Math3033 (Fall 2013-2014)

Tutorial Note 10

Lebesgue Integration and Convergence Theorems

• Key Definitions and Results

Definition 1. A function *f* is said to be **simple** if it is of the form $f = \sum_{i=1}^{n} a_i \chi_{A_i}$ for some $a_i \in \mathbb{R}$ and measurable sets A_i .

Equivalently, $f : E \to \mathbb{R}$ is **simple** if it is measurable and takes only finitely many values in its range.

Definition 2. Given a function $f : E \to \mathbb{R}$, we call

 $f^+ = \max\{f(x), 0\}$ and $f^- = \max\{-f(x), 0\}$

the **positive part** and **negative part** of *f* respectively.

Definition 3. Let $f : E \to \mathbb{R}$ be measurable. If at least one of $\int_E f^+ dm$ and $\int_E f^- dm$ is finite, then we define the **Lebesgue integral of** *f* **over** *E* **by**

$$\int_E f \, dm = \int_E f^+ \, dm - \int_E f^- \, dm.$$

Definition 4. A function $f : E \to \mathbb{R}$ is said to be **Lebesgue integrable** if it is measurable and $\int_E |f| dm = \int_E f^+ dm + \int_E f^- dm < \infty$.

Theorem 5 (Other Formulation). For a measurable $f : E \to [0,\infty)$,

$$\int_E f \, dm = \sup_{\substack{0 \le \phi \le f \\ \phi \text{ simple}}} \int_E \phi \, dm^{(*)}.$$

Theorem 6 (Equality of Integrals). If f is Riemann integrable on [a,b], then f is measurable and

$$\int_{[a,b]} f \, dm = \int_a^b f(x) \, dx.$$

Theorem 7 (Simple Properties of Lebesgue Integral). Let $f,g: E \to \mathbb{R}$ be measurable whose integral can be defined.

(i)
$$\int_{E} (f \pm g) dm = \int_{E} f dm \pm \int_{E} g dm$$
 (if RHS is not of the form $\infty - \infty$).
(ii) For every $c \in \mathbb{R}$, $\int_{E} cf dm = c \int_{E} f dm$ (treat $0 \cdot \infty = 0$).

(iii) If $f \le g$ a.e. on E, then $\int_E f \, dm \le \int_E g \, dm$, equality holds iff f = g a.e.. (iv) $\left| \int_E f \, dm \right| \le \int_E |f| \, dm$. (v) For disjoint measurable $S, T \subseteq E$, $\int_{S \sqcup T} f \, dm = \int_S f \, dm + \int_T f \, dm$. (vi) Let $f \ge 0$, then $A \subseteq B \subseteq E \implies \int_A f \, dm \le \int_B f \, dm$.

Theorem 8 (Monotone Convergence, MCT).

• Increasing Version. Let $f_1, f_2, \dots : E \to [0, \infty)$ be measurable functions. Suppose for a.e. $x \in E$, $f_1(x) \le f_2(x) \le \dots^{(\dagger)}$ and $\lim_{n \to \infty} f_n(x) \in \mathbb{R}$, then

$$\lim_{n \to \infty} \int_E f_n \, dm = \int_E \lim_{n \to \infty} f_n \, dm$$

• **Decreasing Version.** Let $f_1, f_2, \dots : E \to \mathbb{R}$ be measurable functions. Suppose for a.e. $x \in E$, $f_1(x) \ge f_2(x) \ge \dots$ and $\lim_{n \to \infty} f_n(x) \in \mathbb{R}$, then

$$\int_E f_1 \, dm < \infty \implies \lim_{n \to \infty} \int_E f_n \, dm = \int_E \lim_{n \to \infty} f_n \, dm.$$

Theorem 9 (Lebesgue Dominated Convergence, LDCT). Let f_1, f_2, \dots : $E \to \mathbb{R}$ be measurable functions. Suppose that:

- (i) f_n converges pointwise for a.e. $x \in E$.
- (ii) There is a Lebesgue integrable $g: E \to \mathbb{R}$ s.t. $|f_n| \le g$ a.e. on $E, \forall n \in \mathbb{N}$.

Then $\lim_{n \to \infty} f_n$ measurable on *E*, moreover,

$$\lim_{n\to\infty}\int_E f_n\,dm=\int_E\lim_{n\to\infty}f_n\,dm.$$

Theorem 10 (Monotone Set). Let $f : \mathbb{R} \to \mathbb{R}$ be Lebesgue integrable.

