Key Questions

- Again, what are vector spaces?
- What are finite dimensional vector spaces?
- What is a basis of a finite dimensional vector space?
- What do we mean by dimension of a vector space?
- Which vector spaces are infinite dimensional?

Problem 1. Show that $\mathbb{R}^{n}, M_{m \times n}(\mathbb{R}), \mathbb{P}_{n}$ are all finite dimensional vector spaces. What are their bases?

Solution.

Problem 2. Show that

$\mathbb{P}=\{$ polynomial with real coefficient $(\mathrm{s})\} \quad$ and $\quad C(\mathbb{R})$ are infinite dimensional.

Solution.

Problem 3. Find a basis of the vector space

$$
\mathcal{F}=\{f:\{1,2, \ldots n\} \rightarrow \mathbb{R}\}
$$

which has naturally defined addition and scalar multiplication.

Solution.

Problem 4. If U is a subspace of V and $\operatorname{dim} U=\operatorname{dim} V<\infty$, show that $U=V$. Hence, prove that for given $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{3}$, if the vector equation

$$
x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}=b
$$

has no solution of some $b \in \mathbb{R}^{3}$, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent.

Solution.

Problem 5. Let $\operatorname{Tr}\left[a_{i j}\right]_{n \times n}=a_{11}+a_{22}+\cdots+a_{n n}$, show that

$$
V=\left\{A \in \mathbb{R}^{n \times n}: \operatorname{Tr} A=0\right\}
$$

is a subspace of $\mathbb{R}^{n \times n}$, what is its dimension?

Solution.

Problem 6. Determine which of the following sets are bases for \mathbb{R}^{3} :
(a) $\left\{(1,0,-1)^{T},(2,5,1)^{T},(0,-4,3)^{T}\right\}$
(b) $\left\{(2,-4,1)^{T},(0,3,-1)^{T},(6,0,-1)^{T}\right\}$
(c) $\left\{(1,2,-1)^{T},(1,0,2)^{T},(2,1,1)^{T}\right\}$
(d) $\left\{(-1,3,1)^{T},(2,-4,-3)^{T},(-3,8,2)^{T}\right\}$
(e) $\left\{(1,-3,-2)^{T},(-3,1,3)^{T},(-2,-10,-2)^{T}\right\}$

Solution.

Problem 7. Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, prove that $\operatorname{rank}(A B) \leq \min \{\operatorname{rank} A, \operatorname{rank} B\}$.

Solution.

