Math3033 (Fall 2013-2014)

Tutorial Note 9

Lebesgue Measurable Functions

Key Definitions and Results

Definition 1. Let A be a measurable set, we say that $f : A \to \mathbb{R}$ is a (Lebesgue) measurable function if $f^{-1}(a,b)$ is a measurable set for every $a, b \in \mathbb{R}$.

Remark. Implicit to saying $f : A \to \mathbb{R}$ is measurable is the measurability of A because $A = f^{-1}(-\infty,\infty)$, see Theorem 3 for detail.

Definition 2. Let $E \subseteq \mathbb{R}$ be measurable and let P(x) be a property related to points $x \in \mathbb{R}$. We say that P(x) holds **almost everywhere (abbr. a.e.) on** $E^{(*)}$ if

 $m\{x \in E : P(x) \text{ does not hold}\} = 0.$

Theorem 3. The following are equivalent:

(i) $f: A \to \mathbb{R}$ is measurable.

(ii) $f^{-1}[a,b)$ is a measurable set for every $a, b \in \mathbb{R}$, a < b.

(iii) $f^{-1}[a,b]$ is a measurable set for every $a, b \in \mathbb{R}$, a < b.

- (iv) $f^{-1}(a,b)$ is a measurable set for every $a, b \in \mathbb{R}$, a < b.
- (v) $f^{-1}(-\infty, b]$ is a measurable set for every $b \in \mathbb{R}$.
- (vi) $f^{-1}(-\infty, b)$ is a measurable set for every $b \in \mathbb{R}$.
- (vii) $f^{-1}[a,\infty)$ is a measurable set for every $a \in \mathbb{R}$.
- (viii) $f^{-1}(a,\infty)$ is a measurable set for every $a \in \mathbb{R}$.
- **Theorem 4 (Topological Continuity).** Let $A, B \subseteq \mathbb{R}$, the following are equivalent:
 - (i) $f: A \to B$ is continuous.
 - (ii) For every open set U, $f^{-1}(U) = V \cap A$, for some V open.
 - (iii) For every bounded open interval (a,b), $f^{-1}(a,b) = U \cap A$, for some U open.

Theorem 5 (Summary on Properties of Measurable Functions).

- (i) Let A, B be measurable. If $g : B \to \mathbb{R}$ is continuous and $f : A \to B$ is measurable, then $g \circ f : A \to \mathbb{R}$ is also measurable.
- (ii) If $f_1, f_2 : A \to \mathbb{R}$ are measurable, then $f_1 + f_2, f_1 f_2, f_1 f_2, \frac{f_1}{f_2}$ $(f(x) \neq 0, \forall x), \max\{f_1(x), f_2(x)\}$ and $\min\{f_1(x), f_2(x)\}$ are measurable functions.
- (iii) Let $f_1, f_2, f_3, \dots : E \to \mathbb{R}$ be measurable functions, then

provided they exist in \mathbb{R} at a.e. $x \in E$ $\sup_{n \ge 1} f_n(x), \quad \inf_{n \to \infty} f_n(x), \quad \underbrace{\lim_{n \to \infty} f_n(x)}_{n \to \infty} f_n(x), \quad \underbrace{\lim_{n \to \infty} f_n(x)}_{n \to \infty} f_n(x),$ $\lim_{n \to \infty} f_n(x) \text{ (if } f_n \to f \text{ ptwise a.e. on } E)$

are measurable.

- (iv) Let $f,g: A \to \mathbb{R}$ be two functions such that f = g a.e.. If f is measurable, so is g.
- (v) Continuous Functions defined on a measurable domain are measurable.

Example 1. Let
$$A \subseteq \mathbb{R}$$
, show that
 $\chi_A(x) := \begin{cases} 1 & \text{when } x \in A \\ 0 & \text{when } x \notin A \end{cases}$ is measurable $\iff A$ is measurable.

Solution. For every $a \in \mathbb{R}$ we have

$$\chi_A^{-1}[a,\infty) = \begin{cases} \emptyset, & a > 1, \\ A, & a \in (0,1], \\ \mathbb{R}, & a \leq 0. \end{cases}$$

Therefore χ_A is measurable if and only if \emptyset , *A* and \mathbb{R} are all measurable if and only if *A* is measurable.

