < 0, after
that by combing these two cases we are done.

Let c € (0,1) be given. Assume the case (i), i.e., d,, > O for all n. Since J,, — 0,
there is an N such that n > N == |6,| < d. Then by density of A’ in (-6,6), for each
fixed n > N we can find §),,0;, € A such that 0 < 6, < §,, < ), with

Op— 00 <6y <= (1-0)6, <8,

and
6, =8y <cép < 6, <(1+¢)d,.

Then n > N implies

O FEHIN=f@) | (o=

>
=, s 7

1-c)a-e¢€)

and

nS

O FEHI =S _ 1, S0 = 100

5 5 5 <(l+c)a+e).
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Combining these two, we conclude
n>N = (I1-c)a-€)<a, <(1+c)a+e). (6.3.28)
As ¢ € (0,1) can be fixed arbitrarily, hence (6.3.28) becomes
n>N — a—-€<a, <a-+e,

we conclude lim,,_,« a,, = a. The case (ii) that §,, < 0 is essentially the same. [l
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Chapter 7

Locally Compact Hausdorff
Spaces and Riesz
Representation Theorem

In this chapter given a topological space, “open” and “closed” are always with respect
to the topology of the largest space in our discussion, unless otherwise specified. Also
a first course in point-set topology is assumed.

7.1 Normal Spaces

7.1.1 Separation Properties

Definition 7.1.1. We say that U is a neighborhood of a point x if U is open
and x € U. We say that U is a neighborhood of a subset X if U is open and U 2 K.
Moreover, we have the following separation properties:

(1) Tychonoff For every pair of distinct points u,u; € X, there are neighborhood
U; of u; such that u; ¢ U, and up € Uj.

(ii) Hausdorff Every two points can be separated by disjoint neighborhoods.

(iii) Regular The Tychonoff properties holds. Moreover, each closed set K and
each point x ¢ K can be separated by disjoint neighborhoods.

(iv) Normal The Tychonoff properties holds. Moreover, each pair of disjoint
closed sets can be separated by disjoint neighborhoods.

These are “adjective” of topological spaces having the respective separation properties.
For example, each metric space is a Hausdorff topological space. Moreover, after

we can see that:

T normal € 7-regular C T Hausdortf © A7-Tychonoff .
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Proposition 7.1.2. A topological space X is Tychonoff itf every singleton in X
is closed.

Proof. {x}is closed for all x € X iff X —{x} is open for all x € X iff for all x € X
and each y € X —{x}, there is open set U such that y e U but x ¢ U. (]

Definition 7.1.3. In a topological space X we say that a set K has Nested
Neighborhood Property (NNP) if for every open set U 2 K, there is open set O s.t.
Kcococu.

Proposition 7.1.4. Let X be a Tychonoff topological space. Then X is normal
iff every closed set in X has NNP.

Proof. Assume X is normal. Let K be closed in X and U 2 K be open. Then
X —U and K are disjoint closed subsets of X, by normality there are disjoint open sets
V/.Vsuchthat V2 X-UandV 2 K. Since V .NV =0,onehasVCX-V’, so

KCcvcvcXx-Vv cu,

that means K has NNP. Conversely, assume each closed set has NNP. Let H,K be
disjoint closed subsets of X, then H C X — K, so there is open O, HCOCOC X — K.
Clearly U:=O2H and V:=X-02K and UNV =0, so the normal separation
property holds. (I

7.1.2 Compact Topological Spaces

We recall the definition of compactness first.

Definition 7.1.5. A topological space X is compact if any open cover of X have
a finite subcover. A subset K of a topological space Y is compact if K is compact with
respect to the subspace topology induced by Y.

The compactness of a subset K of Y can be rephrased as follows: Any open cover
of K in Y has a finite subcover.

Proposition 7.1.6. Let X be a topological space and K compact. Then any
closed subset of K is again compact.

Proof. Let L C K and {U,} be an open cover of L. Then | JU, 2 L =KNL and
X-L2K-L,soJUy,U(X-L)2K. Since {U,}U{X — L} is an open cover of K,
there is @; such that Ji_, Uy, U(X -L)2 K2 L. As(X-L)NL=0,J" Uy, 2 L.0O

Proposition 7.1.7. A compact subset K of a Hausdortf topological space X is
closed in X.

