Matrix Operations;
Inverse, Transpose and Elementary Matrices; Determinants

Key Questions

- How to perform matrix multiplication?
- How to find inverse by elementary row operations?
- What is the transpose of a matrix?
- What are elementary matrices?
- What is the determinant of a 2×2 matrix?
- How to compute determinants by means of cofactor expansion?
- What are the useful computational rules of determinants that avoid tedious expansion?
- Why do we need to study determinants?
- When $n=2$, how is $A(T(E))$ related to T and E ? Also when $n=3$, how is $V(T(E))$ related to T and E ? Here T is linear, A denotes area and V denotes volume.

Problem 1. Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad B=\left[\begin{array}{cc}
7 & 8 \\
9 & 10
\end{array}\right], \quad u=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad \text { and } \quad v=\left[\begin{array}{ll}
1 & 1
\end{array}\right] .
$$

Compute $B u, v A, B A$ and $v B u$.

Solution.

Problem 2. Let

$$
A=\left[\begin{array}{lll}
3 & 2 & 6 \\
1 & 1 & 2 \\
2 & 2 & 5
\end{array}\right]
$$

compute A^{-1} by elementary row operations.

Solution.

Problem 3. Find A^{T} and B^{T}, where

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Solution.

Problem 4. Let $C=\left[c_{i j}\right]_{n \times n} \in M_{n \times n}(\mathbb{R})$, we define the trace of C to be

$$
\operatorname{Tr} C=c_{11}+c_{22}+\cdots+c_{n n},
$$

i.e., $\operatorname{Tr} C$ is the sum of all diagonal entries. Let $A \in M_{n \times k}(\mathbb{R})$ and $B \in M_{k \times n}(\mathbb{R})$, then $A B$ and $B A$ are square matrices, show that

$$
\operatorname{Tr}(A B)=\operatorname{Tr}(B A) .
$$

Solution.

Problem 5. Show that
$\left|\begin{array}{ccc}1 & -1 & 3 \\ 1 & 0 & -1 \\ 2 & 1 & 6\end{array}\right|=12 \quad$ and $\quad\left|\begin{array}{cccc}3 & 2 & 0 & 0 \\ 5 & 1 & 2 & 0 \\ 2 & 6 & 0 & -1 \\ -6 & 3 & 1 & 0\end{array}\right|=-49$.

Solution.

Problem 6. Show that

$$
\left|\begin{array}{ccc}
a+b+2 c & a & b \\
c & b+c+2 a & b \\
c & a & c+a+2 b
\end{array}\right|=2(a+b+c)^{3} .
$$

Solution.

Problem 7. Show that

$$
\left|\begin{array}{ccc}
a^{2} & b c & c^{2}+c a \\
a^{2}+a b & b^{2} & c a \\
a b & b^{2}+b c & c^{2}
\end{array}\right|=4 a^{2} b^{2} c^{2} .
$$

Solution.

