Math2033 Mathematical Analysis (Spring 2013-2014) Tutorial Note 9

Riemann Integral (Part I1): Miscellaneous
We need to know

e how to judge a set is of measure zero;

e apart from showing continuous functions are Riemann integrable, how useful is
uniform continuity?

Key definitions and results

Definition 1 (Uniform Continuity). A function f : § — R is said to be uniformly
continuous if there holds

Ye>0,36>0 st |[x—y/<d = |f(x)—f()|<e.

Definition 2 (Measure Zero, a.e. Property).

e A set S C R is of measure zero if for every € > 0, there are open intervals
Ii,Ip,... such that S C i, I; and X2 ;] < €.

e We say a property P = P(x) holds a.e. if the set {x : P(x) does not hold} has
measure zero.

Remark. It is immediate from the definition that a subset of a set of measure zero is
of measure zero; also, a union of countably many sets of measure zero is again of
measure zero.

Theorem 3. Let f(x) be a continuous function on [a, b], then f(x) is uniformly con-
tinuous there.

Theorem 4. If f : [a,b] — R is Riemann integrable and c € [a,b], then F(x) :=
/ f(®)dt is uniformly continuous on [a, b].

Theorem 5 (Fundamental Theorem of Calculus). Let ¢, x € [a,b].

(@) If f(x) is Riemann integrable on [a,b], continuous at xo and F(x) =
X

f(t)dt, then F’(x) = f(x0).

C

(b) If G(x) is differentiable on [a,b] with G’(x) = g(x) Riemann integrable on
b
[a,b], then / g(x)dx = G(b) - G(a).
a

Theorem 6 (Composition). If f(x) is Riemann integrable on [a, b] and ¢(x) is con-
tinuous on f([a, b]), then ¢(f(x)) is Riemann integrable on [a, b].

Theorem 7 (Lebesgue Criterion). Let f(x) be bounded on [a, b], then f(x) is Rie-
mann integrable on [a, b] if and only if

S¢:={x €[a,b]: f is discontinuous at x}

is of measure zero.

Theorem 8 (Integration by Parts). If f(x),g(x) are differentiable on [a,b] and
f'(x),g’(x) are Riemann integrable on [a, b], then

b b
/ f(X)g’(X)dx=f(b)g(b)—f(a)g(a)—/ J'(xg(x)dx.

Theorem 9 (Change of Variable Formula). If ¢(x) is differentiable, ¢’(x) is inte-
grable on [a, b] and f(x) is continuous on ¢([a, b]), then

$(b) b
/¢( : f(l)dt=/ f(@(x))¢’ (x) dx.

Remark. The continuity of ¢(x) in Theorem 6 cannot be replaced by Riemann integra-
bility. For example, the Thomae’s function f : [0,1] — R given by f(0) =0 and for
x €(0,1],

l, ifx:Bp,qcoprime
fx)=4¢49 q

0 if x is irrational

is Riemann integrable. The function ¢:[0,1] — {0,1} given by ¢(0) =0 and ¢(x) =1
for x > 0 is also Riemann integrable, but their composition

_J1 x€[0,1]nQ
¢Of_{o x€[0,1\Q

is not Riemann integrable.

Conclusion: Generally the composition of two Riemann integrable functions is not
Riemann integrable.



Example 1.

(a) If f(x) has bounded derivative on an (bounded or unbounded) open interval
1, show that f(x) is uniformly continuous on /.

(b) Show that for any p € (0, 1), h(x) := xP is uniformly continuous on [0, c0).

(c) Show that f(x) = x2 is not uniformly continuous on [0, o).

Remark. To consolidate understanding, please try to show that f(x) = sin(x?2) is not
uniformly continuous on R.

In other words, try to construct a sequence of pairs x,,y, such that x,, —y, — 0 but
|f(xn)— f(yn)l can’t be arbitrarily small.

