Inner Product, "Norm" (i.e., "Length");
Orthogonal and Orthonormal Sets, Orthogonal Complement;
Gram-Schmidt Orthogonalization Process

Key Questions

- What is an inner product on a vector space?
- What do we mean by orthogonal set and orthonormal set?
- What is orthogonal complement? What properties does it have?
- What is Gram-Schmidt orthogonalization process?

Problem 1. For $\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{T},\left(b_{1}, b_{2}, \ldots, b_{n}\right)^{T} \in \mathbb{R}^{n}$, we have the celebrated Cauchy-Schwarz inequality:

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) .
$$

This follows easily from the fact that dot product is an inner product on \mathbb{R}^{n}. Prove that all roots of $P(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ lie in the open disk

$$
\left\{z \in \mathbb{C}:|z|<\sqrt{1+\left|a_{n-1}\right|^{2}+\cdots+\left|a_{1}\right|^{2}+\left|a_{0}\right|^{2}}\right\} .
$$

Solution.

Problem 2. Let $\langle\cdot, \cdot\rangle$ be a function on $M_{n \times n}(\mathbb{R}) \times M_{n \times n}(\mathbb{R})$ given by

$$
\langle A, B\rangle=\operatorname{Tr}\left(B^{T} A\right) .
$$

(a) Show that $\langle\cdot, \cdot\rangle$ is an inner product.
(b) In particular, consider $n=2$. Let $M_{2 \times 2}(\mathbb{R})$ have the inner product defined above, determine if

$$
S=\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} & 0
\end{array}\right],\left[\begin{array}{cc}
\frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} & 0
\end{array}\right]\right\}
$$

is orthogonal.

Solution.

Problem 3. Show that on $C[a, b]$,

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

defines an inner product.

Solution.

Problem 4.

(a) Find an orthogonal basis of $\left.\mathbb{P}\right|_{[0,1]}:=\left\{\left.p\right|_{[0,1]}: p \in \mathbb{P}_{2}\right\}$ with inner product defined by $\langle p, q\rangle=\int_{0}^{1} p q d x$.
(b) From (a), construct an orthogonal basis of $\left.\mathbb{P}\right|_{[-\pi, \pi]}:=\left\{\left.p\right|_{[-\pi, \pi]}: p \in \mathbb{P}_{2}\right\}$ with inner product defined by $\langle p, q\rangle=\int_{-\pi}^{\pi} p q d x$.

Solution.

Problem 5. Let V be an inner product space, prove that $\langle u, v\rangle=0$ if and only if $\|u\| \leq\|u+a v\|$ for every $a \in \mathbb{R}$.

Solution.

