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Riemann Integral (Part I): Riemann Integrability

We need to know

• how to judge whether a function is Riemann integrable or not.

Key definitions and results

Definition 1 (Partition, Mesh). Given a partition P = {x0, . . . , xn} of [a, b], where
a = x0 < x1 < · · · < xn = b, we define ∆∆∆xxxiii === xxxiii −−− xxxi−1 and define the mesh of P
by ‖P‖ = max1≤i≤n ∆xi .

Definition 2 (Upper, Lower Sum). Let f : [a, b] → R and P = {x0, . . . , xn} be a
partition of [a, b], we define the lower Riemann sum and upper Riemann sum
w.r.t. P to be

L( f , P) =

n
ÿ

i=1

inf
(

f ([xi−1, xi ])
)︸ ︷︷ ︸

:=mi

∆xi =

n
ÿ

i=1

mi∆xi

U( f , P) =

n
ÿ

i=1

sup
(

f ([xi−1, xi ])
)︸ ︷︷ ︸

:=Mi

∆xi =

n
ÿ

i=1

Mi∆xi .

Also, given choices x∗i ∈ [xi−1, xi ], we define Riemann sum of f w.r.t. P to be

S( f , P) =

n
ÿ

i=1

f (x∗i )∆xi .

Remark. The beginning definition of Riemann integrability of f : [a,b]→ R is: there
is an I ∈R such that for any ε > 0, there is a δ > 0 such that ‖P‖< δ Ô⇒ |S(f ,P)−
I | < ε. Immediately from this definition f (x) is bounded (Exercise 1). In the rest
of the definitions and results we will require f (x) be bounded, then several useful
characterizations of Riemann integrability emerges.

Definition 3 (Upper, Lower Integral). Suppose f : [a, b] → R is bounded, the
lower integral of f (x) on [a, b] is the biggest inner approximation:∫ b

a
f (x) dx = sup

{
L( f , P) : P is a partition of [a, b]

}
and the upper integral of f (x) on [a, b] is the smallest outer approximation:∫ b

a
f (x) dx = inf

{
U( f , P) : P is a partition of [a, b]

}
.

Definition 4 (Integrability). We say that f (x) is Riemann integrable on [a, b] if∫ b

a
f (x) dx =

∫ b

a
f (x) dx,

and the common value is denoted by
∫ b
a f (x) dx.

Theorem 5 (Refinement). For partitions P, P′ of [a, b], we say that P′ is a refine-
ment of P if P′ ⊇ P, in this case, we have

L( f , P) ≤ L( f , P′) ≤U( f , P′) ≤U( f , P).

Theorem 6 (Integral Criterion, Darboux). Let f (x) be bounded on [a, b], then
the following are equivalent:

(a) f (x) is Riemann integrable on [a, b].

(b) ∀ε > 0, ∃ a partition P of [a, b], s.t. U( f , P)− L( f , P) < ε .
(Integral Criterion Theorem)

(c) ∃I, for every ε > 0, there is a δ > 0 s.t. ‖P‖ < δ Ô⇒ |S( f , P)− I | < ε .
(Riemann’s Original Approach)

Theorem 7. Let f (x) be continuous on [a, b], then f (x) is integrable on [a, b].

Remark. We will use Integral Criterion very frequently, for the sake of notational simplicity
let’s define

(U−L)(f ,P) = U(f ,P)−L(f ,P),

then the integrability of fff is the same as

∀ε > 0,∃ a partiaion P of [a,b] s.t. (U−L)(f ,P)< ε. (∗)

Or equivalently,

∀ε > 0,∃δ > 0,‖P‖< δ Ô⇒ (U−L)(f ,P)< ε. (∗∗)

(∗) and (∗∗) are equivalent, and using which one of them depends on whether the
mesh ‖P‖ needs to be considered.



Example 1 (Increasing Functions & Dirichlet Function).

(a) Show that if f : [a, b]→ R is increasing, then f (x) is Riemann integrable.

(b) Show that the Dirichlet’s function D : R→ R given by

D(x) =

{
1 if x ∈Q
0 if x 6∈Q

is not Riemann integrable on any closed interval.