Proof. We appeal to some “finite property” of compactness, i.e., we try to make
an open cover of K, by any means. To show K is closed, it amounts to show X — K
is open. Fix y € X — K, for each x € K, there are open sets U, > x, Vyx 3 y such that
U, NV, =0. Since {Uy }xek covers K, there are x,...,x, € K suchthat U :=JiL; Uy, 2
K. Define V =L, Vy,, then VN U = 0, meaning that V C X - U C X — K. Since the
choice of y can be relaxed, X — K is open. O
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Proposition 7.1.8. A compact Hausdorff space is normal.

Proof. A Hausdorff space X is already Tychonoff. By |Proposition 7.1.4] it suf-

fices to show each closed subset has NNP. Let K be closed subset and let U 2 K be
open. Fix ay € X — U, then y € X — K, by the proof of [Proposition 7.1.7|there are open
sets Uy 2 K and Vj, 3 y so that U, NV, =0. As X —U is closed subset of a compact
space X, X —U is compact. Since {V} }yex-u covers X —U, there are yi,...,y, € X -U
sothat V:=Jj_; Vy, 2 X —U. Define O =L, Uy,, then ONV =0, so that O 2 K and
OCcX-V=X-VCU. O

We will study locally compact Hausdorff (LCH) spaces and the measure theory on
such spaces. As suggested by the name, an LCH space is locally a compact Hausdorff
space, i.e., a normal space. So we can investigate LCH spaces by the tools on normal
space, which we introduce in the next section.

7.1.3 Fundamental Theorems on Normal Spaces: Urysohn’s
Lemma and Tietze Extension Theorem

Urysohn’s Lemma

Recall that a space is normal iff it is Tychonoff and every pair of disjoint closed sets
can be separated by disjoint neighborhoods.

In a metric space M, for any pair of disjoint closed subsets A and B there is a
function f : X — R that takes value 0 on A and 1 on B, one such choice is

d(x,B)
d(x,A)+d(x,B)’
The function is properly defined since d(x,A) + d(x,B) = 0 iff x € AN B, which never
happens as A, B are disjoint. This is a kind of extension result if we view in the fol-
lowing way: Let A be a closed subset of a metric space M, let U 2 A be open, then
A,M —U are disjoint closed subsets of M, hence any constant function on A can be
continuously extended to X, with the help of fx_y a.

We will prove the following result that extends our discussion.

faB(x)= (7.1.9)

Lemma 7.1.10 (Urysohn). Let X be a normal topological space and A,B be
(nonempty) disjoint closed subsets of X. For any closed interval [a,b], there is a con-
tinuous function f : X — [a,b] such that f|4 =a and f|p = b.

We have seen in [Proposition 7.1.8| that compact Hausdorft spaces are normal.

There are much more normal spaces:

Example 7.1.11. Metric spaces are normal. To see this, let A, B be pair of dis-
joint closed subsets of a metric space M and consider the function defined in equation

(7.1.9). one has f3'5(1) = Aand f3'5(0) =B, so U= f~'(3.3) and V := f71(-3.)
are disjoint neighborhoods of A and B. ]

We need some terminology to begin with.

Definition 7.1.12. Let X be a topological space and let A CR. A collection of
open sets {O}1en is said to be normally ascending if for every 11,45 € A,

A <A = Oi,hgo,lz.
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Such collection defined in appears when we apply

several times. To see this, let’s begin to prove Urysohn’s lemma (recall
the setting!).

Proof of Urysohn’s Let A,B be disjoint closed subsets of a
normal space X, then A € X — B =: U. By normality, A has NNP and we index those

open subsets of U (from NNP) in a special way as follows:

ACOpCOpCU; (7.1.13)

ACO114C014C012C012C034C035CU; (7.1.14)

In this way we have inductively defined {0, : 1 € A}, where

A={Zﬂk:m=1,2,...,2k—1,k21}. (7.1.15)
Clearly {O}1ea defined here is normally ascending. A is called dyadic rationals in
(0,1), which is dense in (0,1) since for each x € (0,1) we can define {[2" x]/2" }on>1/x.

It suffices to prove the case that a = 0 and b = 1. After we have obtained such f,
then g := (b—a) f + a will be the desired function in the lemma. We now construct such

f.
We continue what we have done from (7.1.13) to (7.1.15). For each x € (0,1),
define

00 inflleA:x€0,)}, x€Uca O,
X) =
1, x€X~=UaenOa-

It is clear that f|4 = 0. Moreover, since B C X —Jc4 O, flg = 1. It suffices to check
that f is continuous, which is true by [Cemma 7.1.16] O
Lemma 7.1.16. Let X be a topological space and A be a dense subset of (a,b).