(i)
$$\{A_n\} \nearrow \Longrightarrow \lim_{n \to \infty} \int_{A_n} f \, dm = \int_{\lim_{n \to \infty} A_n} f \, dm = \int_{\bigcup_{n=1}^{\infty} A_n} f \, dm$$

(ii) $\{A_n\} \searrow \Longrightarrow \lim_{n \to \infty} \int_{A_n} f \, dm = \int_{\lim_{n \to \infty} A_n} f \, dm = \int_{\bigcap_{n=1}^{\infty} A_n} f \, dm$.

^(*) A proof can be found in page 85 of transparency of this course.

^(†) We say that $\{f_n\}$ (or f_n) is **pointwise increasing**. The term **pointwise decreasing** is similarly defined.

Example 1 (Positivity on *E*, m(E) > 0). Let $f : A \to \mathbb{R}$ be measurable functions. Suppose that $E \subseteq A$ is measurable and f(x) > 0 for each $x \in E$, show that

$$m(E) > 0 \implies \int_E f \, dm > 0$$

without using Chebyshev's Inequality.

Solution. Idea. Since for each $x \in E$ the inequality f(x) > 0 holds, we can make use of this inequality to describe the set *E*.

Assume m(E) > 0. Now for each $x \in E$, f(x) > 0, so there is an $n \in \mathbb{N}$ such that f(x) > 1/n, i.e.,

$$x \in \left\{ t \in E : f(t) > \frac{1}{n} \right\} =: E_n,$$

for some *n*, therefore $x \in \bigcup_{n=1}^{\infty} E_n$. The implication says that $E \subseteq \bigcup_{n=1}^{\infty} E_n$. As by definition $E_n \subseteq E$ for each *n*, we have $E = \bigcup_{n=1}^{\infty} E_n$.

By subadditivity of Lebesgue measure,

$$0 < m(E) \le \sum_{n=1}^{\infty} m(E_n)$$

so there must be an *n* such that $m(E_n) > 0$. Now we have

$$f > \frac{1}{n}$$
 on E_n and $f > 0$ on $E \setminus E_n$,

therefore we have

$$f\chi_{E_n} + f\chi_{E\setminus E_n} > \frac{1}{n}\chi_{E_n} + 0\chi_{E\setminus E_n} \text{ on } E \quad \Longleftrightarrow \quad f > \frac{1}{n}\chi_{E_n} \text{ on } E.$$

Integration on both sides yields

$$\int_E f(x) \, dm \ge \frac{1}{n} m(E_n) > 0.$$

Remark. Note that we have an important corollary here:

Corollary. Suppose that $f : A \to [0,\infty)$ is measurable. If $\int_A f \, dm = 0$, then f = 0 a.e. on A.

Proof. Define $E := \{x \in A : f(x) > 0\}$, then we have f > 0 on E (by definition) and since $E \subseteq A$ we have

$$0 \leq \int_E f \, dm \leq \int_A f \, dm = 0 \implies \int_E f \, dm = 0.$$

Therefore by the contrapositive of the statement in Example 1, we have

$$\int_E f \, dm = 0 \implies m(E) = 0,$$

we can conclude $f \le 0$ a.e. on A. Since $f \ge 0$ on A, we have f = 0 a.e. on A.

Remark. Note that if we take the corollary for granted (namely, suppose that we can prove this statement in another way), then the statement in Example 1 can be proved in the following way:

Suppose m(E) > 0 and f > 0 on E, if it happens that $\int_E f \, dm = 0$, then f = 0 a.e. on E. Namely, $m(E) = m(E \cap \{x : f(x) = 0\}) > 0$, which implies that $E \cap \{x : f(x) = 0\} \neq \emptyset$, a contradiction to that f > 0 on E.

Exercise 1. Suppose $f : A \to \mathbb{R}$ is nonnegative measurable or Lebesgue integrable, then for any $c \in \mathbb{R}$ and measurable $E \subseteq A$ such that $E + c \subseteq A$, show that

$$\int_E f \, dm = \int_{E+c} f(x-c) \, dm(x).$$

Hint: Try to use Theorem 5. First, prove the result is true when f is a simple function; second, we assume $f \ge 0$; third, translate the result to general integrable functions by using the definition: $\int_E f \, dm = \int_E f^+ \, dm - \int_E f^- \, dm$.

