Math2121 (Spring 2012-2013)

Tutorial Note 8

Eigenvalues and Eigenvectors for Square Matrices;
Algebraic and Geometric Multiplicity of Eigenvalues; Diagonalization

Key Questions

- What are eigenvalue, eigenspace and eigenvector?
- What is characteristic polynomial of a matrix?
- Given an eigenvalue λ of a square matrix, what do we mean by algebraic multiplicity of λ ?
- What is the meaning of diagonalizability? What is its relation with eigenvalues?

Problem 1. What is the characteristic polynomial of $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$?

Solution.

Problem 2. Prove that if

then $a_{11}, a_{22}, \ldots, a_{n n}$ are all eigenvalues of A.
Solution.

Problem 3. Let $A=\left[\begin{array}{ll}3 & 2 \\ 0 & 4\end{array}\right]$, find all eigenvalues and eigenvectors of A.

Solution.

Problem 5. Is $\left[\begin{array}{lll}1 & 6 & 5 \\ 0 & 2 & 4 \\ 0 & 0 & 3\end{array}\right]$ diagonalizable? How about $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$?
Solution.

Problem 6. Is $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$ diagonalizable? If it does, find its diagonalization.
Solution.

Problem 7. Let $A \in M_{n \times n}(\mathbb{R})$, show that for any $\epsilon>0$, there is t with $0<|t|<\epsilon$ such that $A-t I$ is invertible.
Remark. From that the equality

$$
\operatorname{det}(I+A B)=\operatorname{det}(I+B A)
$$

easily follows, where A, B are matrices such that $A B$ and $B A$ are square and I is "an" identity matrix that is of appropriate size (two symbols I means different identity matrices). If one is interested, first assume that A, B are both square, and then extend the result to general case.

Solution.

Problem 8. Let $A \in M_{m \times n}(\mathbb{R})$ and $\operatorname{dim} \operatorname{Col} A=k$, show that A has at most $k+1$ distinct eigenvalues.

Solution.

