Math2033 Mathematical Analysis (Spring 2013-2014)

Tutorial Note 10 Riemann Integral (Part III): Improper Integral

We need to know

- how to judge whether a function is improper integrable by using suitable tests;
Key definitions and results

Definition 1 (Locally Integrability). A function $f(x)$ defined on an interval I (bounded or unbounded) is said to be locally integrable if it is integrable on any closed subinterval of I.

Definition 2 (Improper Integrals). Let $f(x)$ be locally integrable on its domain. We define improper integrals in the following cases:
Case 1. If $f(x)$ is not defined just at $\boldsymbol{a} /$ just at $\boldsymbol{b} /$ just at $\boldsymbol{c} \in(\boldsymbol{a}, \boldsymbol{b}) /$ just at both \boldsymbol{a} and \boldsymbol{b} of a bounded interval $[a, b]$, then we define:

$$
\int_{a}^{b} f(x) d x= \begin{cases}\lim _{\epsilon \rightarrow 0^{+}} \int_{a+\epsilon}^{b} f(x) d x, & \text { if } f \text { is not defined at } \boldsymbol{a}, \\ \lim _{\epsilon \rightarrow 0^{+}} \int_{a}^{b-\epsilon} f(x) d x, & \text { if } f \text { is not defined at } \boldsymbol{b}, \\ \int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x, & \text { if } f \text { is not defined at } \boldsymbol{c} \in(\boldsymbol{a}, \boldsymbol{b}) \\ \lim _{\substack{\epsilon_{1} 0^{+} \\ \epsilon_{2} \rightarrow 0^{+}}} \int_{a+\epsilon_{1}}^{b-\epsilon_{2}} f(x) d x, & \text { if } f \text { is not defined at } \boldsymbol{a}, \boldsymbol{b} .\end{cases}
$$

Case 2. If $f(x)$ is defined on an unbounded interval, then we define the corresponding improper integrals in a natural way:

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x, \quad \int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

and

$$
\int_{-\infty}^{\infty} f(x) d x=\lim _{\substack{a \rightarrow-\infty \\ b \rightarrow \infty}} \int_{a}^{b} f(x) d x
$$

Remark. In other words, we do integration locally and take limit, that's all. The spirit is: Riemann integral is only defined on a closed and bounded interval, we extend this notion via taking limit.

Remark. For nonnegative locally integrable function $f(x)$ on / we have $f(x)$ is improper integrable if and only if $\int_{I} f(x) d x<\infty$.

Definition 3 (Principal Value). Let $f(x)$ be locally integrable on I.
(a) If $I=[a, c) \cup(c, b]$, then the principal value of $\int_{a}^{b} f(x) d x$ is defined by

$$
\text { P.V. } \int_{a}^{b} f(x) d x=\lim _{\epsilon \rightarrow 0^{+}}\left(\int_{a}^{c-\epsilon} f(x) d x+\int_{c+\epsilon}^{b} f(x) d x\right) .
$$

(b) If $I=\mathbb{R}$, then the principal value of $\int_{-\infty}^{\infty} f(x) d x$ is defined by

$$
\text { P.V. } \int_{-\infty}^{\infty} f(x) d x=\lim _{c \rightarrow \infty} \int_{-c}^{c} f(x) d x
$$

Theorem 4 (Comparison Test). Suppose $f(x), g(x)$ are locally integrable on a bounded or unbounded interval I and $0 \leq f(x) \leq g(x)$ on I, then

$$
g(x) \text { is improper integrable } \Longrightarrow f(x) \text { is improper integrable. }
$$

Remark. Taking contrapositive, we have
$f(x)$ is not improper integrable $\Longrightarrow g(x)$ is not improper integrable.

Theorem 5 (Limit Comparison Test). Suppose $f(x), g(x)>0$ are locally integrable on $(a, b]$.
(a) If $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=L$ for some positive number L, then either $f(x), g(x)$ are both improper integrable or both not improper integrable.
(b) If $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=0$, then $g(x)$ is improper integrable $\Longrightarrow f(x)$ is improper integrable.

Theorem 6 (Absolute Convergence Test). Let $f(x)$ be locally integrable on I. If $|f(x)|$ is improper integrable on I, then so is $f(x)$.

