Math2033 Mathematical Analysis (Spring 2013-2014) Tutorial Note 10

Riemann Integral (Part III): Improper Integral

We need to know –

• how to judge whether a function is improper integrable by using suitable tests;

Key definitions and results

- **Definition 1 (Locally Integrability).** A function f(x) defined on an interval *I* (bounded or unbounded) is said to be **locally integrable** if it is integrable on any closed subinterval of *I*.
- **Definition 2 (Improper Integrals).** Let f(x) be locally integrable on its domain. We define **improper integrals** in the following cases:

Case 1. If f(x) is not defined just at a / just at b / just at $c \in (a, b) / \text{just}$ at both a and b of a bounded interval [a, b], then we define:

$$\int_{a}^{b} f(x) dx = \begin{cases} \lim_{\epsilon \to 0^{+}} \int_{a+\epsilon}^{b} f(x) dx, & \text{if } f \text{ is not defined at } a, \\ \lim_{\epsilon \to 0^{+}} \int_{a}^{b-\epsilon} f(x) dx, & \text{if } f \text{ is not defined at } b, \\ \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx, & \text{if } f \text{ is not defined at } c \in (a, b) \\ \lim_{\epsilon_{1} \to 0^{+} \atop \epsilon_{2} \to 0^{+}} \int_{a+\epsilon_{1}}^{b-\epsilon_{2}} f(x) dx, & \text{if } f \text{ is not defined at } a, b. \end{cases}$$

Case 2. If f(x) is defined on an unbounded interval, then we define the corresponding improper integrals in a natural way:

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx, \quad \int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$

and

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{\substack{a \to -\infty \\ b \to \infty}} \int_{a}^{b} f(x) dx$$

Remark. In other words, we do integration locally and take limit, that's all. The spirit is: Riemann integral is only defined on a closed and bounded interval, we extend this notion via taking limit.

Remark. For nonnegative locally integrable function f(x) on I we have f(x) is improper integrable if and only if $\int_I f(x) dx < \infty$.

Definition 3 (Principal Value). Let f(x) be locally integrable on *I*.

(a) If $I = [a, c) \cup (c, b]$, then the principal value of $\int_a^b f(x) dx$ is defined by

P.V.
$$\int_{a}^{b} f(x) dx = \lim_{\epsilon \to 0^{+}} \left(\int_{a}^{c-\epsilon} f(x) dx + \int_{c+\epsilon}^{b} f(x) dx \right)$$

(b) If $I = \mathbb{R}$, then the principal value of $\int_{-\infty}^{\infty} f(x) dx$ is defined by

P.V.
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{c \to \infty} \int_{-c}^{c} f(x) dx.$$

Theorem 4 (Comparison Test). Suppose f(x), g(x) are locally integrable on a bounded or unbounded interval *I* and $0 \le f(x) \le g(x)$ on *I*, then

g(x) is improper integrable $\implies f(x)$ is improper integrable.

Remark. Taking contrapositive, we have

f(x) is not improper integrable $\implies g(x)$ is not improper integrable.

- **Theorem 5 (Limit Comparison Test).** Suppose f(x), g(x) > 0 are locally integrable on (a, b].
 - (a) If $\lim_{x \to a^+} \frac{f(x)}{g(x)} = L$ for some positive number *L*, then either f(x), g(x) are both improper integrable or both not improper integrable.
 - (b) If $\lim_{x \to a^+} \frac{f(x)}{g(x)} = 0$, then g(x) is improper integrable $\implies f(x)$ is improper integrable.
- **Theorem 6 (Absolute Convergence Test).** Let f(x) be locally integrable on *I*. If |f(x)| is improper integrable on *I*, then so is f(x).

Example 1. Discuss the existence of the following improper integrals:
(a)
$$\int_{0}^{1} \frac{e^{x^{2014}} \ln(1 + \sin(x^{2}))}{x^{5/2}} dx$$
(b)
$$\int_{1}^{\infty} \frac{1}{x^{1 + \frac{4}{x}} \sqrt{x^{2} + x^{1/2} + \sin x + 1}} dx$$
(c)
$$\int_{0}^{\infty} \frac{x^{\alpha - 1}}{1 + x} dx$$

Sol

Example 2.
(a) When
$$p > 1$$
, does the improper integral $\int_{1}^{\infty} \frac{\sin x}{x^{p}} dx$ exist?
(b) Show that $\int_{0}^{\infty} \left| \frac{\sin x}{x} \right| dx = \infty$ and $\int_{0}^{\infty} \frac{\sin x}{x} dx$ exist.

