Math2033 Mathematical Analysis (Spring 2013-2014)

Tutorial Note 9

Riemann Integral (Part II): Miscellaneous

We need to know

- how to judge a set is of measure zero;
- apart from showing continuous functions are Riemann integrable, how useful is uniform continuity?
Key definitions and results

Definition 1 (Uniform Continuity). A function $f: S \rightarrow \mathbb{R}$ is said to be uniformly continuous if there holds

$$
\forall \epsilon>0, \exists \delta>0 \quad \text { s.t. } \quad|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\epsilon .
$$

Definition 2 (Measure Zero, a.e. Property).

- A set $S \subseteq \mathbb{R}$ is of measure zero if for every $\epsilon>0$, there are open intervals I_{1}, I_{2}, \ldots such that $S \subseteq \bigcup_{i=1}^{\infty} I_{i}$ and $\sum_{i=1}^{\infty}\left|I_{i}\right|<\epsilon$.
- We say a property $P=P(x)$ holds a.e. if the set $\{x: P(x)$ does not hold $\}$ has measure zero.

Remark. It is immediate from the definition that a subset of a set of measure zero is of measure zero; also, a union of countably many sets of measure zero is again of measure zero.

Theorem 3. Let $f(x)$ be a continuous function on $[a, b]$, then $f(x)$ is uniformly continuous there.

Theorem 4. If $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable and $c \in[a, b]$, then $F(x):=$ $\int_{c}^{x} f(t) d t$ is uniformly continuous on $[a, b]$.

Theorem 5 (Fundamental Theorem of Calculus). Let $c, x_{0} \in[a, b]$.
(a) If $f(x)$ is Riemann integrable on $[a, b]$, continuous at x_{0} and $F(x)=$ $\int_{c}^{x} f(t) d t$, then $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
(b) If $G(x)$ is differentiable on $[a, b]$ with $G^{\prime}(x)=g(x)$ Riemann integrable on $[a, b]$, then $\int_{a}^{b} g(x) d x=G(b)-G(a)$.

Theorem 6 (Composition). If $f(x)$ is Riemann integrable on $[a, b]$ and $\phi(x)$ is continuous on $f([a, b])$, then $\phi(f(x))$ is Riemann integrable on $[a, b]$.

Theorem 7 (Lebesgue Criterion). Let $f(x)$ be bounded on $[a, b]$, then $f(x)$ is Riemann integrable on $[a, b]$ if and only if

$$
S_{f}:=\{x \in[a, b]: f \text { is discontinuous at } x\}
$$

is of measure zero.

Theorem 8 (Integration by Parts). If $f(x), g(x)$ are differentiable on $[a, b]$ and $f^{\prime}(x), g^{\prime}(x)$ are Riemann integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

Theorem 9 (Change of Variable Formula). If $\phi(x)$ is differentiable, $\phi^{\prime}(x)$ is integrable on $[a, b]$ and $f(x)$ is continuous on $\phi([a, b])$, then

$$
\int_{\phi(a)}^{\phi(b)} f(t) d t=\int_{a}^{b} f(\phi(x)) \phi^{\prime}(x) d x
$$

Remark. The continuity of $\phi(x)$ in Theorem 6 cannot be replaced by Riemann integrability. For example, the Thomae's function $f:[0,1] \rightarrow \mathbb{R}$ given by $f(0)=0$ and for $x \in(0,1]$,

$$
f(x)= \begin{cases}\frac{1}{q}, & \text { if } x=\frac{p}{q} p, q \text { coprime } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

is Riemann integrable. The function $\phi:[0,1] \rightarrow\{0,1\}$ given by $\phi(0)=0$ and $\phi(x)=1$ for $x>0$ is also Riemann integrable, but their composition

$$
\phi \circ f= \begin{cases}1 & x \in[0,1] \cap \mathbb{Q} \\ 0 & x \in[0,1] \backslash \mathbb{Q}\end{cases}
$$

is not Riemann integrable.
Conclusion: Generally the composition of two Riemann integrable functions is not Riemann integrable.

Example 1.

(a) If $f(x)$ has bounded derivative on an (bounded or unbounded) open interval I, show that $f(x)$ is uniformly continuous on I.
(b) Show that for any $p \in(0,1), h(x):=x^{p}$ is uniformly continuous on $[0, \infty)$.
(c) Show that $f(x)=x^{2}$ is not uniformly continuous on $[0, \infty)$.

