Math2121 (Spring 2012-2013)

Vector Spaces, Linear Span and Linear Independence

Key Questions

- What are vector spaces?
- What is linear span?
- What is linear independence?

Problem 1. How to define (i) additions and (ii) scalar multiplications that make the following sets into vector spaces?
(a) $\mathbb{R}^{\infty}:=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right): a_{1}, a_{2}, a_{3}, \cdots \in \mathbb{R}\right\}$
(b) $C[a, b]$ and $\mathcal{R}[a, b]$
(c) $\mathbb{P}_{n}:=\left\{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}: a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}\right\}$
(d) $M_{m \times n}(\mathbb{R}):=\left\{\left[a_{i j}\right]_{m \times n}: a_{i j} \in \mathbb{R}, i=1,2, \ldots, m, j=1,2, \ldots, n\right\}$

Solution.

Problem 2. By definition, what is the span of

$$
V=\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
-2
\end{array}\right]\right\} ?
$$

Also, is $b=\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 3\end{array}\right]$ in the span of V ?
Solution.

Problem 3. If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are linearly independent in a vector space V, can some of v_{i} 's be zero vector?

Solution.

linearly independent?
Solution.

Problem 5. Show that every set of $n+1$ vectors in \mathbb{R}^{n} must be linearly dependent. Solution.

Problem 6. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be distinct real numbers, show that $\left\{e^{\alpha_{1} t}, e^{\alpha_{2} t}, \ldots, e^{\alpha_{n} t}\right\}$ is linearly independent in $C(\mathbb{R})$.

Solution.

Problem 7 (Wronskian). Let $f_{1}, f_{2}, \ldots, f_{n}$ be $n-1$ times differentiable functions on their common domain. Prove that if

$$
\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \ddots & \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|\left(x_{0}\right) \neq 0,
$$

for some x_{0}, then $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ is linearly independent. As an application, show that $\left\{x, x e^{x}, x^{2} e^{x}\right\}$ is linearly independent.

In this problem we take the following result for granted: $\operatorname{det} A \neq 0$ iff A is invertible. We will introduce the concept of determinants in tutorial note 5 .

Solution.

