Riemann Integral (Part I): Riemann Integrability

We need to know

- how to judge whether a function is Riemann integrable or not.
Key definitions and results

Definition 1 (Partition, Mesh). Given a partition $P=\left\{x_{0}, \ldots, x_{n}\right\}$ of $[a, b]$, where $a=x_{0}<x_{1}<\cdots<x_{n}=b$, we define $\boldsymbol{\Delta} \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{i}-1}$ and define the mesh of P by $\|P\|=\max _{1 \leq i \leq n} \Delta x_{i}$.

Definition 2 (Upper, Lower Sum). Let $f:[a, b] \rightarrow \mathbb{R}$ and $P=\left\{x_{0}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$, we define the lower Riemann sum and upper Riemann sum w.r.t. P to be

$$
\begin{aligned}
& L(f, P)=\sum_{i=1}^{n} \underbrace{\inf \left(f\left(\left[x_{i-1}, x_{i}\right]\right)\right)}_{:=m_{i}} \Delta x_{i}=\sum_{i=1}^{n} m_{i} \Delta x_{i} \\
& U(f, P)=\sum_{i=1}^{n} \underbrace{\sup \left(f\left(\left[x_{i-1}, x_{i}\right]\right)\right)}_{:=M_{i}} \Delta x_{i}=\sum_{i=1}^{n} M_{i} \Delta x_{i} .
\end{aligned}
$$

Also, given choices $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$, we define Riemann sum of f w.r.t. P to be

$$
S(f, P)=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i} .
$$

Remark. The beginning definition of Riemann integrability of $f:[a, b] \rightarrow \mathbb{R}$ is: there is an $I \in \mathbb{R}$ such that for any $\epsilon>0$, there is a $\delta>0$ such that $\|P\|<\delta \Longrightarrow \mid S(f, P)-$ $|\mid<\epsilon$. Immediately from this definition $f(x)$ is bounded (Exercise 1). In the rest of the definitions and results we will require $f(x)$ be bounded, then several useful characterizations of Riemann integrability emerges.

Definition 3 (Upper, Lower Integral). Suppose $f:[a, b] \rightarrow \mathbb{R}$ is bounded, the lower integral of $f(x)$ on $[a, b]$ is the biggest inner approximation:

$$
\underline{\int_{a}^{b}} f(x) d x=\sup \{L(f, P): P \text { is a partition of }[a, b]\}
$$

and the upper integral of $f(x)$ on $[a, b]$ is the smallest outer approximation:

$$
\overline{\int_{a}^{b}} f(x) d x=\inf \{U(f, P): P \text { is a partition of }[a, b]\} .
$$

Definition 4 (Integrability). We say that $f(x)$ is Riemann integrable on $[a, b]$ if

$$
\int_{a}^{b} f(x) d x=\overline{\int_{a}^{b}} f(x) d x
$$

and the common value is denoted by $\int_{a}^{b} f(x) d x$.

Theorem 5 (Refinement). For partitions P, P^{\prime} of $[a, b]$, we say that P^{\prime} is a refinement of P if $P^{\prime} \supseteq P$, in this case, we have

$$
L(f, P) \leq L\left(f, P^{\prime}\right) \leq U\left(f, P^{\prime}\right) \leq U(f, P)
$$

Theorem 6 (Integral Criterion, Darboux). Let $f(x)$ be bounded on $[a, b]$, then the following are equivalent:
(a) $f(x)$ is Riemann integrable on $[a, b]$.
(b) $\forall \epsilon>0, \exists$ a partition P of $[a, b]$, s.t. $U(f, P)-L(f, P)<\epsilon$.
(Integral Criterion Theorem)
(c) $\exists I$, for every $\epsilon>0$, there is a $\delta>0$ s.t. $\|P\|<\delta \Longrightarrow|S(f, P)-I|<\epsilon$.
(Riemann's Original Approach)
Theorem 7. Let $f(x)$ be continuous on $[a, b]$, then $f(x)$ is integrable on $[a, b]$.

