Math2121 (Spring 2012-2013)

Coordinates and Matrix Representations of Linear
Transformations; Generalized Nullity-Rank Theorem

Key Questions

- What is the coordinate vector of a vector w.r.t. a basis?
- What is the matrix representation of a linear transformation when bases are given?
- What is the general version of nullity-rank theorem?
- What is a transition matrix from one basis to another basis?

Problem 1. Let $A=\left[\begin{array}{lll}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{array}\right]$ and $\beta=\left\{\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}6 \\ 2 \\ 5\end{array}\right]\right\}$. We have shown that A is invertible and $A^{-1}=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$ vector of $b=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ w.r.t. β.

Solution.

Problem 2. Let the linear map $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{4}$ be defined by

$$
(T p)(x)=\frac{d p}{d x}(x)+x^{2} p(x)
$$

Let $\alpha=\left\{1, x, x^{2}\right\}$ and $\beta=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$, find $[T]_{\alpha}^{\beta}$. Is T injective?

Solution.

Problem 3. Let $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, define a linear map $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ by

$$
T(A)=M A
$$

Find $[T]_{\beta}$, where

$$
\beta=\left\{E_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], E_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], E_{3}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], E_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

Solution.

Problem 5. Let $B \in M_{n \times n}(\mathbb{R})$. Suppose $B^{k}=0$ for some $k \in \mathbb{N}$, show that every matrix in $M_{n \times n}(\mathbb{R})$ has the form $B A-A$, for some $A \in M_{n \times n}(\mathbb{R})$.

Solution.

Problem 6 (Interpolation Problem). Let $a_{1}, a_{2}, \ldots, a_{n+1}$ be $n+1$ distinct numbers on the x-axis. Given $b_{1}, b_{2}, \ldots, b_{n+1} \in \mathbb{R}$, show that there is a polynomial $p \in \mathbb{P}_{n}$ such that

$$
p\left(a_{1}\right)=b_{1}, \quad p\left(a_{2}\right)=b_{2}, \quad \ldots, \quad p\left(a_{n+1}\right)=b_{n+1}
$$

Solution.

Definition. Let V be a real vector space, the vector space

$$
V^{*}:=\mathcal{L}(V, \mathbb{R})
$$

of all linear maps from V to \mathbb{R} is called the dual space of V.
Basic Fact. When $\operatorname{dim} V<\infty$, we can give V a basis $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, then the linear maps $v_{1}^{*}, v_{2}^{*}, \ldots, v_{k}^{*}$ defined by

$$
v_{i}^{*}\left(v_{j}\right)=\delta_{i j}, \quad j=1,2, \ldots, k
$$

form a basis of V^{*}. Hence $\operatorname{dim} V=\operatorname{dim} V^{*}$.
Problem 7. Let $M_{n \times n}(\mathbb{R})$ denote the vector space of all $n \times n$ matrices. For every $C \in M_{n \times n}(\mathbb{R})$, define the linear map $T_{C}: M_{n \times n}(\mathbb{R}) \rightarrow \mathbb{R}$ in the following way

$$
T_{C}(A)=\operatorname{Tr}(C A), \quad \text { for each } A \in M_{n \times n}(\mathbb{R})
$$

It is clear that $T_{C} \in\left(M_{n \times n}(\mathbb{R})\right)^{*}$, show that actually,

$$
\left(M_{n \times n}(\mathbb{R})\right)^{*}=\left\{T_{C}: C \in M_{n \times n}(\mathbb{R})\right\} .
$$

Solution.