Sol (a) As f^{\prime} is bounded on I, there is $M>0$ such that $\left|f^{\prime}\right| \leq M$ on I. Now for any $x, y \in I$, Mean-Value Theorem says that there is c between x, y,

$$
|f(x)-f(y)|=\left|f^{\prime}(c)(x-y)\right| \leq M|x-y| .
$$

Now for every $\epsilon>0$, we may choose $\delta=\epsilon / M$, then

$$
|x-y|<\delta \Longrightarrow|f(x)-f(y)|<M \delta=\epsilon
$$

(b) We know that for every $x, y \geq 0$,

$$
\left|x^{p}-y^{p}\right| \leq|x-y|^{p}
$$

and thus for every $\epsilon>0$, the choice $\delta=\epsilon^{1 / p}$ will do.
(c) We try to show

$$
\begin{array}{ll}
& \text { nonuniform continuity of } f \\
\Longleftrightarrow & \sim(\forall \epsilon>0, \exists \delta>0,|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\epsilon) \\
\Longleftrightarrow & \exists \epsilon>0, \forall \delta>0, \exists x, y \in[0, \infty),|x-y|<\delta \quad \text { and } \quad|f(x)-f(y)| \geq \epsilon
\end{array}
$$

for any sequence $\left\{\delta_{n}\right\}$ s.t. $\delta_{n} \rightarrow 0$, the statement above is equivalent to

$$
\Longleftrightarrow \quad \exists \epsilon>0, \forall n, \exists x_{n}, y_{n} \in[0, \infty),\left|x_{n}-y_{n}\right|<\delta_{n} \quad \text { and } \quad\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon .
$$

Therefore, the following are equivalent:

- $f: A \rightarrow B$ is not uniformly continuous
- There is a sequence of arbitrarily close pairs in the domain whose images can't be arbitrarily close.

In particular, let's choose $x_{n}=\sqrt{n+1}$ and $y_{n}=\sqrt{n}$, then $\left|x_{n}-y_{n}\right|=\frac{1}{\sqrt{n+1}+\sqrt{n}}$, so x_{n}, y_{n} 's are arbitrarily close pairs, but

$$
\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=|(n+1)-n|=1 \geq 1
$$

is bounded below by a positive constant.

Remark. To consolidate understanding, please try to show that $f(x)=\sin \left(x^{2}\right)$ is not uniformly continuous on \mathbb{R}.

In other words, try to construct a sequence of pairs x_{n}, y_{n} such that $x_{n}-y_{n} \rightarrow 0$ but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|$ can't be arbitrarily small.

Example 2 (2002 Final). Let $f, g:[0,2] \rightarrow \mathbb{R}$ be Riemann integrable. Prove that $h:[0,2] \rightarrow \mathbb{R}$ defined by

$$
h(x)= \begin{cases}\max \{f(x), g(x)\} & \text { if } x \in[0,1] \\ \min \{f(x), g(x)\} & \text { if } x \in(1,2]\end{cases}
$$

is also Riemann integrable on [0,2].

Sol We try to show

$$
S_{h}=\{x \in[0,2]: h \text { not cont. at } x\}
$$

has measure zero.
Due to the way we define h, let's decompose S_{h} into

$$
S_{h}=\left(S_{h} \cap[0,1)\right) \cup\left(S_{h} \cap(1,2]\right) \cup\left(S_{h} \cap\{\mathbf{1}\}\right)
$$

Since $h=\max \{f, g\}$ on $[0,1)$, we have

$$
S_{h} \cap[0,1)=S_{\max (f, g\}} \cap[0,1) .
$$

Similarly,

$$
S_{h} \cap(1,2]=S_{\min \{f, g\}} \cap(1,2] .
$$

Therefore we conclude

$$
S_{h} \subseteq S_{\max \{f, g\}} \cup S_{\min \{f, g\}} \cup\{\mathbf{1}\} .
$$

Remark. We need to decompose S_{h} into 3 pieces rather than 2 pieces: $[0,1]$ and $(1,2]$. The reason is $\max \{f, g\}$ can be continuous at 1 with h discontinuous at 1 . An example is $f \equiv 2$ and $g \equiv 1$, we have $h=\max \{f, g\}=2$ on $[0,1]$ and $h=\min \{f, g\}=1$ on (1,2].

The trouble arises as h is "redefined" on the right of 1 , continuity of $\max \{f, g\}$ at 1 does not imply

$$
\lim _{x \rightarrow 1^{-}} \underbrace{h(x)}_{=\max \{f(x), g(x)\}}=\lim _{x \rightarrow 1^{+}} \underbrace{h(x)}_{=\min \{f(x), g(x)\}} \text {. }
$$

Moreover, for every $x \in[0,1)$ (similarly for $x \in(1,2]), h=\max \{f, g\}$ completely on a sufficiently small neighborhood of x (including both LHS and RHS of x), therefore
$S_{h} \cap[0,1)=S_{\max \{f, g\}} \cap[0,1)$ must be true:

$$
(\underset{\text { going to })}{\longrightarrow} \overleftrightarrow{\text { take limit }}
$$

The uncertainty $S_{h} \cap\{1\}$ courses no trouble since it has measure zero.