Remark. We will use Integral Criterion very frequently, for the sake of notational simplicity let's define

$$
(U-L)(f, P)=U(f, P)-L(f, P)
$$

then the integrability of \boldsymbol{f} is the same as

$$
\begin{equation*}
\forall \epsilon>0, \exists \text { a partiaion } P \text { of }[a, b] \text { s.t. } \quad(U-L)(f, P)<\epsilon \text {. } \tag{*}
\end{equation*}
$$

Or equivalently,

$$
\begin{equation*}
\forall \epsilon>0, \exists \delta>0,\|P\|<\delta \Longrightarrow(U-L)(f, P)<\epsilon \tag{**}
\end{equation*}
$$

$(*)$ and $(* *)$ are equivalent, and using which one of them depends on whether the mesh $\|P\|$ needs to be considered.

Example 1 (Increasing Functions \& Dirichlet Function).

(a) Show that if $f:[a, b] \rightarrow \mathbb{R}$ is increasing, then $f(x)$ is Riemann integrable.
(b) Show that the Dirichlet's function $D: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
D(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

is not Riemann integrable on any closed interval

Sol (a) For any $P \leftrightharpoons[a, b]$, we have

$$
\begin{aligned}
(U-L)(f, P) & :=U(f, P)-L(f, P) \\
& =\sum\left(\sup _{\left[x_{i-1}, x_{i}\right]} f-\inf _{\left[x_{i-1}, x_{i}\right]} f\right) \Delta x_{i} \\
& =\sum\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right) \Delta x_{i} \\
& \leq \sum\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)\|P\| \\
& =(f(b)-f(a))\|P\| .
\end{aligned}
$$

Therefore for every $\epsilon>0$, we can choose $P \curvearrowleft[a, b]$ such that

$$
\|P\|<\epsilon /(f(b)-f(a)+1),
$$

with this kind of partition,

$$
(U-L)(f, P)<\epsilon,
$$

therefore $f(x)$ is Riemann integrable on $[a, b]$ by Integral Criterion.
(b) For any $P \leftrightharpoons[a, b]$, we have

$$
U(D, P)=\sum\left(\sup _{\left[x_{i-1}, x_{i}\right]} D\right) \Delta x_{i}=\sum 1 \cdot \Delta x_{i}=b-a,
$$

and we have

$$
L(D, P)=\sum\left(\inf _{\left[x_{i-1}, x_{i}\right]} D\right) \Delta x_{i}=\sum 0 \cdot \Delta x_{i}=0,
$$

therefore

$$
(U-L)(D, P)=U(D, P)-L(D, P)=b-a=: \epsilon_{0},
$$

we conclude there is ϵ_{0}, for any $P \leftrightharpoons[a, b],(U-L)(D, P) \geq \epsilon_{0}$ (the negation of Integral Criterion), so $D(x)$ cannot be integrable over any closed subinterval.

Example 2. Let $f(x), h(x)$ be Riemann integrable on $[a, b]$ and let $g:[a, b] \rightarrow \mathbb{R}$ be such that

$$
f(x) \leq g(x) \leq h(x) \quad \text { for all } x \in[a, b]
$$

Show that if $\int_{a}^{b} f(x) d x=A=\int_{a}^{b} h(x) d x$, then $g(x)$ is also Riemann integrable.

Sol For every $P \frown[a, b]$, we have

$$
\begin{equation*}
L(f, P) \leq L(g, P) \leq U(g, P) \leq U(h, P) \tag{!}
\end{equation*}
$$

