Orthogonal Projection onto Finite Dimensional Subspaces;
Minimizer Obtained by Orthogonal Projections

Key Questions

- What is orthogonal projection?
- Let $P_{W}: V \rightarrow W$ be orthogonal projection onto W (finite dimensional!), what properties do $P_{W} v$ have?
- How to use the concept of orthogonal projection to solve minimizing problems in linear algebra?

Problem 1. Let V be an inner product space. Suppose W is a finite dimensional subspace of V, let's choose α and β be two orthogonal bases of W, then we can perform orthogonal projection onto W by using either one of bases.

Question: Explain why are the orthogonal projections constructed by using α and β onto W the same?

Remark. Which means that whenever we obtain an orthogonal basis of a subspace, we can freely choose this basis to perform orthogonal projection. Choice is not a matter $)$.

Solution.

Problem 2. Let $y=\left[\begin{array}{l}7 \\ 4 \\ 7\end{array}\right]$ and let V be a subspace of \mathbb{R}^{3} spanned by

$$
u_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \text { and } \quad u_{2}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]
$$

(a) Find a $u \in V$ that is closest to y by orthogonal projection.
(b) Find a $u \in V$ that is closest to y by constructing a normal equation.
(c) Find a $u \in V$ that is closest to y by property of minimizing element.
(d) Construct a matrix $P \in M_{3 \times 3}(\mathbb{R})$ such that

$$
\|x-P x\| \leq\|x-v\|
$$

for all $x \in \mathbb{R}^{3}$ and $v \in V$. What is $P y$?

Solution.

Problem 3. Find $p \in \mathbb{P}_{3}$ such that $p(0)=0, p^{\prime}(0)=0$ and

$$
\int_{0}^{1}(2+3 x-p(x))^{2} d x
$$

is as small as possible.

Solution.

Problem 4. Let $A \in M_{m \times n}(\mathbb{R})$, prove that A is injective if and only if A^{T} is surjective.
Solution.

Problem 5. Let $m \leq n$ and $b, a_{1}, \ldots, a_{m} \in \mathbb{R}^{n}$. Show that if

$$
a_{1} \cdot v=a_{2} \cdot v=\cdots=a_{m} \cdot v=0 \Longrightarrow b \cdot v=0, \quad \text { for every } v \in \mathbb{R},
$$

then b is a linear combination of a_{i} 's.

Solution.

Problem 6. Let $A \in M_{n \times n}(\mathbb{R})$ be such that $A^{2}=A$. Prove that the following are equivalent:
(i) A is an orthogonal projection (i.e., $\operatorname{Nul} A \perp \operatorname{Col} A$).
(ii) A is symmetric (i.e., $A^{T}=A$).

Solution.