Now it is enough to show $S_{\max \{f, g\}}$ and $S_{\min \{f, g\}}$ have measure zero. This can be done in two ways:

Method 1. By the formula

$$
\max \{x, y\}=\frac{1}{2}(x+y+|x-y|) \quad \text { and } \quad \min \{x, y\}=\frac{1}{2}(x+y-|x-y|)
$$

we see that both $\max \{f, g\}$ and $\min \{f, g\}$ are Riemann integrable, hence both $S_{\max \{f, g\}}, S_{\min \{f, g\}}$ have measure zero by Lebesgue Theorem.

Method 2. Since f cont. at x and g cont. at $x \Longrightarrow \max \{f, g\}$ cont. at x, by contrapositive, we have

$$
S_{\max \{f, g\}} \subseteq S_{f} \cup S_{g} .
$$

Since a union of two measure zero sets are of measure zero, $S_{f} \cup S_{g}$ has measure zero. $S_{\text {max }\{f, g\}}$ being a subset of measure zero set is also of measure zero.
Similarly, since $S_{\min \{f, g\}} \subseteq S_{f} \cup S_{g}$, so $S_{\min \{f, g\}}$ has measure zero.

Example 3. Let $f(x)$ be Riemann integrable on $[a, b]$. Suppose that

$$
\int_{a}^{b} f(x) d x>0
$$

show that there is an $\eta>0$ and a closed subinterval I such that $f(x)>\eta$ on I.

Sol We prove by contradiction.
Suppose on the contrary for every $\eta>0$, for every subinterval I we can find an $x \in I$, $f(x) \leq \eta$.

Let $\epsilon>0$ (to be taken small) be fixed and consider the Riemann integral of $f(x)$.
Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \leftrightharpoons[a, b]$. For each subinterval $\left[x_{i-1}, x_{i}\right]$, there is $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ s.t. $f\left(x_{i}^{*}\right) \leq \epsilon$, and therefore

$$
L(f, P) \leq S(f, P)=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i} \leq \epsilon \sum_{i=1}^{n}\left(x_{i}-x_{i=1}\right)=\epsilon(b-a) .
$$

Now we take $\|P\| \rightarrow 0$ such that $L(f, P) \rightarrow \int_{a}^{b} f(x) d x$, we have

$$
\int_{a}^{b} f(x) d x \leq \epsilon(b-a) .
$$

Since $\epsilon>0$ is arbitrary, we can take $\epsilon \rightarrow 0^{+}$to conclude $\int_{a}^{b} f(x) d x \leq 0$, a contradiction to that $\int_{a}^{b} f(x) d x>0$.

Example 4 (Riemann-Lebesgue Lemma). Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Show that

$$
\lim _{w \rightarrow \infty} \int_{a}^{b} f(x) \sin (w x) d x=0
$$

Remark. We generalize this result in Exercise 8 and 9, this is an important result in the study of pointwise convergence of Fourier series and will be used in Math4052.

Sol First of all, let's approximate $f(x)$ closely by a step function. A step function is a function that is piecewise constant on finitely many intervals.
Since $f(x)$ is continuous on $[a, b]$, it is uniformly continuous there.
Let $\epsilon>0$ be given, there is $\delta>0$ such that for every $x, y \in[a, b]$,

$$
|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\epsilon .
$$

Let's take $a=x_{0}<x_{1}<\cdots<x_{n}=b$ such that $\max _{1 \leq i \leq n}\left(x_{i}-x_{i-1}\right)<\delta$. We construct a step functions as follows:

$$
\phi(x)=f(\underbrace{\frac{x_{i}+x_{i-1}}{2}}_{:=m_{i}}) \text { for } x \in \underbrace{\left[x_{i-1}, x_{i}\right)}_{:=J_{i}}, i<n
$$

and

$$
\phi(x)=f(\underbrace{\frac{x_{n}+x_{n-1}}{2}}_{:=m_{n}}) \text { for } x \in \underbrace{\left[x_{n-1}, x_{n}\right]}_{:=J_{n}}
$$

This step function satisfies

$$
\begin{equation*}
|f(x)-\phi(x)|<\epsilon \tag{*}
\end{equation*}
$$

To explain (*), let $x \in[a, b]$, then there is an $i, x \in J_{i}$, and hence

$$
\left|x-m_{i}\right|<\delta \Longrightarrow|f(x)-\phi(x)|=\left|f(x)-f\left(m_{i}\right)\right|<\epsilon .
$$

$(*)$ is pictorially clear for those partition that is refined enough:

Note that we don't know how to compute $\int_{a}^{b} f(x) \sin (w x) d x$ but we do know how to compute $\int_{a}^{b} \phi(x) \sin (w x) d x$-that's the key point of the proof.