The Riemann integrability of $f(x)$ and $h(x)$ says that $L(f, P)$ and $U(h, P)$ is close to A when P is refined enough, and then $(U-L)(g, P)$ will be forced to be very close to zero, let's make this precise now.
Method 1. Note that the Riemann integrability of $f:[a, b] \rightarrow \mathbb{R}$ says that for every $\epsilon>0$, there is $\delta>0$ such that

$$
\|P\|<\delta \Longrightarrow\left|S(f, P)-\int_{a}^{b} f(x) d x\right|<\epsilon
$$

for every choices $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right](i=1,2, \ldots)$. By taking infimum and supremum over all $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ for each i, we have

$$
\|P\|<\delta \Longrightarrow\left|L(f, P)-\int_{a}^{b} f(x) d x\right| \leq \epsilon \text { and }\left|U(f, P)-\int_{a}^{b} f(x) d x\right| \leq \epsilon .
$$

The same is true when f is replaced by h and with δ replaced by δ^{\prime}. Take $\rho=\min \left\{\delta, \delta^{\prime}\right\}$, then by (!),

$$
\|P\|<\rho \Longrightarrow A-\epsilon \leq L(g, P) \leq U(g, P) \leq A+\epsilon,
$$

and we are done.
Method 2. Let $\epsilon>0$ be given. As $\int_{a}^{b} f(x) d x=A=\underline{\int_{a}^{b}} f(x) d x=\sup \{L(f, P)$: $P \Longleftarrow[a, b]\}$, there is a partition $P_{1} \smile[a, b]$ such that

$$
A-L\left(f, P_{1}\right)<\epsilon
$$

Since $\int_{a}^{b} h(x) d x=A=\overline{\int_{a}^{b}} h(x) d x=\inf \{U(h, P): P \sqsupset[a, b]\}$, there is a partition $P_{2} \rightleftharpoons[a, b]$ such that

$$
U\left(h, P_{2}\right)-A<\epsilon
$$

Now we get a partition $P=P_{1} \cup P_{2}$ refining both P_{1} and P_{2}, then by Refinement Theorem,

$$
A-\epsilon<L\left(f, P_{1}\right) \leq L(f, P) \quad \text { and } \quad U(h, P) \leq U\left(h, P_{2}\right)<A+\epsilon,
$$

therefore from (!),
and thus

$$
A-\epsilon<L(g, P) \leq U(g, P)<A+\epsilon
$$

$$
(U-L)(g, P)<(A+\epsilon)-(A-\epsilon)=2 \epsilon .
$$

Example 3. Let $f(x)$ be Riemann integrable on $[a, b]$. Show that $g(x)$ on $[a, b]$ defined by

$$
g(x)= \begin{cases}1 & \text { if } x=a_{1}, a_{2}, \ldots, a_{n} \\ f(x) & \text { if } x \in[a, b] \backslash\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\end{cases}
$$

is Riemann integrable, where $a_{1}, a_{2}, \ldots, a_{n} \in(a, b)$.

Remark. We list a similar past exam problem in Exercise 3.

Sol For every $\epsilon>0$, we take the following partition and denote P_{i}, P_{i}^{\prime} the to be chosen partition of each subinterval.

That is, we first draw n small intervals to cover those a_{1}, \ldots, a_{n}. Next, in the remaining $n+1$ intervals we choose P_{i} such that for each i,

$$
(U-L)\left(f, P_{i}\right)<\epsilon
$$

Let $P_{i}^{\prime}=\left\{a_{1}-\epsilon, a_{1}+\epsilon\right\}$, i.e., the end points of the interval we use to cover a_{i} 's, then for every i,

$$
(U-L)\left(f, P_{i}^{\prime}\right)=\left(\sup _{\left[a_{i}-\epsilon, a_{i}+\epsilon\right]} f-\inf _{\left[a_{i}-\epsilon, a_{i}+\epsilon\right]} f\right) \cdot(2 \epsilon) \leq 2 \sup _{[a, b]}|f| \cdot 2 \epsilon=4 \sup _{[a, b]}|f| \cdot \epsilon .
$$