Sol (a) For any P [a, b], we have

(U − L)( f , P) := U( f , P)− L( f , P)

=
ÿ

(
sup

[xi−1,xi ]
f − inf

[xi−1,xi ]
f
)

∆xi

=
ÿ

( f (xi )− f (xi−1))∆xi

≤
ÿ

( f (xi )− f (xi−1))‖P‖

= ( f (b)− f (a))‖P‖.

Therefore for every ε > 0, we can choose P [a, b] such that

‖P‖ < ε/( f (b)− f (a) + 1),

with this kind of partition,
(U − L)( f , P) < ε ,

therefore f (x) is Riemann integrable on [a, b] by Integral Criterion.

(b) For any P [a, b], we have

U(D, P) =
ÿ

(
sup

[xi−1,xi ]
D
)

∆xi =
ÿ

1 ·∆xi = b− a,

and we have
L(D, P) =

ÿ

(
inf

[xi−1,xi ]
D
)

∆xi =
ÿ

0 ·∆xi = 0,

therefore
(U − L)(D, P) = U(D, P)− L(D, P) = b− a =: ε0,

we conclude there is ε0, for any P [a, b], (U − L)(D, P) ≥ ε0 (the negation of Integral
Criterion), so D(x) cannot be integrable over any closed subinterval.

Example 2. Let f (x), h(x) be Riemann integrable on [a, b] and let g : [a, b]→ R
be such that

f (x) ≤ g(x) ≤ h(x) for all x ∈ [a, b].

Show that if
∫ b

a
f (x) dx = A =

∫ b

a
h(x) dx, then g(x) is also Riemann integrable.

Sol For every P [a, b], we have

L( f , P) ≤ L(g, P) ≤U(g, P) ≤U(h, P). (!)

The Riemann integrability of f (x) and h(x) says that L( f , P) and U(h, P) is close to A
when P is refined enough, and then (U − L)(g, P) will be forced to be very close to zero,
let’s make this precise now.

Method 1. Note that the Riemann integrability of f : [a, b]→ R says that for every ε > 0,
there is δ > 0 such that

‖P‖ < δ Ô⇒

∣∣∣∣S( f , P)−
∫ b

a

f (x) dx

∣∣∣∣ < ε
for every choices x∗i ∈ [xi−1, xi ] (i = 1,2, . . . ). By taking infimum and supremum over all
x∗i ∈ [xi−1, xi ] for each i, we have

‖P‖ < δ Ô⇒

∣∣∣∣L( f , P)−
∫ b

a

f (x) dx

∣∣∣∣ ≤ ε and

∣∣∣∣U( f , P)−
∫ b

a

f (x) dx

∣∣∣∣ ≤ ε .

The same is true when f is replaced by h and with δ replaced by δ′. Take ρ = min{δ,δ′},
then by (!),

‖P‖ < ρ Ô⇒ A− ε ≤ L(g, P) ≤U(g, P) ≤ A+ ε ,
and we are done.

Method 2. Let ε > 0 be given. As
∫ b

a
f (x) dx = A =

∫ b

a
f (x) dx = sup{L( f , P) :

P [a, b]}, there is a partition P1 [a, b] such that

A− L( f , P1) < ε .

Since
∫ b

a
h(x) dx = A =

∫ b

a
h(x) dx = inf{U(h, P) : P [a, b]}, there is a partition

P2 [a, b] such that
U(h, P2)− A < ε .

Now we get a partition P = P1∪P2 refining both P1 and P2, then by Refinement Theorem,

A− ε < L( f , P1) ≤ L( f , P) and U(h, P) ≤U(h, P2) < A+ ε ,

therefore from (!),
A− ε < L(g, P) ≤U(g, P) < A+ ε ,

and thus
(U − L)(g, P) < (A+ ε)− (A− ε) = 2ε .



Example 3. Let f (x) be Riemann integrable on [a, b]. Show that g(x) on [a, b]
defined by

g(x) =

{
1 if x = a1, a2, . . . , an

f (x) if x ∈ [a, b] \ {a1, a2, . . . , an}

is Riemann integrable, where a1, a2, . . . , an ∈ (a, b).

Remark. We list a similar past exam problem in Exercise 3.

