
Math3033 (Fall 2013-2014) Tutorial Note 10

Lebesgue Integration and Convergence Theorems

Key Definitions and Results

Definition 1. A function f is said to be simple if it is of the form f =
řn

i=1 ai χAi

for some ai ∈ R and measurable sets Ai .
Equivalently, f : E→R is simple if it is measurable and takes only finitely

many values in its range.

Definition 2. Given a function f : E→ R, we call

f + =max{ f (x),0} and f − =max{− f (x),0}

the positive part and negative part of f respectively.

Definition 3. Let f : E → R be measurable. If at least one of
∫
E f + dm and∫

E f − dm is finite, then we define the Lebesgue integral of fff over EEE by∫
E

f dm =
∫
E

f + dm−
∫
E

f − dm.

Definition 4. A function f : E→ R is said to be Lebesgue integrable if it is mea-
surable and

∫
E | f |dm =

∫
E f + dm+

∫
E f − dm <∞.

Theorem 5 (Other Formulation). For a measurable f : E→ [0,∞),∫
E

f dm = sup
0≤φ≤ f
φ simple

∫
E
φdm(∗).

Theorem 6 (Equality of Integrals). If f is Riemann integrable on [a,b], then f
is measurable and ∫

[a,b]
f dm =

∫ b

a
f (x) dx.

Theorem 7 (Simple Properties of Lebesgue Integral). Let f ,g : E → R be
measurable whose integral can be defined.

(i)
∫
E

( f ±g) dm =
∫
E

f dm±
∫
E
g dm (if RHS is not of the form∞−∞).

(ii) For every c ∈ R,
∫
E

c f dm = c
∫
E

f dm (treat 0 ·∞ = 0).

(∗) A proof can be found in page 85 of transparency of this course.

(iii) If f ≤ g a.e. on E, then
∫
E

f dm ≤
∫
E
g dm, equality holds iff f = g a.e..

(iv)
∣∣∣∣∫

E
f dm

∣∣∣∣ ≤ ∫
E
| f |dm.

(v) For disjoint measurable S,T ⊆ E,
∫
StT

f dm =
∫
S

f dm+
∫
T

f dm.

(vi) Let f ≥ 0, then A ⊆ B ⊆ E Ô⇒

∫
A

f dm ≤
∫
B

f dm.

Theorem 8 (Monotone Convergence, MCT).

• Increasing Version. Let f1, f2,· · · : E → [[[000,∞) be measurable functions.
Suppose for a.e. x ∈ E, f1(x) ≤ f2(x) ≤ · · · (†) and limn→∞ fn(x) ∈ R, then

lim
n→∞

∫
E

fn dm =
∫
E

lim
n→∞

fn dm.

• Decreasing Version. Let f1, f2,· · · : E →R be measurable functions. Sup-
pose for a.e. x ∈ E, f1(x) ≥ f2(x) ≥ · · · and limn→∞ fn(x) ∈ R, then∫

E
f1 dm <∞ Ô⇒ lim

n→∞

∫
E

fn dm =
∫
E

lim
n→∞

fn dm.

Theorem 9 (Lebesgue Dominated Convergence, LDCT). Let f1, f2,· · · :
E→ R be measurable functions. Suppose that:

(i) fn converges pointwise for a.e. x ∈ E.

(ii) There is a Lebesgue integrable g : E→ R s.t. | fn | ≤ g a.e. on E, ∀n ∈ N.

Then lim
n→∞

fn measurable on E, moreover,

lim
n→∞

∫
E

fn dm =
∫
E

lim
n→∞

fn dm.

Theorem 10 (Monotone Set). Let f : R→ R be Lebesgue integrable.

(i) {An} ↗ Ô⇒ lim
n→∞

∫
An

f dm =
∫

lim
n→∞

An

f dm =
∫
⋃∞
n=1 An

f dm

(ii) {An} ↘ Ô⇒ lim
n→∞

∫
An

f dm =
∫

lim
n→∞

An

f dm =
∫
⋂∞
n=1 An

f dm.

(†) We say that { fn } (or fn ) is pointwise increasing. The term pointwise decreasing is similarly
defined.



Example 1 (Positivity on E, m(E) > 0). Let f : A→R be measurable func-
tions. Suppose that E ⊆ A is measurable and f (x) > 0 for each x ∈ E, show
that

m(E) > 0 Ô⇒
∫
E

f dm > 0

without using Chebyshev’s Inequality.

Solution. Idea. Since for each x ∈ E the inequality f (x) > 0 holds, we can make use of this
inequality to describe the set E.