Since $f(x)$ is Riemann integrable on $[a, b]$, it is automatically bounded on $[a, b]$, so $\sup _{[a, b]}|f|<\infty$. Therefore if we take

$$
P=P_{1} \cup P_{1}^{\prime} \cup P_{2} \cup P_{2}^{\prime} \cup \cdots \cup P_{n+1}
$$

then $P \Longleftarrow[a, b]$ and

$$
\begin{aligned}
(U-L)(f, P) & =\sum_{i=1}^{n+1}(U-L)\left(f, P_{i}\right)+\sum_{i=1}^{n}(U-L)\left(f, P_{i}^{\prime}\right) \\
& <(n+1) \epsilon+4 n \epsilon \sup _{[a, b]}|f|=\left(n+1+4 n \sup _{[a, b]}|f|\right) \epsilon
\end{aligned}
$$

Since all the numbers- n and $\sup _{[a, b]}|f|$-are fixed (absolutely a constant), by Integral Criterion we are done.

Example 4 (2008 Spring). Let $f_{1}, f_{2}, \ldots:[0,1] \rightarrow[0,1]$ be Riemann integrable, prove that $g(x)$ on $[0,1]$ given by $g(0)=0$ and

$$
g(x)=f_{n}(x) \quad \text { for } x \in\left(\frac{1}{n+1}, \frac{1}{n}\right]
$$

is also Riemann integrable by using Integral Criterion.

Sol Let $P=\left\{0, \frac{1}{k+1}\right\} \cup P^{\prime} \leftrightharpoons[0,1]$, where $P^{\prime} \smile\left[\frac{1}{k+1}, 1\right]$, then we have

$$
(U-L)(g, P)=\underbrace{(U-L)\left(g,\left\{0, \frac{1}{k+1}\right\}\right)}+(U-L)\left(g, P^{\prime}\right) \leq \frac{1}{k+1}+(U-L)\left(g, P^{\prime}\right) .
$$

Let's fix an $\boldsymbol{\epsilon}>\mathbf{0}$.

We can fix a k such that $1 /(k+1)<\epsilon$, and then

$$
(U-L)(g, P)<\epsilon+(U-L)\left(g, P^{\prime}\right) .
$$

It is enough to choose nice enough partition $P^{\prime} \sqsupset\left[\frac{1}{k+1}, 1\right]$ to make $(U-L)\left(g, P^{\prime}\right)$ small (say, $<C \epsilon$ for some absolute constant C).

Since g is defined "intervalwise" on $\left(\frac{1}{j+1}, \frac{1}{j}\right]$'s, let's take $\varepsilon>0$ very very small such that $\left[\frac{1}{j+1}+\varepsilon, \frac{1}{j}\right] \subseteq\left(\frac{1}{j+1}, \frac{1}{j}\right]$ for every $j=1,2, \ldots, k$. We try to find partitions $P_{1}, P_{2}, \ldots, P_{k}$ such that

$$
P_{j} \Longleftarrow\left[\frac{1}{j+1}+\varepsilon, \frac{1}{j}\right] \text { with }(U-L)\left(g, P_{j}\right)=(U-L)\left(f_{j}, P_{j}\right) \text { small, and }
$$

(recall that $\left\{\frac{1}{j+1}, \frac{1}{j+1}+\varepsilon\right\}$ is also a partition of $\left[\frac{1}{j+1}, \frac{1}{j+1}+\varepsilon\right]$) Taking union over all these partitions, we get a partition of $\left[\frac{1}{k+1}, 1\right]$ that makes all $(U-L)(g, \cdot)$'s small.
Let's find such P_{j} 's. By the Riemann integrability of f_{j} restricted to a subinterval, for the $\epsilon>0$ above we can find $P_{j} \rightleftharpoons\left[\frac{1}{j+1}+\varepsilon, \frac{1}{j}\right]$ such that

$$
(U-L)\left(g, P_{j}\right) \xlongequal{(!)}(U-L)\left(f_{j}, P_{j}\right)<\frac{\epsilon}{2^{j}}
$$