^(*) Or that P(x) holds for almost every (abbr. a.e.) $x \in E$.

Example 2. Let $f_1, f_2, \dots : E \to \mathbb{R}$ be a sequence of measurable functions which is pointwise bounded, i.e., $\{f_n(x)\}_{n=1}^{\infty}$ is bounded for every $x \in E$.

Without using M_k/m_k Theorem, show that

$$\overline{\lim_{n \to \infty}} f_n$$
 and $\underline{\lim_{n \to \infty}} f_n$

are measurable functions on E.

Solution. We check that $\overline{\lim} f_n$ is measurable by showing that for every $a \in \mathbb{R}$, the set

$$A := \{ x \in E : \overline{\lim} f_n(x) < a \}$$

is measurable. Let $a \in \mathbb{R}$, then for $x \in A$, we try to find another description of x in order to express A in another form. Equivalently, since $x \in A$ iff $\overline{\lim} f_n(x) < a$, we try to modify the statement that $\overline{\lim} f_n(x) < a$.

Unsuccessful but Necessary Trial. Specifically, $\overline{\lim} f_n(x) < a$ implies

$$\exists N \ge 1, \forall n \ge N, f_n(x) < a.$$

Note that the last statement cannot be reversed. Since if we take $\overline{\lim}$ on both sides, "<" becomes " \leq ". But still we can proceed by modifying the bound *a*.

Correct Way. We have

$$\begin{split} \overline{\lim} f_n(x) < a \implies \exists p \in \mathbb{N}, \overline{\lim} f_n(x) < a - \frac{1}{p} \\ \implies \exists p \in \mathbb{N}, \exists N \in \mathbb{N}, \forall n \ge N, f_n(x) < a - \frac{1}{p} \end{split}$$

Fortunately the last statement can be reversed to $\overline{\lim} f_n(x) < a$, so we have

$$A = \{x \in E : \overline{\lim} f_n(x) < a\}$$
$$= \left\{ x \in E : \exists p \in \mathbb{N}, \exists N \in \mathbb{N}, \forall n \ge N, f_n(x) < a - \frac{1}{p} \right\}$$
$$= \bigcup_{p=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \left\{ x \in E : f_n(x) < a - \frac{1}{p} \right\}$$
$$= \bigcup_{p=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} f_n^{-1} \left(-\infty, a - \frac{1}{p} \right).$$

As every union and intersection is countable, by the hypothesis that f_n 's are measurable, we are done.

Now $\underline{\lim} f_n = -\overline{\lim}(-f_n)$ is measurable by the last paragraph.

Exercise 1. Let $f : E \to \mathbb{R}$ be measurable. Show that if *A* has measure zero, then *f* is measurable if and only if $f|_{E \setminus A} : E \setminus A \to \mathbb{R}$ is measurable.

Exercise 2 (2012 Final). Let *W* be a measurable subset of \mathbb{R} with m(W) > 0. For $n = 1, 2, 3, ..., \text{let } f_n : W \to \mathbb{R}$ be a measurable function such that

$$\lim_{n \to \infty} f_n(x) \in \mathbb{R} \quad \text{for a.e. } x \in W.$$

Prove that there exists a c > 0 and a measurable set $V \subseteq W$ with m(V) > 0 such that $x \in V \implies |f_n(x)| \le c$ for all n = 1, 2, 3, ...

Example 3 (2007 Final). Let *S* be an uncountable set. For every $s \in S$, let $f_s : \mathbb{R} \to [0,1]$ be a continuous function. Define $f(x) = \sup\{f_s(x) : s \in S\}$. Prove that *f* is measurable.

Solution. Let $a \in \mathbb{R}$, then

$$f(x) < a \iff \sup_{s \in S} f_s(x) < a \implies \forall s \in S, f_s(x) < a$$

The last statement cannot be reversed to the first since < becomes \leq when taking supremum. Then what to do? Either we shrink the bound *a* as in Example 2 (left as exercise) or we try $\leq a$, > a or $\geq a$ instead.

Note that when S is countable the statement is trivial since we have already such a result that

$$f_1, f_2, \dots$$
 measurable $\implies \sup_{n \ge 1} f_n$ measurable.