Example 1. Discuss the existence of the following improper integrals:
(a) $\int_{0}^{1} \frac{e^{x^{2014}} \ln \left(1+\sin \left(x^{2}\right)\right)}{x^{5 / 2}} d x$
(b) $\int_{1}^{\infty} \frac{1}{x^{1+\frac{4}{x}} \sqrt{x^{2}+x^{1 / 2}+\sin x+1}} d x$
(c) $\int_{0}^{\infty} \frac{x^{\alpha-1}}{1+x} d x$

Example 2.

(a) When $p>1$, does the improper integral $\int_{1}^{\infty} \frac{\sin x}{x^{p}} d x$ exist?
(b) Show that $\int_{0}^{\infty}\left|\frac{\sin x}{x}\right| d x=\infty$ and $\int_{0}^{\infty} \frac{\sin x}{x} d x$ exist.

Exercises

1. Find a locally integrable function $f(x)$ on $[0, \infty)$ such that it is improper integrable but $\lim _{x \rightarrow \infty} f(x)$ does not exist.
2. Let $f:[a, \infty) \rightarrow \mathbb{R}$ be locally and improper integrable, i.e., $\int_{a}^{\infty} f(x) d x$ converges. Show that if $f(x)$ is uniformly continuous, then $\lim _{x \rightarrow \infty} f(x)=0$.
3. (2007 Spring Final) Does the improper integral $\int_{-1}^{1} \frac{1}{x \cos x} d x$ exist?
4. Determine the convergence of the following improper integrals:
(a) $\int_{0}^{1 / 4} \frac{1}{\sqrt{x}(1-x)} d x$
(b) $\int_{0}^{1} \frac{1}{\sqrt{x}(1-x)} d x$
(c) $\int_{0}^{1} \frac{\sin \frac{1}{x}}{x^{p}} d x, p>0$
(d) $\int_{1}^{\infty} \frac{\sin x}{x^{p}+\sin x} d x, p>0$
(e) $\int_{0}^{\infty} \frac{x}{1+x^{p} \cos ^{2} x} d x, p>4$
5. Prove that the improper integral $\int_{0}^{\pi} \ln (\sin x) d x$ exists and compute it.
6. For any $a \in(0,1]$, show that the improper integral $\int_{0}^{1}\left(\left[\frac{a}{x}\right]-a\left[\frac{1}{x}\right]\right) d x$ exists, moreover, it is equal to $a \ln a$.
7. Let $f(x)$ be nonegative and locally integrable on $[0, \infty)$. Suppose that $f(x)$ is improper integrable, i.e., $\int_{0}^{\infty} f(x) d x<\infty$.
(a) If f is decreasing, show that $\lim _{x \rightarrow \infty} x f(x)=0$.
(b) If f merely improper integrable, show that $\lim _{n \rightarrow \infty} \frac{1}{n} \int_{0}^{n} x f(x) d x=0$.
8. Show that

$$
\int_{-\pi}^{\pi} \underbrace{\frac{\sin \left(\left(N+\frac{1}{2}\right) x\right)}{\sin \frac{x}{2}}}_{:=D_{N}(x)} \frac{d x}{2 \pi}=1
$$

Here $D_{N}(x)$ is called Dirichlet kernel. It naturally arises in the study of pointwise convergence of Fourier series (deeper study will be left to Math4052).
9. We still use $D_{N}(x)$ to denote Dirichlet kernel defined in Exercise 8. We have shown that the improper integral $\int_{0}^{\infty} \frac{\sin x}{x} d x$ exists in part (b) of Example 2. In this exercise we try to show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$ as a byproduct of machinery developed for studying Fourier series.
(a) Show that $\frac{1}{\sin \frac{x}{2}}-\frac{2}{x}$ is bounded on $(0, \pi]$, then prove that

$$
\lim _{N \rightarrow \infty} \int_{0}^{\pi}\left(\frac{1}{\sin \frac{x}{2}}-\frac{2}{x}\right) \sin \left(N+\frac{1}{2}\right) x d x=0
$$

Hint: Use the Riemann-Lebesgue Lemma in Example 4 of Tutorial Note 9. Oh yes! You need to extend $\frac{1}{\sin \frac{x}{2}}-\frac{2}{x}$ continuously at $x=0$.
(b) By using Exercise 8 and part (a) above, show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.

Remark. This improper integral is a textbook example to demonstrate techniques in computing improper integrals. Students will revisit this integral in Math3033 (using Lebesgue Dominated Convergence Theorem) and Math 4023 (using Residue Calculus).