Let the collection of open subsets of X, {O1} e, be normally ascending. Define f :
X — [a,b] as follows:

F) = inffAe A:xe€0,}, x€lUeaOa,
b, xeX—U/IEAO/l'

Then f is continuous.

Proof. It is enough to prove that for every ¢ € (a,b),
U:={xeX:f(x)<c} and V:i={xeX: f(x)>c}
are open, after that £~!(0) is open for every set O open in [a,b)].

Let x € (a,b), then f(x) < c if and only if x € |J; c4 O and there is A € A such
that x € 0, and A < ¢, which is the same as saying

x€<UO,1)ﬂ< U 0,1>,
AeA AeANn(a,c)
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hence U is open. Next to show V is open, we observe that

sup{ll e A:x¢0,}, x€X—(13eA02,
fx)=
a, X €NaeaOa-

We leave this as a simple exercise (to prove the equality, density of A is needed).
Therefore we can give a similar reasoning as in showing U is open to get

V=<X—ﬂ0,1)U( U OA>
AeA AeAN(c,b)
Due to normally ascending property and density of A, we have
(1 0a=()0u.
AeA AeA

which is closed, hence V is open and thus we are done. O

Tietze Extension Theorem

Now we apply Urysohn’s lemma to prove a strong extension result.

Theorem 7.1.17 (Tietze Extension). Let X be a normal topological space, K
a closed subset of X and f : K — R a continuous function.

(i) f has a continuous extension F : X — R.

(ii) If f is bounded such that f(X) C [a,b], it is possible to choose F in (i) so that
F(X) Cla,b].

It suffices to show (ii), (i) will then follow from (ii). This is because when f is
unbounded, we can choose a homeomorphism 4 : R — (—1,1) so that 4o f is bounded,
we may apply (ii) to extend ho f to F, and A~ o F will extend f.

Proof. We first assume f is bounded. We may assume a = inf f(K) and b =
sup f(K). We also assume a = —1 and b = lm

Now assume that f : K — [—1,1] is continuous so that —1 = inf f(K) and 1 =
sup f(K). We first need a general fact:

Claim. Let h: K — R be continuous so that |h| < ¢ where —c = inf hi(K), ¢ =
sup h(K), then there is g : X — [—c,c] so that

2
|g|s§onx and |h—g|S?C0nK, (7.1.18)
withinf ek (h— g)(x) = =% and sup g (h—g)(x) = ¥

Proof. Consider A := h‘l[—c,—%] and B := h™1[£,c]. Since —c = inf A(K), A is
nonempty, so is B due to similar reason. Moreover, A, B are closed in K, but K is closed
in X, so A,B are closed in X. Now by Urysohn’s lemma there is a g : X — [—%,%],
gla=-% and g|p = §. Itis easy to check is satisfied. The infimum and
supremum assertions can be proved by considering 4 — g on A and B respectively. [

(W Qtherwise we choose a canonical homeomorphism & : [a, b] = [-1, 1] by h(x) = ﬁx - gfg and let
fi=hof:K —[-1,1], extending f in desired way is the same as extending f in desired way, since if f

extends to F with |F|< 1, then -1< F <1 = a=h"'(~1)<h~' o F <h~'(1) = b, which extends f.
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Now we let & = f and ¢ = 1 in our claim, then there is continuous g; on X such that
Ig1] < % on X and |f —g1| < % on K. Nextapply h=f—gj and ¢ = %, there is continuous
g» on X such that |g| < %(%) on X and |[f —g1 —g| < (%)2 on K. Inductively, for each
n=1,2,... we can find g, so that

n-1 n

2
lgnl < 3 onX and |f—g1—~'—gn|s3—nonl(.

By the first inequality, s, := >,i_; g; converges uniformly to g := Y7, g; on X. As
each s, is continuous, g is also continuous on X. By the second inequality, f = g on
K. Finally, [g] < 1322 (2)7 = 1. L. 0

3 17%

Remark. By requiring X in[Theorem 7.1.17|be compact metric space, it is possi-

ble to prove Tietze Extension theorem by functional analysis approach. The idea is to
show that for closed subspace Y C X the linear map

F:CXX)->CY);, fvfly

is surjective which can be proved by tools developed on Banach spaces.

