
Math2033 Mathematical Analysis (Spring 2013-2014) Tutorial Note 9

Riemann Integral (Part II): Miscellaneous

We need to know

• how to judge a set is of measure zero;

• apart from showing continuous functions are Riemann integrable, how useful is
uniform continuity?

Key definitions and results

Definition 1 (Uniform Continuity). A function f : S→ R is said to be uniformly
continuous if there holds

∀ε > 0,∃δ > 0 s.t. |x− y| < δ Ô⇒ | f (x)− f (y)| < ε .

Definition 2 (Measure Zero, a.e. Property).

• A set S ⊆ R is of measure zero if for every ε > 0, there are open intervals
I1, I2, . . . such that S ⊆

⋃∞
i=1 Ii and

ř∞
i=1 |Ii | < ε .

• We say a property P = P(x) holds a.e. if the set {x : P(x) does not hold} has
measure zero.

Remark. It is immediate from the definition that a subset of a set of measure zero is
of measure zero; also, a union of countably many sets of measure zero is again of
measure zero.

Theorem 3. Let f (x) be a continuous function on [a, b], then f (x) is uniformly con-
tinuous there.

Theorem 4. If f : [a, b] → R is Riemann integrable and c ∈ [a, b], then F(x) :=∫ x

c
f (t) dt is uniformly continuous on [a, b].

Theorem 5 (Fundamental Theorem of Calculus). Let c, x0 ∈ [a, b].

(a) If f (x) is Riemann integrable on [a, b], continuous at x0 and F(x) =∫ x

c
f (t) dt, then F′(x0) = f (x0).

(b) If G(x) is differentiable on [a, b] with G′(x) = g(x) Riemann integrable on

[a, b], then
∫ b

a
g(x) dx = G(b)−G(a).

Theorem 6 (Composition). If f (x) is Riemann integrable on [a, b] and φ(x) is con-
tinuous on f ([a, b]), then φ( f (x)) is Riemann integrable on [a, b].

Theorem 7 (Lebesgue Criterion). Let f (x) be bounded on [a, b], then f (x) is Rie-
mann integrable on [a, b] if and only if

Sf := {x ∈ [a, b] : f is discontinuous at x}

is of measure zero.

Theorem 8 (Integration by Parts). If f (x),g(x) are differentiable on [a, b] and
f ′(x),g′(x) are Riemann integrable on [a, b], then∫ b

a
f (x)g′(x) dx = f (b)g(b)− f (a)g(a)−

∫ b

a
f ′(x)g(x) dx.

Theorem 9 (Change of Variable Formula). If φ(x) is differentiable, φ′(x) is inte-
grable on [a, b] and f (x) is continuous on φ([a, b]), then∫ φ(b)

φ(a)
f (t) dt =

∫ b

a
f (φ(x))φ′(x) dx.

Remark. The continuity of φ(x) in Theorem 6 cannot be replaced by Riemann integra-
bility. For example, the Thomae’s function f : [0,1]→ R given by f (0) = 0 and for
x ∈ (0,1],

f (x) =


1

q
, if x =

p

q
p,q coprime

0 if x is irrational

is Riemann integrable. The function φ : [0,1]→{0,1} given by φ(0) = 0 and φ(x) = 1
for x > 0 is also Riemann integrable, but their composition

φ◦ f =

{
1 x ∈ [0,1]∩Q
0 x ∈ [0,1]\Q

is not Riemann integrable.

Conclusion: Generally the composition of two Riemann integrable functions is not
Riemann integrable.



Example 1.

(a) If f (x) has bounded derivative on an (bounded or unbounded) open interval
I, show that f (x) is uniformly continuous on I.

(b) Show that for any p ∈ (0,1), h(x) := xp is uniformly continuous on [0,∞).

(c) Show that f (x) = x2 is not uniformly continuous on [0,∞).

Sol (a) As f ′ is bounded on I, there is M > 0 such that | f ′| ≤ M on I. Now for any x, y ∈ I,
Mean-Value Theorem says that there is c between x, y,

| f (x)− f (y)| = | f ′(c)(x− y)| ≤ M |x− y|.

Now for every ε > 0, we may choose δ = ε/M , then

|x− y| < δ Ô⇒ | f (x)− f (y)| < Mδ = ε .

(b) We know that for every x, y ≥ 0,

|xp − yp | ≤ |x− y|p ,

and thus for every ε > 0, the choice δ = ε1/p will do.

