Linear Transformations

Key Questions

- What are linear transformations? (see page 1 of note 4)
- How to obtain a matrix of a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} ?

Problem 1. In tutorial note 2 we know that $C[0,1]$ is a vector space with naturally defined addition and scalar multiplication. Show that $T: C[0,1] \rightarrow C[0,1]$ defined by

$$
(T f)(x)=\int_{0}^{x} f(t) d t
$$

is linear. Moreover, find all the solution of $T f=0$. i.e., what is $\{f \in C[0,1]: T f=$ $0\}$?

Solution.

Problem 2.

(a) Find a matrix R_{θ} that rotates a point $p \in \mathbb{R}^{2}$ by an angle θ counter-closckwise about the origin.
(b) Also find a matrix B that reflects a point along the diagonal $y=x$.
(c) Finally, find one that reflects a point along the line $y=\tan \alpha x$, where $\alpha \in[0, \pi / 2]$. Solution.

Problem 3. Determine which of the following maps are linear transformations.
(a) The transformation T defined by $T\left(x_{1}, x_{2}\right)^{T}=\left(2 x_{1}-3 x_{2}, x_{1}+4,5 x_{2}\right)^{T}$.
(b) The transformation T defined by $T\left(x_{1}, x_{2}\right)^{T}=\left(4 x_{1}-2 x_{2}, 3\left|x_{2}\right|\right)^{T}$.
(c) The transformation T defined by $T\left(x_{1}, x_{2}, x_{3}\right)^{T}=\left(1, x_{2}, x_{3}\right)^{T}$.
(d) The transformation T defined by $T\left(x_{1}, x_{2}, x_{3}\right)^{T}=\left(x_{1}, 0, x_{3}\right)^{T}$.
(e) The transformation T defined by $T\left(x_{1}, x_{2}, x_{3}\right)^{T}=\left(x_{1}, x_{2},-x_{3}\right)^{T}$.

Solution.

Problem 4. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Determine whether or not T is one-to-one in each of the following situations:
\qquad (a) When $n>m$.
\qquad (b) When $n=m$.

- (c) When $n<m$.

Fill the symbols A, B and C in \qquad defined below:

A T is a one-to-one transformation.
B T is not a one-to-one transformation.There is not enough information to tell.

Solution.

Problem 5. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Let A be the standard matrix of T.

Fill the correct symbols A, B and C in \qquad for each of the following situations.
\qquad (a) If every row in the row echelon form of A has a pivot.
(b) If the row echelon form of A has a row of zeros.
- (c) If two rows in the row echelon form of A do not have pivots.
(d) If the row echelon form of A has a pivot in every column.

Where:
A T is not onto.
B T is onto.
C there is not enough information to tell.
Solution.