Assume m(E) > 0. Now for each x ∈ E, f (x) > 0, so there is an n ∈ N such that
f (x) > 1/n, i.e.,

x ∈
{

t ∈ E : f (t) >
1
n

}
=: En ,

for some n, therefore x ∈
⋃∞
n=1 En . The implication says that E ⊆

⋃∞
n=1 En . As by

definition En ⊆ E for each n, we have E =
⋃∞
n=1 En .

By subadditivity of Lebesgue measure,

0 < m(E) ≤
∞
ÿ

n=1

m(En),

so there must be an n such that m(En) > 0. Now we have

f >
1
n

on En and f > 0 on E \En ,

therefore we have

f χEn
+ f χE\En

>
1
n
χEn
+0χE\En

on E ⇐⇒ f >
1
n
χEn

on E.

Integration on both sides yields∫
E

f (x) dm ≥
1
n

m(En) > 0.

Remark. Note that we have an important corollary here:

Corollary. Suppose that f : A→ [0,∞) is measurable. If
∫
A f dm = 0, then f = 0

a.e. on A.

Proof. Define E := {x ∈ A : f (x) > 0}, then we have f > 0 on E (by definition) and
since E ⊆ A we have

0 ≤
∫
E

f dm ≤
∫
A

f dm = 0 Ô⇒
∫
E

f dm = 0.

Therefore by the contrapositive of the statement in Example 1, we have∫
E

f dm = 0 Ô⇒ m(E) = 0,

we can conclude f ≤ 0 a.e. on A. Since f ≥ 0 on A, we have f = 0 a.e. on A. z

Remark. Note that if we take the corollary for granted (namely, suppose that we can prove
this statement in another way), then the statement in Example 1 can be proved in the
following way:

Suppose m(E) > 0 and f > 0 on E, if it happens that
∫
E f dm = 0, then f = 0 a.e. on

E. Namely, m(E) = m(E∩{x : f (x) = 0}) > 0, which implies that E∩{x : f (x) = 0} 6= ∅,
a contradiction to that f > 0 on E.

Exercise 1. Suppose f : A→ R is nonnegative measurable or Lebesgue integrable,
then for any c ∈ R and measurable E ⊆ A such that E + c ⊆ A, show that∫

E
f dm =

∫
E+c

f (x− c) dm(x).

Hint: Try to use Theorem 5. First, prove the result is true when f is a simple
function; second, we assume f ≥ 0; third, translate the result to general integrable
functions by using the definition:

∫
E f dm =

∫
E f + dm−

∫
E f − dm.



Example 2. Let f : R→ [0,∞) be measurable such that
∫
R

3√ f dm,
∫
R f 3 dm <

∞, prove that ∫
R

f dm <∞.

Solution. Method 1. By AM-GM inequality a+b+c+d
4 ≥

4√abcd for a,b,c,d ≥ 0, we have

f ≤
f 3 + 3
√

f + 3
√

f + 3
√

f
4

=
1
4

f 3 +
3
4

3
√

f ,

therefore ∫
R

f dm ≤
1
4

∫
R

f 3 dm+
3
4

∫
R

3
√

f dm <∞.

Method 2. We want to compare f with 3
√

f and f 3, but

• f ≤ 3
√

f only when f (x) ∈ [0,1] ⇐⇒ x ∈ f −1[0,1]; and
• f ≤ f 3 only when f (x) ∈ [1,∞) ⇐⇒ x ∈ f −1[1,∞),

it follows that ∫
R

f dm =
∫
f −1[0,1]

f dm+
∫
f −1(1,∞)

f dm

≤

∫
f −1[0,1]

3
√

f dm+
∫
f −1(1,∞)

f 3 dm

≤

∫
R

3
√

f dm+
∫
R

f 3 dm

<∞.

Exercise 2. Let f : R→ [0,∞) be Lebesgue integrable.

(a) Show that for any r > 0,
∫

[r,∞)

f (x)
x

dm <∞.

(b) If further f (0) = 0 and f ′(0) eixsts, then show that
∫

(0,∞)

f (x)
x

dx <∞.

Example 3. Let f : E → [0,∞) be Lebesgue integrable and
∫
E

f dm = c ∈

(0,∞). Prove (2) in the following equalities:

lim
n→∞

∫
E

n ln
(

1+
(

f
n

)α)
dm =


∞, if α ∈ (0,1), (1)
c, if α = 1, (2)
0, if 1 < α <∞. (3)

Solution. When α = 1, we need to prove

lim
n→∞

∫
E

ln
(

1+
f
n

)n

dm =
∫
E

f dm.

Note that for every y ≥ 0, (
1+

y

n

)n
↗ ey ,

we prove this in the remark below. Therefore we have

ln
(

1+
f (x)
n

)n

↗ f (x)

pointwise on E, so we are done by using MCT.