Sol (a) As f’ is bounded on I, there is M > 0 such that |f’| < M on I. Now for any x,y € I,
Mean-Value Theorem says that there is ¢ between x,y,

If ()= fOI = 1f(e)(x =) < Mlx = yl.
Now for every € > 0, we may choose ¢ = €/M, then

x—yl<é6 = If()-fWMI<Mé=e.

(b) We know that for every x,y > 0,

P = yPI<lx—ylP,
and thus for every € > 0, the choice 6 = €!/P will do.
(c) We try to show

nonuniform continuity of f
= ~(Ye>0,36>0,lx—y <6 = [f(x)-f)|<e€)
<~ de>0,¥6>0,dx,y€[0,00),|x—y|<d and [f(x)—f(Y)|=¢€

for any sequence {d,} s.t. §,, — 0, the statement above is equivalent to
< de€>0,Yn,Axp,yn €[0,0),xp —ynl <6p and |f(xn) = fyn)lZ €.
Therefore, the following are equivalent:

e f: A — Bisnotuniformly continuous.

e There is a sequence of arbitrarily close pairs in the domain whose images can’t be
arbitrarily close.

In particular, let’s choose x, = Vn+1 and y,, = v/n, then |x; — y,,| = m, SO Xy, Vn'S

are arbitrarily close pairs, but

)= fnl=ln+ D) —nl=121

is bounded below by a positive constant. |




Example 2 (2002 Final). Let f,g : [0,2] —» R be Riemann integrable. Prove Sp N[0, 1) = Smax(f,g) N[0, 1) must be true:
that 4 : [0,2] — R defined by
h=max{f,g}
h(x) max{f(x),g(x)} ifxel0,1]
x) =
min{f(x),g(x)} if x € (1,2]
is also Riemann integrable on [0,2]. : — y - X

(going to) take limit
Sol We try to show

S, ={x €[0,2] : h not cont. at x} . . .
h The uncertainty S, N {1} courses no trouble since it has measure zero.

has measure zero.

Due to the way we define 4, let’s decompose Sy, into . . .
Now it is enough to show Syax(f ¢} and Smin(f,¢} have measure zero. This can be done in

two ways:
Sp = (Sp N[0, 1)U (S, N(1,2DU (S N{1})
Method 1. By the formula

Since h = max{f,g} on [0, 1), we have 1 1
maxix,y) = S(x+y+le-y) and  minfx,y) = S(x+y =l -y)

Sp OO, 1) = Smaxif.g) N O, D). we see that both max{f,g} and min{f,g} are Riemann integrable, hence both
Smax{f,g}» Smin{f,g} have measure zero by Lebesgue Theorem. |

Similarly,

Method 2. Since f cont. at x and g cont. at x == max{f, g} cont. at x, by contrapositive,
Sn N (1,21 = Smin(r.g) N (1,2]. we have

S CSrUS,.
Therefore we conclude max{f.,g} = Of ¥ Og
Since a union of two measure zero sets are of measure zero, Sy U Sg has measure zero.

Sy C St U Smi U{l}. .
n S Smaxtf g} Smini ) V1) Smax(f,g) being a subset of measure zero set is also of measure zero.

Similarly, since Smin(f,g) € Sr U Sg, S0 Smin{f,g) has measure zero. |

Remark. We need to decompose Sy, into 3 pieces rather than 2 pieces: [0, 1] and
(1,2]. The reason is max{f, g} can be continuous at 1 with /& discontinuous at 1. An
exampleis f =2 and g = 1, we have h = max{f,g}=2o0n[0,1] and s/ =min{f,g} =1
on (1,2].

The trouble arises as £ is “redefined” on the right of 1, continuity of max{f, g} at 1
does not imply

lim h(x) = lim h(x)

x—1- ~—~— x—1* ~—~

=max{f(x).g(x)} =min{f (x).g(x)}

Moreover, for every x € [0, 1) (similarly for x € (1,2]), h = max{f, g} completely on
a sufficiently small neighborhood of x (including both LHS and RHS of x), therefore




Example 3. Let f(x) be Riemann integrable on [a, b]. Suppose that

b
/ f(x)dx >0,

show that there is an 7 > 0 and a closed subinterval / such that f(x) >n on I.