(c) We try to show

⇐⇒ nonuniform continuity of f

⇐⇒ ∼(∀ε > 0,∃δ > 0, |x− y| < δ Ô⇒ | f (x)− f (y)| < ε)

⇐⇒ ∃ε > 0,∀δ > 0,∃x, y ∈ [0,∞), |x− y| < δ and | f (x)− f (y)| ≥ ε

for any sequence {δn} s.t. δn → 0, the statement above is equivalent to

⇐⇒ ∃ε > 0,∀n,∃xn , yn ∈ [0,∞), |xn − yn | < δn and | f (xn)− f (yn)| ≥ ε .

Therefore, the following are equivalent:

• f : A→ B is not uniformly continuous.

• There is a sequence of arbitrarily close pairs in the domain whose images can’t be
arbitrarily close.

In particular, let’s choose xn =
√

n + 1 and yn =
√

n, then |xn − yn | = 1√
n+1+

√
n

, so xn , yn’s

are arbitrarily close pairs, but

| f (xn)− f (yn)| = |(n + 1)− n| = 1 ≥ 1

is bounded below by a positive constant.

Remark. To consolidate understanding, please try to show that f (x) = sin(x2) is not
uniformly continuous on R.

In other words, try to construct a sequence of pairs xn , yn such that xn − yn → 0 but
| f (xn)− f (yn)| can’t be arbitrarily small.



Example 2 (2002 Final). Let f ,g : [0,2]→ R be Riemann integrable. Prove
that h : [0,2]→ R defined by

h(x) =

{
max{ f (x),g(x)} if x ∈ [0,1]
min{ f (x),g(x)} if x ∈ (1,2]

is also Riemann integrable on [0,2].

Sol We try to show

Sh = {x ∈ [0,2] : h not cont. at x}

has measure zero.

Due to the way we define h, let’s decompose Sh into

Sh = (Sh ∩ [0,1))))∪ (Sh ∩ (1,2])∪ (((SSShhh ∩∩∩{111})))

Since h = max{ f ,g} on [0,1), we have

Sh ∩ [0,1) = Smax{ f ,g}∩ [0,1).

Similarly,

Sh ∩ (1,2] = Smin{ f ,g}∩ (1,2].

Therefore we conclude

Sh ⊆ Smax{ f ,g}∪ Smin{ f ,g}∪{111}.

Remark. We need to decompose Sh into 3 pieces rather than 2 pieces: [0,1] and
(1,2]. The reason is max{ f ,g} can be continuous at 1 with h discontinuous at 1. An
example is f ≡ 2 and g ≡ 1, we have h = max{ f ,g} = 2 on [0,1] and h = min{ f ,g} = 1
on (1,2].

The trouble arises as h is “redefined” on the right of 1, continuity of max{ f ,g} at 1
does not imply

lim
x→1−

h(x)︸︷︷︸
=max{ f (x),g(x)}

= lim
x→1+

h(x)︸︷︷︸
=min{ f (x),g(x)}

.

Moreover, for every x ∈ [0,1) (similarly for x ∈ (1,2]), h = max{ f ,g} completely on
a sufficiently small neighborhood of x (including both LHS and RHS of x), therefore

Sh ∩ [0,1) = Smax{ f ,g}∩ [0,1) must be true:

x
0 1

|

x

h = max{ f ,g}

(going to) take limit

The uncertainty Sh ∩{1} courses no trouble since it has measure zero.

Now it is enough to show Smax{ f ,g} and Smin{ f ,g} have measure zero. This can be done in
two ways:

Method 1. By the formula

max{x, y} =
1
2

(x + y+ |x− y|) and min{x, y} =
1
2

(x + y− |x− y|)

we see that both max{ f ,g} and min{ f ,g} are Riemann integrable, hence both
Smax{ f ,g}, Smin{ f ,g} have measure zero by Lebesgue Theorem.

Method 2. Since f cont. at x and g cont. at x Ô⇒ max{ f ,g} cont. at x, by contrapositive,
we have

Smax{ f ,g} ⊆ Sf ∪ Sg .

Since a union of two measure zero sets are of measure zero, Sf ∪ Sg has measure zero.
Smax{ f ,g} being a subset of measure zero set is also of measure zero.

Similarly, since Smin{ f ,g} ⊆ Sf ∪ Sg , so Smin{ f ,g} has measure zero.



Example 3. Let f (x) be Riemann integrable on [a, b]. Suppose that∫ b

a
f (x) dx > 0,

show that there is an η > 0 and a closed subinterval I such that f (x) > η on I.

Sol We prove by contradiction.

Suppose on the contrary for every η > 0, for every subinterval I we can find an x ∈ I,
f (x) ≤ η.

Let ε > 0 (to be taken small) be fixed and consider the Riemann integral of f (x).

Let P = {x0, x1, . . . , xn} [a, b]. For each subinterval [xi−1, xi ], there is x∗i ∈ [xi−1, xi ]
s.t. f (x∗i ) ≤ ε , and therefore

L( f , P) ≤ S( f , P) =

n
ÿ

i=1

f (x∗i )∆xi ≤ ε
n

ÿ

i=1

(xi − xi=1) = ε(b− a).