We expect the proof is a bit different. Thus continuity must be brought into consideration.

Method 1. Let's consider $\leq a$. We have for any $a \in \mathbb{R}$,

$$f(x) \le a \iff f_s(x) \le a, \forall s \in S$$

therefore

$$f^{-1}(-\infty,a] = \bigcap_{s \in S} f_s^{-1} \underbrace{(-\infty,a]}_{\text{closed}}$$

thus $f^{-1}(-\infty, a]$ is an intersection of closed set, it must be closed and hence measurable.

Method 2. Let's consider > *a*, from Supremum Limit Theorem we have

$$f(x) > a \iff \exists s \in S, f_s(x) > a,$$

therefore we have

$$\{x\in\mathbb{R}:f(x)>a\}=\bigcup_{s\in S}\{x\in\mathbb{R}:f_s(x)>a\}=\bigcup_{s\in S}f_s^{-1}(a,\infty).$$

Since $\bigcup_{s \in S} f_s^{-1}(a, \infty)$ is a union of open sets, which is open and hence measurable.

Remark. We wouldn't expect to argue like " $\bigcup_{s \in S}$ (measurable) is measurable" since the union $\bigcup_{s \in S}$ is uncountable.

Exercise 3 (2004 Final). Let *W* be a nonempty subset of \mathbb{R} , define $f : \mathbb{R} \to [0,\infty)$ by letting f(x) be the greatest lower bound of $\{|x - w| : w \in W\}$. Prove that *f* is measurable.

Example 4 (2005 Final). Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Suppose for every $\epsilon > 0$, there exists a continuous $g : \mathbb{R} \to \mathbb{R}$ such that $S = \{x \in \mathbb{R} : f(x) \neq g(x)\}$ is measurable with $m(S) < \epsilon$. Prove that f is a measurable function.

Remark. The converse of this statement is a famous result in measure theory known as <u>Lusin's Theorem</u>.

Solution. Now for every $n \in \mathbb{N}$ we may set $\epsilon = \frac{1}{n}$, then by hypothesis there is $g_n \in C(\mathbb{R})$ and a measurable A_n such that $f|_{A_n} = g|_{A_n}$ and $m(\mathbb{R} \setminus A_n) < \frac{1}{n}$. We expect $A := \bigcup_{n=1}^{\infty} A_n$ is so "huge" that $m(\mathbb{R} \setminus A) = 0$. Indeed,

$$\forall n \in \mathbb{N}, \quad m(\mathbb{R} \setminus A) \le m(\mathbb{R} \setminus A_n) < \frac{1}{n},$$

by taking $n \to \infty$, $m(\mathbb{R} \setminus A) = 0$. Let's show that $f|_A$ is measurable as $\mathbb{R} \setminus A$ is negligible, more precisely, by Exercise 1, f is measurable if and only if $f|_A$ is measurable.

Method 1. We have

$$\{x \in A : f|_A(x) > a\} = \bigcup_{n=1}^{\infty} \{x \in A_n : g_n|_{A_n}(x) > a\} = \bigcup_{n=1}^{\infty} \underbrace{(g_n^{-1}(a,\infty))}_{\text{open}} \cap A_n$$

so $\{x \in A : f|_A(x) > a\}$ is a countable union of measurable sets, which must be measurable.

Method 2. Define $A'_1 = A_1$ and $A'_n = A_n \setminus \bigcup_{i=1}^{n-1} A_i$ for $n \ge 2$, then $\{A'_n\}$ is disjoint and $\bigcup_{n=1}^{\infty} A'_n = \bigcup_{n=1}^{\infty} A_n = A$, hence

$$f|_A = \sum_{n=1}^{\infty} f|_{A'_n} \chi_{A'_n} = \sum_{n=1}^{\infty} g_n \chi_{A'_n},$$

so $f|_A$ is a pointwise limit of measurable functions, and thus measurable.

Example 5 (2009 Final). Let $f : [0,\infty) \to [0,1]$ be measurable. Prove that the set

$$S = \left\{ a \in [0,\infty) : \sum_{i=1}^{\infty} f(a+i) \in \mathbb{R} \right\}$$

is measurable.