Sol We prove by contradiction.

Suppose on the contrary for every 1 > 0, for every subinterval / we can find an x € I,

fx)<n.
Let € > 0 (to be taken small) be fixed and consider the Riemann integral of f(x).

Let P = {xq,x{,...,X,} =— [a,b]. For each subinterval [x;_y,x;], there is x} € [x;_,x;]
s.t. f(x7) < €, and therefore

L(f,PYS S(f,P)= Y f(xDAx; S€) (xi = xi=1) = e(b—a).

i=1 i=1
Now we take [|Pl| = 0 such that L(f,P) = [” f(x)dx, we have
b
/ f(x)dx < e(b-a).
a

Since € > 0 is arbitrary, we can take € — 0" to conclude fab f(x)dx <0, a contradiction to
that [” fodx>0.

Example 4 (Riemann-Lebesgue Lemma). Let f : [a,b] — R be a continuous
function. Show that

b
u}l_r)rgo/ f(x)sin(wx)dx = 0.

Remark. We generalize this result in Exercise 8 and 9, this is an important result in the
study of pointwise convergence of Fourier series and will be used in Math4052.

Sol First of all, let’s approximate f(x) closely by a step function. A step function is a function
that is piecewise constant on finitely many intervals.
Since f(x) is continuous on [a, b], it is uniformly continuous there.
Let € > 0 be given, there is § > 0 such that for every x,y € [a, b],

x—yl<é = lf(x)-fOl<e

Let’s take a = xg < x1 < --- < x, = b such that maxj<;<,(x; —x;—1) < d. We construct a
step functions as follows:

o0 =f (L) forxe frip )i <
——
‘:Vm. Z=J,'

and N

o0 = () or e [t

N——
This step function satisfies
Lf(x) = p(x)| < €. (%)

To explain (), let x € [a, b], then there is an i, x € J;, and hence

[x—mi| <6 = [f(x)=p(x)| = |f(x) - f(m;)| <e.

(*) is pictorially clear for those partition that is refined enough:

Y — S

Note that we don’t know how to compute fab f(x)sin(wx) dx but we do know how to com-

pute fab ¢(x)sin(wx) dx—that’s the key point of the proof.



Now for the fixed ¢(x) constructed above,

b b b
/ f(x)sin(wx)dx| < / (f(x)—¢(x))sin(wx) dx| + / ¢(x)sin(wx) dx
b n Xi
< / |f(x)—p(x)dx + Z ¢(x)sin(wx) dx (%)
a i=1Y Xi-1
z f(m;)(coswx;_; —coswx;)
<(b—a)e+ ; "
| fOmi)l -2
< (b - a)f + lzz; T
(e aye s 22 O] "
|wl
Now we can find a b > 0 such that
€

w>b=>I

ol S 25 [+ 1

it follows that from (xx),

w>b — <(b—a+1e.

b
/ Jf(x)sin(wx) dx

Thus limy,—, fab f(x)sin(wx) dx = 0 by the definition of limit. |

Remark. In Example 4 the result limy_,oo f: f(x)cos(wx)dx = 0 still holds with
the same proof. More generally, the continuity of f(x) can be replaced by Riemann
integrability. As we have seen the key step in our solution is to show a function f has
the following property:

b
For a given € > 0, there is a step function ¢ such that / If(x) -
a

d(x)|dx < e.

After that we can continue from (%) to repeat the remaining steps. Riemann integrable
functions also have this property:

Theorem. If f(x) is Riemann integrable on [a,b], then for every € > 0, there is a step
function ¢(x) on [a,b] such that

b
/ 1f(x) = p(x)ldx < €.