Now for the fixed $\phi(x)$ constructed above,

$$
\begin{aligned}
\left|\int_{a}^{b} f(x) \sin (w x) d x\right| & \leq\left|\int_{a}^{b}(f(x)-\phi(x)) \sin (w x) d x\right|+\left|\int_{a}^{b} \phi(x) \sin (w x) d x\right| \\
& \leq \int_{a}^{b}|f(x)-\phi(x)| d x+\left|\sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} \phi(x) \sin (w x) d x\right| \\
& <(b-a) \epsilon+\left|\sum_{i=1}^{n} \frac{f\left(m_{i}\right)\left(\cos w x_{i-1}-\cos w x_{i}\right)}{w}\right| \\
& \leq(b-a) \epsilon+\sum_{i=1}^{n} \frac{\left|f\left(m_{i}\right)\right| \cdot 2}{|w|} \\
& =(b-a) \epsilon+\frac{2 \sum_{i=1}^{n}\left|f\left(m_{i}\right)\right|}{|w|}
\end{aligned}
$$

Now we can find a $b>0$ such that

$$
w>b \Longrightarrow \frac{1}{|w|}<\frac{\epsilon}{2 \sum_{i=1}^{n}\left|f\left(m_{i}\right)\right|+1},
$$

it follows that from (**),

$$
w>b \Longrightarrow\left|\int_{a}^{b} f(x) \sin (w x) d x\right|<(b-a+1) \epsilon
$$

Thus $\lim _{w \rightarrow \infty} \int_{a}^{b} f(x) \sin (w x) d x=0$ by the definition of limit.

Remark. In Example 4 the result $\lim _{w \rightarrow \infty} \int_{a}^{b} f(x) \cos (w x) d x=0$ still holds with the same proof. More generally, the continuity of $f(x)$ can be replaced by Riemann integrability. As we have seen the key step in our solution is to show a function f has the following property:

For a given $\epsilon>0$, there is a step function ϕ such that $\int_{a}^{b} \mid f(x)-$ $\phi(x) \mid d x<\epsilon$.

Proof. This is very immediate from definition if we can realize that every $L(f, P:=$ $\left.\left\{x_{0}, \ldots, x_{n}\right\}\right)=\sum_{i=1}^{n} \inf _{\left[x_{i-1}, x_{i}\right]} f \Delta x_{i}$ is actually the Riemann integral of the step function:

$$
\varphi=\inf _{\left[x_{i-1}, x_{i}\right]} f \quad \text { on }\left[x_{i-1}, x_{i}\right), i<n
$$

and

$$
\varphi=\inf _{\left[x_{n-1}, x_{n}\right]} f \quad \text { on }\left[x_{n-1}, x_{n}\right]
$$

Suppose that P is chosen at the beginning such that $\int_{a}^{b} f(x) d x-L(f, P)<\epsilon$, then since $L(f, P)=\int_{a}^{b} \varphi(x) d x$ for φ defined above, we have

$$
\int_{a}^{b} \underbrace{(f(x)-\varphi(x))}_{\geq 0} d x<\epsilon
$$

With a slight modification on the step function in the proof above, one has:
Corollary. If $f(x)$ is Riemann integrable on $[a, b]$, then for every $\epsilon>0$, there is a continuous function $g(x)$ on $[a, b]$ such that

$$
\int_{a}^{b}|f(x)-g(x)| d x<\epsilon
$$

Moreover, such $g(x)$ can be chosen such that $|g| \leq \sup _{[a, b]}|f|$ on $[a, b]$.
Finally, everything seems to have nothing to do with Lebesgue. The RiemannLebesgue Lemma actually holds for Lebesgue integrable functions as well:

Theorem. For every $f(x)$ Lebesgue integrable on $[a, b]$,

$$
\lim _{w \rightarrow \infty} \int_{[a, b]} f(x) \sin (w x) d m(x)=0
$$

The proof is more subtle, one can still use step functions technique, and in addition we need the outer regularity of Lebesgue measure m and we also need L^{1} approximation technique using simple functions, for detail one can refer to lecture notes of Math3043.