Solution. We note that the Cauchy criterion for the convergence of $\sum_{i=1}^{\infty} f(a+i)$ can be written as

$$\forall k \in \mathbb{N}, \exists N \in \mathbb{N}, \forall n \ge N, \forall m \ge n, \sum_{i=n}^{m} f(a+i) < \frac{1}{k}.$$

Therefore

$$\left\{a\in[0,\infty):\sum_{i=1}^{\infty}f(a+i)\in\mathbb{R}\right\}=\bigcap_{k=1}^{\infty}\bigcup_{N=1}^{\infty}\bigcap_{n=N}^{\infty}\bigcap_{m=n}^{\infty}\left\{a\in[0,\infty):\sum_{i=n}^{m}f(a+i)<\frac{1}{k}\right\}$$

Clearly it remains to check the measurability of $f_i(x) := f(x+i)$. For every interval (a,b) we have

$$\begin{aligned} x \in f_i^{-1}(a,b) & \Longleftrightarrow f_i(x) = f(x+i) \in (a,b) \\ & \longleftrightarrow x + i \in f^{-1}(a,b) \\ & \Longleftrightarrow x \in -i + f^{-1}(a,b), \end{aligned}$$

hence

$$f_i^{-1}(a,b) = -i + f^{-1}(a,b).$$

Since a translation of a measurable set is still measurable, f_i is measurable. Now

$$S = \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \bigcap_{m=n}^{\infty} \underbrace{(f_n + f_{n+1} + \dots + f_m)^{-1} [0, \frac{1}{k})}_{\text{measurable}}$$

is measurable.

In the following let's slightly generalize the above example. Of course we can copy, word by word, the solution of the above example, let's solve it alternatively:

Exercise 4. Let $f_1, f_2, f_3, \dots : E \to \mathbb{R}$ be a sequence of measurable functions. Show that

 $A := \{x \in E : \{f_n(x)\}_{n=1}^{\infty} \text{ converges}\}\$

is measurable by taking $\overline{\lim}_{n\to\infty} f_n$ and $\underline{\lim}_{n\to\infty} f_n$ into account.

Caution: It is not as simple as it seems to be since $\overline{\lim} f_n(x)$ and $\underline{\lim} f_n(x)$ are possibly unbounded, $\overline{\lim} f_n - \underline{\lim} f_n$ may carry no meaning in this case, moreover, function taking value in $\{-\infty,\infty\}$ is not considered as a measurable function **in this course**.

Example 6. Every real number $x \in (0,1]$ has a unique **nonterminating representation**^(†) (we signify it by putting a $_{\times}$ at the tail)

 $x = 0.a_1a_2a_3\ldots_{\times}.$

We define a function $f:(0,1] \to \mathbb{R}$ pointwise by

$$f(x) = \sup\{a_k : x = 0.a_1a_2a_3... \in (0,1], k \in \mathbb{N}\},\$$

show that f is measurable.

Solution. Method 1. By Exercise 5, f(x) = 9 a.e., and constant function 9 is measurable, so *f* is measurable.

Method 2. Let

$$A_k = \{x \in (0,1] : x = 0.a_1a_2...\times, a_i \ge k, \exists i\}.$$

Then observe that when $f(x) = \ell$, we have

$$x \in A_1, x \in A_2, \dots, x \in A_\ell, x \notin A_{\ell+1}, \dots, x \notin A_9.$$

Then we find that $\sum_{i=1}^{9} \chi_{A_i}(x) = \ell$, therefore we have

$$f = \sum_{i=1}^{9} \chi_{A_i}$$

It remains to check that each A_i is measurable, we leave it as a practice in Exercise 6.

Exercise 5. Prove the above example by showing that

$$m\{x = 0.a_1a_2... \in (0,1] : a_i = 9 \text{ for some } i\} = 1.$$

Exercise 6. Show that

$$A_k := \left\{ x \in (0,1]: \begin{array}{c} x = 0.a_1 a_2 \dots \times, \\ \exists i, a_i \ge k \end{array} \right\} = \bigcup_{i=1}^{\infty} \bigcup_{a_i = k}^{9} \bigcup_{j=0}^{10^{i-1}-1} \left(\frac{10j + a_i}{10^i}, \frac{10j + a_i + 1}{10^i} \right]$$

Hint: Imitate the solution of Practice Exercise 80 of lecture notes.