Sol

Example 3. Study the convergence of $\int_{-\infty}^{\infty} \sin x dx$, what is its principal value?
How about the convergence of $\int_{-\infty}^{\infty} \sin(x^2) dx$?

Sol

Exercises

- 1. Find a locally integrable function f(x) on $[0, \infty)$ such that it is improper integrable but $\lim_{x \to \infty} f(x)$ does not exist.
- **2.** Let $f:[a,\infty) \to \mathbb{R}$ be locally and improper integrable, i.e., $\int_{a}^{\infty} f(x) dx$ converges. Show that if f(x) is uniformly continuous, then $\lim_{x \to \infty} f(x) = 0$.
- 3. (2007 Spring Final) Does the improper integral $\int_{-1}^{1} \frac{1}{x \cos x} dx$ exist?
- 4. Determine the convergence of the following improper integrals:

(a)
$$\int_0^{1/4} \frac{1}{\sqrt{x(1-x)}} dx$$
 (b) $\int_0^1 \frac{1}{\sqrt{x(1-x)}} dx$ (c) $\int_0^1 \frac{\sin \frac{1}{x}}{x^p} dx, p > 0$
(d) $\int_1^\infty \frac{\sin x}{x^p + \sin x} dx, p > 0$ (e) $\int_0^\infty \frac{x}{1 + x^p \cos^2 x} dx, p > 4$

- **5.** Prove that the improper integral $\int_0^{\pi} \ln(\sin x) dx$ exists and compute it.
- **6.** For any $a \in (0, 1]$, show that the improper integral $\int_0^1 \left(\left[\frac{a}{x} \right] a \left[\frac{1}{x} \right] \right) dx$ exists, moreover, it is equal to $a \ln a$.
- **7.** Let f(x) be nonegative and locally integrable on $[0, \infty)$. Suppose that f(x) is improper integrable, i.e., $\int_0^\infty f(x) dx < \infty$.
 - (a) If f is decreasing, show that $\lim_{x \to \infty} x f(x) = 0$.

(b) If f merely improper integrable, show that
$$\lim_{n \to \infty} \frac{1}{n} \int_0^n x f(x) dx = 0.$$

8. Show that

$$\int_{-\pi}^{\pi} \underbrace{\frac{\sin\left((N+\frac{1}{2})x\right)}{\sin\frac{x}{2}}}_{:=D_N(x)} \frac{dx}{2\pi} = 1.$$

Here $D_N(x)$ is called **Dirichlet kernel**. It naturally arises in the study of pointwise convergence of Fourier series (deeper study will be left to Math4052).

9. We still use $D_N(x)$ to denote Dirichlet kernel defined in Exercise 8. We have shown that the improper integral $\int_0^\infty \frac{\sin x}{x} dx$ exists in part (b) of Example 2. In this exercise we try to show that $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$ as a byproduct of machinery developed for studying Fourier series.

(a) Show that
$$\frac{1}{\sin \frac{x}{2}} - \frac{2}{x}$$
 is bounded on $(0, \pi]$, then prove that

$$\lim_{N \to \infty} \int_0^{\pi} \left(\frac{1}{\sin \frac{x}{2}} - \frac{2}{x} \right) \sin(N + \frac{1}{2}) x \, dx = 0.$$

Hint: Use the Riemann-Lebesgue Lemma in Example 4 of Tutorial Note 9. Oh yes! You need to extend $\frac{1}{\sin \frac{x}{2}} - \frac{2}{x}$ continuously at x = 0.

(b) By using Exercise 8 and part (a) above, show that $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$.

Remark. This improper integral is a textbook example to demonstrate techniques in computing improper integrals. Students will revisit this integral in Math3033 (using Lebesgue Dominated Convergence Theorem) and Math 4023 (using Residue Calculus).