7.2 Locally Compact Hausdorff Spaces

We now study locally compact Hausdorff spaces by machineries developed on normal
spaces.

Definition 7.2.1. A topological space X is said to be locally compact (or LCH)
if each point in X has a neighborhood that has compact closure in X.

Definition 7.2.2. A subset A of a topological space X is said to be precompact
if A is compact in X.

By using [Definition 7.2.2) we can rephrase [Definition 7.2.1as: X is locally com-

pact if each x € X has a precompact neighborhood.

Lemma 7.2.3. Let X be an LCH space. If O is a neighborhood x € X, then there
is a precompact neighborhood V of x such that

xXevVcvVco.

Proof. Let x € O, then x has a precompact neighborhood U. Since U is compact,
hence normal. As x € ONU C U, by normality of U there is V open in U such that

xevcv’ con Since O and U are open, V is open in X and V C O is compact.[]

Proposition 7.2.4. Let K be compact subset of an LCH space X and O a neigh-
borhood of K, then there is a precompact neighborhood V of K such that

Kcvcvco.

@For ACY C X, we denote A" the closure of A with respect to subspace topology of Y.
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Proof. Let k € K, then k € O, by there is a precompact neighbor-
hood Vj, of k such that

(kycvicVyco.

Since K € Ugex V. there is ki,....k, € K such that K € U{_; Vi, € Ug=y Vi, €O.
Define V = J;_; Vi, , then V is open and precompact. (]

For a real-valued function f on a topological space, we define the support of
fbysptf={xeX:f(x)#0}. We denote C.(X) ={f € C(X) : spt f is compact} the
collection of compactly supported continuous functions on X. A function f € C.(X)
if and only if it is continuous and vanishes outside a compact set. Since

spt(f +g) S sptfUsptg,

C.(X) forms a vector space over R. Note that we also have spt(fg) C spt f Nsptg since
feg(x) # 0 implies f(x),g(x)#0and ANBC ANB.

For example, the unshaded region in Figure is spt f but f is not continuous.
By the definition of closure, spt f is the smallest closed set outside of which f vanishes,
and whenever f(x) #0, x e sptf.

Z

O

support

i R
4 )
d <
\ <
-y

~

- fEO

X

Figure 7.1: Support of f.

The following version of Urysohn’s lemma tells us constant functions on LCH
spaces as in the above picture can always be “smoothed”!

Lemma 7.2.5 (Urysohn, LCH Version). Let X be an LCH space. Let K be
compact and O a neighborhood of K, then there is f € C.(X,[0,1]) for which f =1 on
K, and f = 0 outside a compact subset of O.

Proof. Since K is compact, by [Proposition 7.2.4| there is a precompact open V

such that K €V €V € O. Now V is compact and hence normal. Since K and V -V are
disjoint sets closed in V, by Urysohn’s Lemma there is a f € C(V,[0,1]) such
that flx =1 and fly_y, =0. We extend f on X by setting f|y_3 =0. Let E be a
closed subset of [0,1]. If 0 ¢ E, then f~'(E) = (fl;»)"'(E) is closed by continuity on V..
If0€E, then f"Y(E) = (fly) ME)U(X = V) = (fly) "(E)U(X = V), the last equality
holds because ( f IV)‘I(E) 2 AV, hence f~'(E) is also closed, continuity follows.  [J

The author in [?] introduced a useful notation for functions constructed in LCH
version of Urysohn’s lemma. The notation

K<f
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means K is a compact subset of X and f € C.(X,[0,1]), flx = 1. The notation
f=<0

means that O is open, f € C.(X,[0,1]) and spt f C O.
Adopting the above notation, can be rewritten as:

Lemma 7.2.6 (Urysohn, LCH Version). Let X be an LCH space. For every
compact subset K of X and every open O 2 K, thereis f, K < f <O.

Theorem 7.2.7 (Tietze Extension, LCH Version). Let X be an LCH space
and K compact subset of X. If f € C(K), then there is F € C.(X) such that F|g = f.

As in the situation in normal space, by applying LCH version of Urysohn’s lemma
we can derive LCH version of Tietze extension theorem. This time will be easier due
to the earlier work.