Now we take ‖P‖ → 0 such that L( f , P)→
∫ b

a
f (x) dx, we have∫ b

a

f (x) dx ≤ ε(b− a).

Since ε > 0 is arbitrary, we can take ε → 0+ to conclude
∫ b

a
f (x) dx ≤ 0, a contradiction to

that
∫ b

a
f (x) dx > 0.

Example 4 (Riemann-Lebesgue Lemma). Let f : [a, b]→R be a continuous
function. Show that

lim
4→∞

∫ b

a
f (x) sin(4x) dx = 0.

Remark. We generalize this result in Exercise 8 and 9, this is an important result in the
study of pointwise convergence of Fourier series and will be used in Math4052.

Sol First of all, let’s approximate f (x) closely by a step function. A step function is a function
that is piecewise constant on finitely many intervals.

Since f (x) is continuous on [a, b], it is uniformly continuous there.

Let ε > 0 be given, there is δ > 0 such that for every x, y ∈ [a, b],

|x− y| < δ Ô⇒ | f (x)− f (y)| < ε .

Let’s take a = x0 < x1 < · · · < xn = b such that max1≤i≤n(xi − xi−1) < δ. We construct a
step functions as follows:

φ(x) = f
( xi + xi−1

2︸ ︷︷ ︸
:=mi

)
for x ∈ [xi−1, xi )︸ ︷︷ ︸

:=Ji

, i < n

and
φ(x) = f

( xn + xn−1

2︸ ︷︷ ︸
:=mn

)
for x ∈ [xn−1, xn]︸ ︷︷ ︸

:=Jn

.

This step function satisfies
| f (x)−φ(x)| < ε . (∗)

To explain (∗), let x ∈ [a, b], then there is an i, x ∈ Ji , and hence

|x−mi | < δ Ô⇒ | f (x)−φ(x)| = | f (x)− f (mi )| < ε .

(∗) is pictorially clear for those partition that is refined enough:

x

y

| | | | |

xn

• ◦
• ◦

• ◦

• ◦• •

x0
×

f (x)
φ(x)

Note that we don’t know how to compute
∫ b

a
f (x) sin(4x) dx but we do know how to com-

pute
∫ b

a
φ(x) sin(4x) dx—that’s the key point of the proof.



Now for the fixed φ(x) constructed above,∣∣∣∣∫ b

a

f (x) sin(4x) dx

∣∣∣∣ ≤ ∣∣∣∣∫ b

a

( f (x)−φ(x)) sin(4x) dx

∣∣∣∣+ ∣∣∣∣∫ b

a

φ(x) sin(4x) dx

∣∣∣∣
≤

∫ b

a

| f (x)−φ(x)|dx +

∣∣∣∣∣ n
ÿ

i=1

∫ xi

xi−1

φ(x) sin(4x) dx

∣∣∣∣∣ (?)

< (b− a)ε +

∣∣∣∣∣ n
ÿ

i=1

f (mi )(cos4xi−1 − cos4xi )
4

∣∣∣∣∣
≤ (b− a)ε +

n
ÿ

i=1

| f (mi )| ·2
|4|

= (b− a)ε +
2

řn
i=1 | f (mi )|
|4|

. (∗∗)

Now we can find a b > 0 such that

4 > b Ô⇒
1
|4|

<
ε

2
řn

i=1 | f (mi )|+ 1
,

it follows that from (∗∗),

4 > b Ô⇒

∣∣∣∣∫ b

a

f (x) sin(4x) dx

∣∣∣∣ < (b− a + 1)ε .

Thus lim4→∞
∫ b

a
f (x) sin(4x) dx = 0 by the definition of limit.

Remark. In Example 4 the result lim4→∞
∫ b

a
f (x)cos(4x) dx = 0 still holds with

the same proof. More generally, the continuity of f (x) can be replaced by Riemann
integrability. As we have seen the key step in our solution is to show a function f has
the following property:

For a given εεε >>> 000, there is a step function φφφ such that
∫∫∫ bbb

aaa

||| fff (((xxx))) −−−

φφφ(((xxx)))|||dddxxx <<< εεε ...

After that we can continue from (?) to repeat the remaining steps. Riemann integrable
functions also have this property:

Theorem. If f (x) is Riemann integrable on [a, b], then for every ε > 0, there is a step
function φ(x) on [a, b] such that∫ b

a

| f (x)−φ(x)|dx < ε .