Proof. This is very immediate from definition if we can realize that every L(f,P :=
{x0,...,xn}) = er'l:l infly, | x,] fAx; is actually the Riemann integral of the step func-
tion:
¢= inf f on[xj_1,x;),i<n
Xi-1,%; ]
and
o= inf f onl[x,_1,xn]
[xn-1,Xn]

Suppose that P is chosen at the beginning such that f: f(x)dx—L(f,P) < €, then
since L(f,P) = fab ¢(x)dx for ¢ defined above, we have

b
/ (f(x)—o(x)) dx < €. |
a ——
20
With a slight modification on the step function in the proof above, one has:

Corollary. If f(x) is Riemann integrable on [a,b), then for every € > 0, there is a
continuous function g(x) on [a, b] such that

b
/ If(x)—g()ldx <e.

Moreover, such g(x) can be chosen such that |g| < SUP[4.b] |f] on [a,b].

Finally, everything seems to have nothing to do with Lebesgue. The Riemann-
Lebesgue Lemma actually holds for Lebesgue integrable functions as well:

Theorem. For every f(x) Lebesgue integrable on [a,b],

lim f(x)sin(wx) dm(x) = 0.

w—0o0 [a,b]

The proof is more subtle, one can still use step functions technique, and in addition
we need the outer regularity of Lebesgue measure m and we also need L! approxi-
mation technique using simple functions, for detail one can refer to lecture notes of
Math3043.




Exercises

1.

(a) Show that f(x) = sin(x?) is not uniformly continuous on R. How does the
graph of f(x) look?

(b) Let f(x) be continuous on [a, ), show that if lim f(x) =a € R, then f(x)
X—00

is uniformly continuous on [a, o).

Let f(x) be continuous on [—1, 1]. Suppose that f(x) satisfies

1
/1 f()g(x)dx =0

for every even integrable function g(x) on [—1,1]. Prove that f(x) must be odd.

Suppose f(x) is differentiable on [0, 1] with f’(x) continuous on [0, 1]. Show that

1 1
sup 1/(2) < /0 FOldx+ /0 ()l dx.

x€l0,1

Hint: Recall Extreme Value Theorem for continuous functions on [0, 1].

Suppose f(x) is continuous on [a,b] with f(x) > 0 on (a,b). Suppose also that
g(x) is Riemann integrable on [a, b], prove that

b b
Jim / gx)V/ f(x)dx = / g(x)dx.

(Uniform Continuity on Rz) Show that if f : [a,b] X [c,d] — R is continuous,
then f(x,y) is uniformly continuous on [a, b] X [c,d] in the sense that

Ye>0,36>0 st |i-0<d = |f)—- f@)| <e.

Hint: You may repeat the proof of its real line analogue; recall that any bounded
sequence in R? has a convergent subsequence, see Exercise 8 of Tutorial Note 4.

(Generalized Fundamental Theorem of Calculus) Let f(x,t) be such that
both f(x,t) and %{(x,t) are continuous on [a, b] X [c,d] (in the multivariable cal-
culus sense). Let ¢ : (c,d) — (a, b) be differentiable. Show that for every 7 € (¢, d),

(1) of

d (1) ,
dt( j f(x,t)dX) =/a E(x,t)dX+f(¢(t),t)¢ (®).

The following illustrate the step functions technique as in Example 4.

7. (Approximation by Continuous Functions) Let f : [a,b] — R be Riemann
integrable. Show that for every € > 0, there is a continuous function g : [a,b] » R

with [g(x)| < sup |f(¢)| on [a,b] such that
t€la,b]

b
/ If(x) —g(x)ldx < e.

Hint: Approximate the integral fab f dx by the definition of Riemann lower sum, this
sum can be viewed as an integral of a step function s(x). Modify this step function
in a linear way to make it become a continuous function g(x). Justify that your

modification g satisfies fab lg(x) —s(x)|dx < e.

8. (Full Version of Riemann-Lebesgue Lemma) By using Exercise 7, generalize
Example 4 by requiring now f(x) be merely Riemann integrable on [a, b].

9. (Generalized Riemann-Lebesgue Lemma) Let f(x) be a T-periodic function
on R that is integrable on [0,7], and g(x) integrable on [a, b]. Prove that

b 1 /T b
lim/ fwx)g(x)dx = ?/ f(x)dx/ g(x)dx.
w—00 a 0 a