Example 2. Let $f : \mathbb{R} \to [0,\infty)$ be measurable such that $\int_{\mathbb{R}} \sqrt[3]{f} dm, \int_{\mathbb{R}} f^3 dm < \infty$, prove that

 $\int_{\mathbb{R}} f\,dm < \infty.$

Solution. Method 1. By AM-GM inequality $\frac{a+b+c+d}{4} \ge \sqrt[4]{abcd}$ for $a, b, c, d \ge 0$, we have

$$f \le \frac{f^3 + \sqrt[3]{f} + \sqrt[3]{f} + \sqrt[3]{f}}{4} = \frac{1}{4}f^3 + \frac{3}{4}\sqrt[3]{f},$$

therefore

$$\int_{\mathbb{R}} f \, dm \le \frac{1}{4} \int_{\mathbb{R}} f^3 \, dm + \frac{3}{4} \int_{\mathbb{R}} \sqrt[3]{f} \, dm < \infty$$

Method 2. We want to compare f with $\sqrt[3]{f}$ and f^3 , but

•
$$f \leq \sqrt[3]{f}$$
 only when $f(x) \in [0,1] \iff x \in f^{-1}[0,1]$; and
• $f \leq f^3$ only when $f(x) \in [1,\infty) \iff x \in f^{-1}[1,\infty)$,

it follows that

$$\begin{split} \int_{\mathbb{R}} f \, dm &= \int_{f^{-1}[0,1]} f \, dm + \int_{f^{-1}(1,\infty)} f \, dm \\ &\leq \int_{f^{-1}[0,1]} \sqrt[3]{f} \, dm + \int_{f^{-1}(1,\infty)} f^3 \, dm \\ &\leq \int_{\mathbb{R}} \sqrt[3]{f} \, dm + \int_{\mathbb{R}} f^3 \, dm \\ &< \infty. \end{split}$$

Exercise 2. Let $f : \mathbb{R} \to [0,\infty)$ be Lebesgue integrable.

(a) Show that for any r > 0, $\int_{[r,\infty)} \frac{f(x)}{x} dm < \infty$.

(b) If further f(0) = 0 and f'(0) eixsts, then show that $\int_{(0,\infty)} \frac{f(x)}{x} dx < \infty$.

Example 3. Let $f : E \to [0,\infty)$ be Lebesgue integrable and $\int_E f \, dm = c \in (0,\infty)$. Prove (2) in the following equalities:

$$\lim_{n \to \infty} \int_E n \ln\left(1 + \left(\frac{f}{n}\right)^{\alpha}\right) dm = \begin{cases} \infty, & \text{if } \alpha \in (0,1), \\ c, & \text{if } \alpha = 1, \\ 0, & \text{if } 1 < \alpha < \infty. \end{cases}$$
(2)

Solution. When $\alpha = 1$, we need to prove

$$\lim_{n \to \infty} \int_E \ln\left(1 + \frac{f}{n}\right)^n dm = \int_E f \, dm.$$

Note that for every $y \ge 0$,

$$\left(1+\frac{y}{n}\right)^n \nearrow e^y$$

we prove this in the remark below. Therefore we have

$$\ln\left(1+\frac{f(x)}{n}\right)^n \nearrow f(x)$$

pointwise on E, so we are done by using MCT.

Remark. Method 1. This method is elementary. We fix a $y \in [0,\infty)$, by AM-GM inequality,

$$\left(\left(1+\frac{y}{n}\right)^n \cdot 1\right)^{\frac{1}{n+1}} \le \frac{n(1+\frac{y}{n})+1}{n+1} \iff \left(1+\frac{y}{n}\right)^n \le \left(1+\frac{y}{n+1}\right)^{n+1}$$

Method 2. This method is nonelementary, but very routine. Let's define $f(x) = (1 + \frac{y}{x})^x$ and show that f is increasing on $(0,\infty)$. For this, note that $f'(x) > 0 \iff \ln \frac{x+y}{x} > \frac{y}{x+y} = 1 - \frac{x}{x+y}$. Put $u = \frac{x+y}{x}$, the above inequality becomes $\ln u > 1 - 1/u$, where u > 1.

Exercise 3. Prove (1) and (3) in the equalities given in Example 3.