Sol For every ε > 0, we take the following partition and denote Pi , P′i the to be chosen partition
of each subinterval.

| | | | | |

a1 a2 a3 an

· · ·

a b

P1 P2 P3 Pn+1P′1 P′2 P′3 P′n

2ε 2ε 2ε 2ε

That is, we first draw n small intervals to cover those a1, . . . , an . Next, in the remaining
n + 1 intervals we choose Pi such that for each i,

(U − L)( f , Pi ) < ε

Let P′i = {a1 − ε , a1 + ε}, i.e., the end points of the interval we use to cover ai ’s, then for
every i,

(U − L)( f , P′i ) =

(
sup

[ai−ε,ai+ε]
f − inf

[ai−ε,ai+ε]
f
)
· (2ε) ≤ 2 sup

[a,b]
| f | ·2ε = 4 sup

[a,b]
| f | · ε .

Since f (x) is Riemann integrable on [a, b], it is automatically bounded on [a, b], so
sup[a,b] | f | <∞. Therefore if we take

P = P1∪P′1∪P2∪P′2∪ · · ·∪Pn+1,

then P [a, b] and

(U − L)( f , P) =

n+1
ÿ

i=1

(U − L)( f , Pi ) +

n
ÿ

i=1

(U − L)( f , P′i )

< (n + 1)ε + 4nε sup
[a,b]
| f | =

(
n + 1 + 4n sup

[a,b]
| f |
)
ε .

Since all the numbers—n and sup[a,b] | f |—are fixed (absolutely a constant), by Integral
Criterion we are done.

Example 4 (2008 Spring). Let f1, f2, . . . : [0,1] → [0,1] be Riemann inte-
grable, prove that g(x) on [0,1] given by g(0) = 0 and

g(x) = fn(x) for x ∈
(

1
n + 1

,
1
n

]
is also Riemann integrable by using Integral Criterion.

Sol Let P = {0, 1
k+1 }∪P′ [0,1], where P′ [ 1

k+1 ,1], then we have

(U − L)(g, P) = (U − L)
(
g,
{

0,
1

k + 1

})
︸ ︷︷ ︸

=

(
sup[0, 1

k+1 ] g−inf[0, 1
k+1 ] g

)
· 1
k+1

+(U − L)(g, P′) ≤
1

k + 1
+ (U − L)(g, P′).

Let’s fix an εεε >>> 000.

We can fix a k such that 1/(k + 1) < ε , and then

(U − L)(g, P) < ε + (U − L)(g, P′).

It is enough to choose nice enough partition P′ [ 1
k+1 ,1] to make (U − L)(g, P′) small

(say, < Cε for some absolute constant C).

Since g is defined “intervalwise” on ( 1
j+1 , 1

j ]’s, let’s take ε > 0 very very small such that

[ 1
j+1 +ε, 1

j ] ⊆ ( 1
j+1 , 1

j ] for every j = 1,2, . . . , k. We try to find partitions P1, P2, . . . , Pk such
that

1
· · ·

1
j

1
2+ε1

2
1
3+ε1

3
1
j+1+ε1

j+1

· · ·
1
k

1
k+1+ε1

k+1

Pj [ 1
j+1 + ε, 1

j ] with (U − L)(g, Pj ) = (U − L)( f j , Pj ) small, and

(U − L)(g, { 1
j+1 , 1

j+1 + ε}) ≤ 2sup |g|ε ≤ 2ε

(recall that { 1
j+1 , 1

j+1 + ε} is also a partition of [ 1
j+1 , 1

j+1 + ε]) Taking union over all these

partitions, we get a partition of [ 1
k+1 ,1] that makes all (U − L)(g, ·)’s small.

Let’s find such Pj ’s. By the Riemann integrability of f j restricted to a subinterval, for the
ε > 0 above we can find Pj [ 1

j+1 + ε, 1
j ] such that

(U − L)(g, Pj )
(!)

==== (U − L)( f j , Pj ) <
ε

2 j
.



The equality (!) holds since g = f j completely on [ 1
j+1 + ε, 1

j ] (but not on [ 1
j+1 , 1

j ], that’s
why we shrink the interval before we apply Riemann integrability).

Now

P′ :=
k⋃
j=1

({ 1
j + 1

,
1

j + 1
+ ε
}
∪Pj︸ ︷︷ ︸

[ 1
j+1 , 1

j ]

) [ 1
k + 1

,1
]

,

and therefore we have

(U − L)(g, P′) =

k
ÿ

j=1

(
(U − L)(g, { 1

j+1 , 1
j+1 + ε}) + (U − L)(g, Pj )

)
≤

k
ÿ

j=1

(
2ε+

ε

2 j

)
< 2kε+ ε .