Proof. This is very immediate from definition if we can realize that every L( f , P :=
{x0, . . . , xn}) =

řn
i=1 inf[xi−1,xi ] f ∆xi is actually the Riemann integral of the step func-

tion:
ϕ = inf

[xi−1,xi ]
f on [xi−1, xi ), i < n

and
ϕ = inf

[xn−1,xn ]
f on [xn−1, xn].

Suppose that P is chosen at the beginning such that
∫ b

a
f (x) dx − L( f , P) < ε , then

since L( f , P) =
∫ b

a
ϕ(x) dx for ϕ defined above, we have∫ b

a

( f (x)−ϕ(x))︸ ︷︷ ︸
≥0

dx < ε .

With a slight modification on the step function in the proof above, one has:

Corollary. If f (x) is Riemann integrable on [a, b], then for every ε > 0, there is a
continuous function g(x) on [a, b] such that∫ b

a

| f (x)−g(x)|dx < ε .

Moreover, such g(x) can be chosen such that |g| ≤ sup[a,b] | f | on [a, b].

Finally, everything seems to have nothing to do with Lebesgue. The Riemann-
Lebesgue Lemma actually holds for Lebesgue integrable functions as well:

Theorem. For every f (x) Lebesgue integrable on [a, b],

lim
4→∞

∫
[a,b]

f (x) sin(4x) dm(x) = 0.

The proof is more subtle, one can still use step functions technique, and in addition
we need the outer regularity of Lebesgue measure m and we also need L1 approxi-
mation technique using simple functions, for detail one can refer to lecture notes of
Math3043.



Exercises

1. (a) Show that f (x) = sin(x2) is not uniformly continuous on R. How does the
graph of f (x) look?

(b) Let f (x) be continuous on [a,∞), show that if lim
x→∞

f (x) = a ∈ R, then f (x)
is uniformly continuous on [a,∞).

2. Let f (x) be continuous on [−1,1]. Suppose that f (x) satisfies∫ 1

−1
f (x)g(x) dx = 0

for every even integrable function g(x) on [−1,1]. Prove that f (x) must be odd.

3. Suppose f (x) is differentiable on [0,1] with f ′(x) continuous on [0,1]. Show that

sup
x∈[0,1]

| f (x)| ≤
∫ 1

0
| f (x)|dx +

∫ 1

0
| f ′(x)|dx.

Hint: Recall Extreme Value Theorem for continuous functions on [0,1].

4. Suppose f (x) is continuous on [a, b] with f (x) > 0 on (a, b). Suppose also that
g(x) is Riemann integrable on [a, b], prove that

lim
n→∞

∫ b

a
g(x) n

√
f (x) dx =

∫ b

a
g(x) dx.

5. (Uniform Continuity on R2) Show that if f : [a, b]× [c, d]→ R is continuous,
then f (x, y) is uniformly continuous on [a, b]× [c, d] in the sense that

∀ε > 0,∃δ > 0 s.t. ‖~u−~3‖ < δ Ô⇒ | f (~u)− f (~3)| < ε .

Hint: You may repeat the proof of its real line analogue; recall that any bounded
sequence in R2 has a convergent subsequence, see Exercise 8 of Tutorial Note 4.

6. (Generalized Fundamental Theorem of Calculus) Let f (x, t) be such that
both f (x, t) and ∂ f

∂t (x, t) are continuous on [a, b]× [c, d] (in the multivariable cal-
culus sense). Let φ : (c, d)→ (a, b) be differentiable. Show that for every t ∈ (c, d),

d
dt

(∫ φ(t)

a
f (x, t) dx

)
=

∫ φ(t)

a

∂ f
∂t

(x, t) dx + f (φ(t), t)φ′(t).

The following illustrate the step functions technique as in Example 4.

7. (Approximation by Continuous Functions) Let f : [a, b]→ R be Riemann
integrable. Show that for every ε > 0, there is a continuous function g : [a, b]→R
with |g(x)| ≤ sup

t∈[a,b]
| f (t)| on [a, b] such that

∫ b

a
| f (x)−g(x)|dx < ε .

Hint: Approximate the integral
∫ b
a f dx by the definition of Riemann lower sum, this

sum can be viewed as an integral of a step function sss(((xxx))). Modify this step function
in a linear way to make it become a continuous function ggg(((xxx))). Justify that your

modification g satisfies
∫ b
a |g(x)− s(x)|dx < ε.

8. (Full Version of Riemann-Lebesgue Lemma) By using Exercise 7, generalize
Example 4 by requiring now f (x) be merely Riemann integrable on [a, b].

9. (Generalized Riemann-Lebesgue Lemma) Let f (x) be a T-periodic function
on R that is integrable on [0,T], and g(x) integrable on [a, b]. Prove that

lim
4→∞

∫ b

a
f (4x)g(x) dx =

1
T

∫ T

0
f (x) dx

∫ b

a
g(x) dx.