Proof. Since X contains K, K has a precompact neighborhood V. Since V is
compact, V has a precompact neighborhood U:
KcvcvcucU.

Since U is a normal space and K is closed in U, by [Theorem 7.1.17|there is F € C(U)

such that F|g = f. By|[Lemma 7.1.10|there is ¢ € C-(X,[0,1]) such that K < ¢ < V.
Now we show that G := F¢ is desired extension. Firstly, G|x = F|x¢lx = f, and

secondly, both G|y _37 = 0 and GJy are continuous with (X —-V)uU =X, hence G is
continuous on X. O

Given a topological space X and a set E C X. A partition of unity on £ is a
collection

{ha € C(X,[0,1])}aea
of functions satisfying:

(i) Each x € X has a neighborhood such that A, ’s are zero except finitely many
of them.

(i) Y, cq e =10nE.

Moreover, a partition of unity {4} is subordinate to an open cover U of E if for each
a, there is U € U such that spth, C U.

Proposition 7.2.8. Let X be an LCH space, K a compact subset of X and
{Uj};?:l an open covering of K. There is a partition of unity on K subordinate to
{U; };‘:1 consisting of compactly supported functions.

Proof. Let x € K, then there is an i and a precompact neighborhood O, of x such
that Oix is contained in U;. Since K is compact, there are x1,x2,...,X, € K such that
K cUL Oy,. For j =1,2,...,n, define F; = UOT.gUi Oy,. Fj is compact (probably
empty) and F; C U;, hence there is g; € CC(X,[O,l]l) such that Fi<g; <U;.
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2T U .

-~

Figure 7.2: Partition of unity on K.

Since the open set {Z['.lzl gi >0} 2K, there is f € C-(X,[0,1]) such that K < f <
{3." 8 >0}). Henceif >, g;(x) =0, f(x)=0and if x € K, f(x) = 1, so the functions

hy = 8i
gt ga (1 f)
i=1,2,...,n, forms a partition of unity on K subordinate to {U;}}",. O

Remark. A useful form of [Proposition 7.2.8is the following: Let K be com-

pact and {U;}?_, an open cover of K in a LCH space X, then there are gi,...,8, €

C.(X,[0,1]) such that g; < U; and > g; =1 on K.

7.3 Riesz Representation Theorem and Regularity
of Measures

In this section let’s denote X a LCH space.

Definition 7.3.1. Let u be a Borel measure on X. u is said to be outer regular
if for every Borel set E,

u(E) =inf{u(U) : U 2 E,U open}
and inner regular if for every Borel set E,
U(E) =sup{u(K) : K C E,K compact}.

u is said to be regular if u is both outer and inner regular. Finally, a Borel mea-
sure u is Radon if pu is outer regular for Borel sets, inner regular for open sets and
finite for compact sets.

Remark. It can be shown that if u is a Radon measure on X and X is o-finite,

then y is regular. See for detail.

Definition 7.3.2. A linear functional A on C.(X) is said to be positive if A(f) >
0 whenever f > 0.

Theorem 7.3.3 (Riesz Representation Theorem). If A is a positive linear
functional on C.(X), then there is a unique Radon measure u on X such that A(f) =

Jx fdu forall feCe(X).
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For open set U in X we can assign it a nonnegative value
po(U) = sup{A(f): f < U} (7.3.4)
and for every set E C X we define
U(E) =inf{uo(U) : U 2 E,U open} (7.3.5)

and define u(0) = 0. Let U,V be open, U C V, then uo(U) < uo(V), and hence we can
prove that uo(U) = w(U). In the following proof we define u to be the one in (7.3.5)
and we don’t distinguish p and pg for open sets.

Proof. Our aim is to prove u defined in is the desired Radon measure, the
uniqueness part will be a simple application of Urysohn’s lemma and proved in the last
step of the proof.