Remark. Method 1. This method is elementary. We fix a y ∈ [0,∞), by AM-GM inequality,((
1+

y

n

)n
·1
) 1

n+1

≤
n(1+ y

n )+1
n+1

⇐⇒

(
1+

y

n

)n
≤

(
1+

y

n+1

)n+1
.

Method 2. This method is nonelementary, but very routine. Let’s define f (x) =
(1+ y

x )x and show that f is increasing on (0,∞). For this, note that f ′(x) > 0 ⇐⇒

ln
x+ y

x
>

y

x+ y
= 1−

x
x+ y

. Put u =
x+ y

x
, the above inequality becomes lnu > 1−1/u,

where u > 1.

Exercise 3. Prove (1) and (3) in the equalities given in Example 3.

Exercise 4 (Corollaries of MCT). Prove the important corollaries of MCT:

Interchangeability of Summation and Integration Let f1, f2,· · · : E → [[[000,∞) be
measurable functions, if

ř∞
n=1 fn(x) <∞ for a.e. x ∈ E, then∫

E

ř∞
n=1 fn(x) dm =

ř∞
n=1

∫
E fn(x) dm.

Countable Additivity as a Set Function Let f : E → [[[000,∞) be measurable. Sup-
pose E1,E2,· · · ⊆ E is a sequence of pairwise disjoint measurable sets, then∫⊔∞

n=1 En
f dm =

ř∞
n=1

∫
En

f dm.



Example 4. Let a > 0, show that

lim
n→∞

∫ ∞
a

n2xe−n
2x2

1+ x2 dx = 0.

Solution. ∫ ∞
a

n2xe−n
2x2

1+ x2 dx =
∫ ∞
na

xe−x
2

1+ x2/n2 dx

MCT
=

∫
[na,∞)

xe−x
2

1+ x2/n2 dm

=

∫
[0,∞)

χ[na,∞)
xe−x

2

1+ x2/n2 dm.

It is obvious that the integrant converges to 0 pointwise, so it is enough to check the
interchangeability of integral sign and limit.

As the “pointwise monotonicity” of the integrand is not very clear, we try to “dom-
inate” the integrand(s) (i.e., find g s.t. | ·n | ≤ g) in order to apply LDCT. First,∣∣∣∣∣χ[na,∞)

xe−x
2

1+ x2/n2

∣∣∣∣∣ ≤ xe−x
2
,

since g(x) := xe−x
2

is Lebesgue integrable on [0,∞), so by LDCT we have

lim
n→∞

∫ ∞
a

n2xe−n
2x2

1+ x2 dx = lim
n→∞

∫
[0,∞)

χ[na,∞)
xe−x

2

1+ x2/n2 dm

=

∫
[0,∞)

lim
n→∞

χ[na,∞)
xe−x

2

1+ x2/n2 dm

=

∫
[0,∞)

0 dm = 0.

Exercise 5 (Subadditivity). Let f : E→ [[[000,∞) be measurable. By using the Ex-
ercise 4, show that the set function A 7→

∫
A f dm is subadditive:

Ai ’s measurable Ô⇒
∫⋃∞

n=1 An
f dm ≤

ř∞
n=1

∫
An

f dm.

Exercise 6 (Countable Additivity). Let f : E → R be Lebesgue integrable. By
using LDCT, show that if Ak ’s are pairwise disjoint measurable set, then∫⊔∞

k=1 Ak
f dm =

ř∞
k=1

∫
Ak

f dm.

Example 5. Let E be measurable and f : E → R Lebesgue integrable on E.
Define Ek = {x ∈ E : | f (x)| < 1

k }, show that

lim
k→∞

∫
Ek

| f |dm = 0.

Solution. We observe that
x ∈ Ek Ô⇒ x ∈ Ek−1,

therefore Ek ⊆ Ek−1, i.e., {Ek } is descending, we hope to use integration version of MST.
Indeed, since f is Lebesgue integrable, we have by using the integration version of

MST,

lim
k→∞

∫
Ek

| f |dm =
∫
⋂∞

k=1 Ek

| f |dm.

Since f = 0 on
⋂∞
k=1 Ek , so

lim
k→∞

∫
Ek

| f |dm = 0.

Exercise 7 (2012 Final). Let f : [0,1] → R be increasing, prove that for every

E ⊆ [0,1], m(E) = t, we have
∫

[0, t]
f dm ≤

∫
E

f dm.

Hint: Use the previous exercises. We have two methods to do this.

Exercise 8. Let f : [a,b]→ (((000,∞) be Lebesgue integrable and {En} a collection of
Lebesgue measurable subsets of [a,b]. Show that if

lim
n→∞

∫
En

f dm = 0,

then limn→∞m(En) = 0.

Hint: Use the previous exercises.