After that we can continue from (\star) to repeat the remaining steps. Riemann integrable functions also have this property:

Theorem. If $f(x)$ is Riemann integrable on $[a, b]$, then for every $\epsilon>0$, there is a step function $\phi(x)$ on $[a, b]$ such that

$$
\int_{a}^{b}|f(x)-\phi(x)| d x<\epsilon
$$

Exercises

1. (a) Show that $f(x)=\sin \left(x^{2}\right)$ is not uniformly continuous on \mathbb{R}. How does the graph of $f(x)$ look?
(b) Let $f(x)$ be continuous on $[a, \infty)$, show that if $\lim _{x \rightarrow \infty} f(x)=a \in \mathbb{R}$, then $f(x)$ is uniformly continuous on $[a, \infty)$.
2. Let $f(x)$ be continuous on $[-1,1]$. Suppose that $f(x)$ satisfies

$$
\int_{-1}^{1} f(x) g(x) d x=0
$$

for every even integrable function $g(x)$ on $[-1,1]$. Prove that $f(x)$ must be odd
3. Suppose $f(x)$ is differentiable on $[0,1]$ with $f^{\prime}(x)$ continuous on $[0,1]$. Show that

$$
\sup _{x \in[0,1]}|f(x)| \leq \int_{0}^{1}|f(x)| d x+\int_{0}^{1}\left|f^{\prime}(x)\right| d x .
$$

Hint: Recall Extreme Value Theorem for continuous functions on $[0,1]$.
4. Suppose $f(x)$ is continuous on $[a, b]$ with $f(x)>0$ on (a, b). Suppose also that $g(x)$ is Riemann integrable on $[a, b]$, prove that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} g(x) \sqrt[n]{f(x)} d x=\int_{a}^{b} g(x) d x
$$

5. (Uniform Continuity on \mathbb{R}^{2}) Show that if $f:[a, b] \times[c, d] \rightarrow \mathbb{R}$ is continuous, then $f(x, y)$ is uniformly continuous on $[a, b] \times[c, d]$ in the sense that

$$
\forall \epsilon>0, \exists \delta>0 \quad \text { s.t. } \quad\|\vec{u}-\vec{v}\|<\delta \Longrightarrow|f(\vec{u})-f(\vec{v})|<\epsilon .
$$

Hint: You may repeat the proof of its real line analogue; recall that any bounded sequence in \mathbb{R}^{2} has a convergent subsequence, see Exercise 8 of Tutorial Note 4.
6. (Generalized Fundamental Theorem of Calculus) Let $f(x, t)$ be such that both $f(x, t)$ and $\frac{\partial f}{\partial t}(x, t)$ are continuous on $[a, b] \times[c, d]$ (in the multivariable calculus sense). Let $\phi:(c, d) \rightarrow(a, b)$ be differentiable. Show that for every $t \in(c, d)$,

$$
\frac{d}{d t}\left(\int_{a}^{\phi(t)} f(x, t) d x\right)=\int_{a}^{\phi(t)} \frac{\partial f}{\partial t}(x, t) d x+f(\phi(t), t) \phi^{\prime}(t)
$$

The following illustrate the step functions technique as in Example 4.
7. (Approximation by Continuous Functions) Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable. Show that for every $\epsilon>0$, there is a continuous function $g:[a, b] \rightarrow \mathbb{R}$ with $|g(x)| \leq \sup |f(t)|$ on $[a, b]$ such that $t \in[a, b]$

$$
\int_{a}^{b}|f(x)-g(x)| d x<\epsilon
$$

Hint: Approximate the integral $\int_{a}^{b} f d x$ by the definition of Riemann lower sum, this sum can be viewed as an integral of a step function $\boldsymbol{s}(\boldsymbol{x})$. Modify this step function in a linear way to make it become a continuous function $\boldsymbol{g}(\boldsymbol{x})$. Justify that your modification g satisfies $\int_{a}^{b}|g(x)-s(x)| d x<\varepsilon$.
8. (Full Version of Riemann-Lebesgue Lemma) By using Exercise 7, generalize Example 4 by requiring now $f(x)$ be merely Riemann integrable on $[a, b]$.
9. (Generalized Riemann-Lebesgue Lemma) Let $f(x)$ be a T-periodic function on \mathbb{R} that is integrable on $[0, T]$, and $g(x)$ integrable on $[a, b]$. Prove that

$$
\lim _{w \rightarrow \infty} \int_{a}^{b} f(w x) g(x) d x=\frac{1}{T} \int_{0}^{T} f(x) d x \int_{a}^{b} g(x) d x .
$$