Step 1 (u is an outer measure). Let E C |J;2; A;, we need to show u(E) <
Z‘;‘;l H(A;). We may assume p(A;) < co. Let € > 0 be given, then by definition in
(7.3.5)) there is an open set U; 2 A; such that

u(U) < (A7) + 2i

Now Uiz, U; 2 E is open, we have u(E) < u(Ui2, U;) by definition (7.3.5). Next to
further estimate u(UJ;2, U;) we need to use (7.3.4). Let f < U2, U;, then by compact-

ness there is an n such that spt f C (J; U;. By|Proposition 7.2.8|there is ¢1,¢2,...,¢n
such that ¢; < U; and Q)7 ¢i)lspis = 1. Now

F=)for = Af =Y A(fe) <D pUN) < Y pU) < Y u(Ai) +e.
i=1 i=1 i=1 i=1 i=1
Since this is true for each f < Jj2; U;, by taking supremum we have
u<UU,-) WICHETS
i=1 i=1

and this is true for each fixed € > 0, hence step 1 is completed.
Step 2 (u is a Borel measure). It is enough to show every open set G satisfies

WE) > W(ENG)+ uE-G). (7.3.6)

for every set E C X. To prove this, it is enough to prove (7.3.6) holds when E is opeﬂ
Let’s assume E is open. In view of definition in (7.3.4) let’s fix an f < ENG. Then fix
g <E—sptf,wehave f+g < E, and hence

H(E) = A(f+g) = Af +Ag,
this is true for every g < E —spt f, hence

ME) 2 Af +p(E—sptf) = Af +pu(E-G).

®1t is because after that for any set F C X, we can let O 2 F be open and

1(©O) > nONG)+u0-G)> u(F NG)+u(F - G).
By taking infimum, tells us wu(F) > u(F N G) + u(F — G), so that G is measurable.
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Now this is true for every f < ENG, hence
HWE) > W(ENG)+ u(E - G).

Step 3 (u is finite on compact sets). This is a consequence of the following
formula for compact set K:

w(K)=inf(Af: f > K}.

Let K be compact and U 2 K open, then by Urysohn’s lemma we can find an f
such that U > f > K, so

w(U)> Af >inf{Af: f > K}.

This is true for each open U 2 K, so by (7.3.5) u(K) > inf{Af : f > K}.
Conversely, fix an f > K, then we fix an @ € (0,1), then the set G, = {f > a} is
open and G, 2 K. For every g < G,, we have g < f/a, hence

u(K) < u(Gy) = sup{Ag : g < Gq) 7f

As this is true for every @ € (0,1), we have (K) < Af. This is true for every f > K,
H(K) <inf{Af : f > K}, completing step 3.

Step 4 (Af = [x fdu). To do this, it is enough to show Af < [y f du for every
feCo(X). Let f € Co(X) be given, then let f(X) = [a,b]. Let’s fix an € > 0 and let
Y0,¥1,Y2,- - -»Yn be such that

Y<a<y<yy<--<yp=b

with |y; —v;_1| < e foreachi = 1,2,...,n. Welet G; = f~'(y;_1,y;1Nspt f, then spt f =

"1 G;. Each G; is Borel measurable with finite measure, by (7.3.5) for each i we
can find an open set U; 2 G; such that w(U;) < u(G;) + €/n. We can further assume
fUi) € (yi-1,yi +€). Now

n
Sptf - U U;,

i=1

we can find a partition of unity {¢1,¢2,...,¢,} of spt f subordinate to {U;} with ¢; < Uj;.
Now f =", f¢; and hence

Af= Z;A(fsoi) < ZIA“” +6)¢i)

= 2@, +O)Ag;

’ i=1

n
Z (lal+yi + )Api — IaIZA%
i=1 >0

n

Z<|a| +yi+euUp) - |a|A(Zgo,>

= i=1

< > (lal + ;- 1+26)<u(G)+ )—|a|A<Zso,~>
i=1

i=1
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= (lal+ i1 +2e)§ + > (lal+yi-1 +2€)u(G;) - |a|A<Z soi)
i=1

i=1 i=1

< (lal+b+2€)e+lalu(spt )+ ) | yi-1 p(Gi) + 2 p(spt f) — lalA ( > goi)
i=1

i=1

< (|a|+b+2e)e+/xfd,u+26,u(sptf)+|a|<u(sptf)—A(Zgoi))

i=1

<0 by step 3

< (lal+b+2€)e+2eu(spt f)+ /de/,t.

We let € — 0 to conclude Af < [y fdpu.

Step 5 (u is Radon). y is outer regular for Borel sets by definition in (7.3.5). In
step 3 we have shown that u is finite for compact sets. It remains to show u is inner
regular for open sets. Recall by definition in we have for open set U,

y(U):sup{Af:f<U}:sup{/sptffd/,t:f<U} <sup{u(sptf): f <U},

hence u(U) = sup{u(spt f) : f < U}, so p is inner regular.