Exercise 4 (Corollaries of MCT). Prove the important corollaries of MCT:

Interchangeability of Summation and Integration Let $f_1, f_2, \dots : E \to [0, \infty)$ be measurable functions, if $\sum_{n=1}^{\infty} f_n(x) < \infty$ for a.e. $x \in E$, then

$$\int_E \sum_{n=1}^{\infty} f_n(x) dm = \sum_{n=1}^{\infty} \int_E f_n(x) dm$$

Countable Additivity as a Set Function Let $f : E \to [0,\infty)$ be measurable. Suppose $E_1, E_2, \dots \subseteq E$ is a sequence of pairwise disjoint measurable sets, then

$$\int_{\bigsqcup_{n=1}^{\infty} E_n} f \, dm = \sum_{n=1}^{\infty} \int_{E_n} f \, dm.$$

Example 4. Let a > 0, show that

$$\lim_{n \to \infty} \int_a^\infty \frac{n^2 x e^{-n^2 x^2}}{1 + x^2} \, dx = 0$$

Solution.

$$\int_{a}^{\infty} \frac{n^{2} x e^{-n^{2} x^{2}}}{1 + x^{2}} dx = \int_{na}^{\infty} \frac{x e^{-x^{2}}}{1 + x^{2}/n^{2}} dx$$
$$\stackrel{\text{MCT}}{=} \int_{[na,\infty)} \frac{x e^{-x^{2}}}{1 + x^{2}/n^{2}} dm$$
$$= \int_{[0,\infty)} \chi_{[na,\infty)} \frac{x e^{-x^{2}}}{1 + x^{2}/n^{2}} dm$$

It is obvious that the integrant converges to 0 pointwise, so it is enough to check the interchangeability of integral sign and limit.

As the "pointwise monotonicity" of the integrand is not very clear, we try to "dominate" the integrand(s) (i.e., find g s.t. $|\cdot_n| \le g$) in order to apply LDCT. First,

$$\left|\chi_{[na,\infty)}\frac{xe^{-x^2}}{1+x^2/n^2}\right| \le xe^{-x^2},$$

since $g(x) := xe^{-x^2}$ is Lebesgue integrable on $[0,\infty)$, so by LDCT we have

$$\lim_{n \to \infty} \int_{a}^{\infty} \frac{n^{2} x e^{-n^{2} x^{2}}}{1 + x^{2}} dx = \lim_{n \to \infty} \int_{[0,\infty)} \chi_{[na,\infty)} \frac{x e^{-x^{2}}}{1 + x^{2}/n^{2}} dm$$
$$= \int_{[0,\infty)} \lim_{n \to \infty} \chi_{[na,\infty)} \frac{x e^{-x^{2}}}{1 + x^{2}/n^{2}} dm$$
$$= \int_{[0,\infty)} 0 dm = 0.$$

Exercise 5 (Subadditivity). Let $f : E \to [0, \infty)$ be measurable. By using the Exercise 4, show that the set function $A \mapsto \int_A f \, dm$ is **subadditive**:

$$A_i$$
's measurable $\implies \int_{\bigcup_{n=1}^{\infty} A_n} f \, dm \le \sum_{n=1}^{\infty} \int_{A_n} f \, dm$

Exercise 6 (Countable Additivity). Let $f : E \to \mathbb{R}$ be Lebesgue integrable. By using LDCT, show that if A_k 's are pairwise disjoint measurable set, then

$$\int_{\bigsqcup_{k=1}^{\infty} A_k} f \, dm = \sum_{k=1}^{\infty} \int_{A_k} f \, dm.$$

Example 5. Let *E* be measurable and $f : E \to \mathbb{R}$ Lebesgue integrable on *E*. Define $E_k = \{x \in E : |f(x)| < \frac{1}{k}\}$, show that

$$\lim_{k\to\infty}\int_{E_k}|f|\,dm=0.$$

Solution. We observe that

$$x \in E_k \implies x \in E_{k-1},$$

therefore $E_k \subseteq E_{k-1}$, i.e., $\{E_k\}$ is descending, we hope to use integration version of MST. Indeed, since f is Lebesgue integrable, we have by using the integration version of MST,

$$\lim_{k \to \infty} \int_{E_k} |f| \, dm = \int_{\bigcap_{k=1}^{\infty} E_k} |f| \, dm$$

Since f = 0 on $\bigcap_{k=1}^{\infty} E_k$, so

$$\lim_{k \to \infty} \int_{E_k} |f| \, dm = 0.$$

Exercise 7 (2012 Final). Let $f : [0,1] \to \mathbb{R}$ be increasing, prove that for every $E \subseteq [0,1], m(E) = t$, we have $\int_{[0,t]} f \, dm \le \int_E f \, dm$.

Hint: Use the previous exercises. We have two methods to do this.

Exercise 8. Let $f : [a,b] \to (0,\infty)$ be Lebesgue integrable and $\{E_n\}$ a collection of Lebesgue measurable subsets of [a,b]. Show that if

$$\lim_{n \to \infty} \int_{E_n} f \, dm = 0,$$

then $\lim_{n\to\infty} m(E_n) = 0$.

Hint: Use the previous exercises.