We may take ε = ε
2k at the beginning to conclude (U − L)(g, P′) < 2ε .

Remark. The solutions of Example 3 and Example 4 can be much much simpler with
the help of Lebesgue Criterion in the next tutorial note. The difficult work here serve
as examples for us to appreciate Lebesgue Criterion.

Exercise

1. The beginning definition of Riemann integrability of f : [a, b]→ R is: there is
an I ∈ R, for any ε > 0, there is a δ > 0 s.t. ‖P‖ < δ Ô⇒ |S( f , P)− I | < ε .

Suppose that f (x) is Riemann integrable on [a, b]. We show that f (x) is bounded
as follows:

(a) Let ε = 1 and δ > 0 be the corresponding quantity in the definition above.
Fix a partition P = {x0, . . . , xn} of [a, b] s.t. ‖P‖ < δ. Show that for every
x∗1 ∈ [x0, x1], and every fixed x∗i ∈ [xi−1, xi ], 2 ≤ i ≤ n, we have

| f (x∗1)|∆x1 ≤ 1 + |I |+
n

ÿ

i=2

| f (x∗i )|∆xi .

Therefore f (x) is bounded on [x0, x1].

(b) Similarly conclude that f (x) is bounded on [x1, x2], [x2, x3], . . . , [xn−1, xn]
respectively and conclude that f (x) is bounded on [a, b].

Remark. Therefore when we say that a function is Riemann integrable on [a,b], it
is automatically bounded on [a,b].

2. We know that if f (x) is Riemann integrable on [0,1], then so is | f (x)|. The con-
verse is not true in general:

(a) Give an example f (x) on [a, b] that is discontinuous everywhere but | f | is
Riemann integrable.

(b) Give an injective function on [0,1] which is not Riemann integrable.

3. (2010 Spring) Let f : [0,1]→ [0,1] be Riemann integrable. Let {rn} be a strictly
increasing sequence in (0,1]. Prove that g : [0,1]→ [0,1] defined by

g(x) =

{
1 if x ∈ {rn : n ∈ N}
f (x) if x ∈ [0,1] \ {rn : n ∈ N}

is Riemann integrable.

4. Let f (x) be Riemann integrable on [a, b], show that if
∫ b

a
f (x) dx > 0, then there

is an η > 0 and a closed subinterval I such that f (x) > η on I.

5. Let f be strictly increasing on [a, b]. Let P be a partition on [a, b], then Q := f (P)
will be a partition of [ f (a), f (b)].

(a) Explain why f −1 must be Riemann integrable.

(b) Show that b f (b)− a f (a) = U( f , P) + L( f −1,Q).



(c) Deduce that

b f (b)− a f (a) ≤
∫ b

a
f (x) dx +

∫ f (b)

f (a)
f −1(x) dx.

Explain why we have equality when f is continuous.

6. (Young’s Inequality) Fix a c > 0, suppose that f : [0,c]→R is strictly increasing
with f (0) = 0.

(a) By using Exercise 5, show that whenever a ∈ [0,c] and b ∈ [0, f (c)],

ab ≤
∫ a

0
f (x) dx +

∫ b

0
f −1(x) dx. (∗)

Remark. This inequality has a very strong geometrical intuition:

a c

b ∫ b

0
f −1(x)dx

∫ a

0
f (x)dx

x

y

We have to avoid any graphical reasoning in our rigorous proof. Also by the
same reasoning we allow ab ≥ 0 and ab < 0, try to convince yourself this is true
by extending the graph below the y -axis ,.

(b) Suppose further that f (x) is continuous on [0,c], show that equality in (∗)
holds if and only if b = f (a).

Hint: Recall Continuous Inverse Theorem.

(c) From (a), deduce that for any a, b ≥ 0 and p, q > 1 such that 1
p + 1

q = 1,

ab ≤
1
p

ap +
1
q

bq .

7. Let k ∈N and let f : [0,∞)→ [0,∞) be a continuous function such that f ( f (x)) =

xk for every x ∈ [0,∞). Show that∫ 1

0
f (x)2 dx ≥

2k −1
k2 + 6k −3

.

Hint: Use Exercise 6.