Step 6 (Such y is unique). Suppose there is a Radon measure v such that
Jx fdu= [x fdvforevery f € C.(X), we try to show u = v. In fact, let € > 0 be given
and let K be compact, then there is an open U 2 K such that u(U)— u(K),v(U)—-v(K) <
€. By Urysohn’s lemma there is an f suchthat K < f <U,now [y fdu= [y fdv =
Ju fdu= [y fdv,and hence

|uW(K)—v(K)| < + < 2e.

Jro 5

Since € > 0 can be fixed arbitrarily, we have u(K) = v(K). Since u and v are inner
regular for open sets, we have u(U) = v(U) for every open set U. Finally since u and v
are outer regular, we have u(E) = v(E) for every Borel set E. O

Proposition 7.3.7. Let u be a Radon measure on X .
(i) If u(E) < oo, then E is inner regular.

(ii) If X is o -finite, then u is a regular measure on X . Moreover, for every Borel
set E and fixed € > 0, there is an open U and a closed L with L C E C U and
uU-—-L)<e.

Proof. (i) Let € > 0 be given. By outer regularity we can find an open U 2 E
such that u(U) — w(E) < Let V 2 U - E be such that u(V — (U — E)) < €. Now
we expect U —V C E is a nice approximation. Since U —V is not compact, we further
choose a compact K C U such that u(U) — u(K) < €. Now the compact set K—V C E
should be good enough. Since

E-(K-V)=(E-K)U(ENYV)

@We are trying to approximate U — E from outside to get inner approximation of E, so the approximation
U of E needs not be tight.
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=(E-K)U(V-(V-E))
CU-K)u(V-(U-E)),

so we have
WE—(K-V) < u(U-K)+u(V-(U—-E)) <e+e=2e.

(i) In view of (i) to show u is inner regular, it is enough to show when y(E) = oo,
we have sup{u(K) : K C E,K compact} = co. Suppose u(E) = co. Let X =| [}2; X; with
u(X;) < oco. Then u(E) = 32, u(E N X;). So for every b > 1, there is an n such that

n
D IHENX;) > b.
i=1

By part (i) we can find a compact K; C E N X; such that u(E N X;) — u(K;) < %, now
K =/, K; is compact and u(K) > b— 1, as desired.

Let € > 0 be given, we try to prove the second statement in part (ii). Since E is o-
finite, E = ;2 E; with u(E;) < co. As u is outer regular, we can find an open U; 2 E;
such that u(U;) — u(E;) < €/2'. Let U = |J32, U; we have

pU=-E)< Y wU;i—E)< ) (Ui —Ep) < €.
i=1 i=1

Similarly we can find an open set V 2 E€ such that y(V — E€) < €. Hence

uU-V)Y<u(U-E)+ u(E-V) <e+e=2e.
=V-E¢
Note that L = V¢ C E is closed. O

Definition 7.3.8. A set A in a topological space Y is o-compact if A is a count-
able union of compact sets in Y.

A useful case is that every open set in a second countable LCH space is o-
compact.

Theorem 7.3.9. If every open set in X is o--compact, then every Borel measure
on X that is finite on compact sets is regular.

Proof. Let ube a Borel measure on X that is finite on compact sets, then A(f) :=
Jx f du defines a positive functional on C.(X), hence there is a Radon measure v on X
such that [y fdu= [y fdv forevery f € Co(X). Let U be open, then U = |J;2, K; for
some compact sets K;. Let K| < f1 < U, and for each n > 2 we construct

n n-1
UK,‘U ( U Sptfl') < fan<U,
i=1

i=1

then {f,,} is pointwise increasing and lim, .« f,,(x) = Yy (x). Now
w(U) = lim/ fody= lim / Fudy = v(U). (73.10)
n—oo Jy n—o Jx
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So p and v agree on open set@

Since v is Radon and X is o-compact, X is o-finite w.r.t. v. Let E be Borel
and € > 0 be given, by we can find open V and closed L such that
LCECVand v(V-L)<e. Since V- L is open, by we have u(V-L) <€
and therefore

p(V)< p(E)+e,  (E) < p(L)+e.

The first inequality shows that E is outer regular. Since there are compact sets L; such
that L = J;2; L;, we have u(L) = lim,, o (U7~ L;), s0 p is also inner regular. O

®)We are not yet done because u is not necessarily outer regular.
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