Math2121 (Spring 2012-2013)

Important Subspaces of \mathbb{R}^{n}, Row, Column Spaces;
Rank-Nullity Theorem

Key Questions

- What are $\operatorname{Nul} A$ and $\operatorname{Col} A$ for a given matrix A ?
- What is the standard way to compute the basis of column space and null space of a given matrix?
- What is rank? What is nullity? What is rank-nullity theorem?

Problem 1. Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & -2 & 3 \\
2 & 4 & -3 & 4 \\
5 & 10 & -8 & 11
\end{array}\right]
$$

find $\operatorname{dim} \operatorname{Nul} A$.

Solution.

Problem 2. Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & -2 & 3 \\
2 & 4 & -3 & 4 \\
5 & 10 & -8 & 11
\end{array}\right]
$$

find $\operatorname{dim} \operatorname{Col} A$.

Solution.

Problem 3. Let A be an $n \times n$ matrix, show that the following are equivalent:
(a) A is injective.
(b) A is surjective.
(c) A is invertible.

Solution.

Problem 4. Let $S \in M_{n \times n}(\mathbb{R})$ be skew-symmetric (i.e., $S^{T}=-S$), show that $I+S$ is invertible.
Solution.

Problem 5. Let $A \in M_{m \times k}(\mathbb{R})$ and $B \in M_{k \times n}(\mathbb{R})$, then $A B \in M_{m \times n}(\mathbb{R})$, prove that $\operatorname{dim} \operatorname{Nul}(A B) \leq \operatorname{dim} \operatorname{Nul} A+\operatorname{dim} \operatorname{Nul} B$.

Solution.

Problem 6. Prove that if $A \in M_{2 \times 4}(\mathbb{R})$ satisfy

$$
\operatorname{Nul} A=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \in \mathbb{R}^{4}: x_{1}=5 x_{2}, x_{3}=7 x_{4}\right\}
$$

then $x \mapsto A x$ is surjective.

Solution.