The equality (!) holds since $g=f_{j}$ completely on $\left[\frac{1}{j+1}+\varepsilon, \frac{1}{j}\right]$ (but not on $\left[\frac{1}{j+1}, \frac{1}{j}\right]$, that's why we shrink the interval before we apply Riemann integrability).
Now

$$
P^{\prime}:=\bigcup_{j=1}^{k}(\underbrace{\left\{\frac{1}{j+1}, \frac{1}{j+1}+\varepsilon\right\} \cup P_{j}}_{\sqsupset\left[\frac{1}{j+1}, \frac{1}{j}\right]}) \sqsupset\left[\frac{1}{k+1}, 1\right],
$$

and therefore we have

$$
\begin{aligned}
(U-L)\left(g, P^{\prime}\right) & =\sum_{j=1}^{k}\left((U-L)\left(g,\left\{\frac{1}{j+1}, \frac{1}{j+1}+\varepsilon\right\}\right)+(U-L)\left(g, P_{j}\right)\right) \\
& \leq \sum_{j=1}^{k}\left(2 \varepsilon+\frac{\epsilon}{2^{j}}\right)<2 k \varepsilon+\epsilon
\end{aligned}
$$

We may take $\varepsilon=\frac{\epsilon}{2 k}$ at the beginning to conclude $(U-L)\left(g, P^{\prime}\right)<2 \epsilon$.

Remark. The solutions of Example 3 and Example 4 can be much much simpler with the help of Lebesgue Criterion in the next tutorial note. The difficult work here serve as examples for us to appreciate Lebesgue Criterion.

Exercise

1. The beginning definition of Riemann integrability of $f:[a, b] \rightarrow \mathbb{R}$ is: there is an $I \in \mathbb{R}$, for any $\epsilon>0$, there is a $\delta>0$ s.t. $\|P\|<\delta \Longrightarrow|S(f, P)-I|<\epsilon$.
Suppose that $f(x)$ is Riemann integrable on $[a, b]$. We show that $f(x)$ is bounded as follows:
(a) Let $\epsilon=1$ and $\delta>0$ be the corresponding quantity in the definition above. Fix a partition $P=\left\{x_{0}, \ldots, x_{n}\right\}$ of $[a, b]$ s.t. $\|P\|<\delta$. Show that for every $x_{1}^{*} \in\left[x_{0}, x_{1}\right]$, and every fixed $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right], 2 \leq i \leq n$, we have

$$
\left|f\left(x_{1}^{*}\right)\right| \Delta x_{1} \leq 1+|I|+\sum_{i=2}^{n}\left|f\left(x_{i}^{*}\right)\right| \Delta x_{i} .
$$

Therefore $f(x)$ is bounded on $\left[x_{0}, x_{1}\right]$.
(b) Similarly conclude that $f(x)$ is bounded on $\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right], \ldots,\left[x_{n-1}, x_{n}\right]$ respectively and conclude that $f(x)$ is bounded on $[a, b]$.
Remark. Therefore when we say that a function is Riemann integrable on $[a, b]$, it is automatically bounded on $[a, b]$.
2. We know that if $f(x)$ is Riemann integrable on $[0,1]$, then so is $|f(x)|$. The converse is not true in general:
(a) Give an example $f(x)$ on $[a, b]$ that is discontinuous everywhere but $|f|$ is Riemann integrable.
(b) Give an injective function on $[0,1]$ which is not Riemann integrable.
3. (2010 Spring) Let $f:[0,1] \rightarrow[0,1]$ be Riemann integrable. Let $\left\{r_{n}\right\}$ be a strictly increasing sequence in $(0,1]$. Prove that $g:[0,1] \rightarrow[0,1]$ defined by

$$
g(x)= \begin{cases}1 & \text { if } x \in\left\{r_{n}: n \in \mathbb{N}\right\} \\ f(x) & \text { if } x \in[0,1] \backslash\left\{r_{n}: n \in \mathbb{N}\right\}\end{cases}
$$

is Riemann integrable.
4. Let $f(x)$ be Riemann integrable on $[a, b]$, show that if $\int_{a}^{b} f(x) d x>0$, then there is an $\eta>0$ and a closed subinterval I such that $f(x)>\eta$ on I.
5. Let f be strictly increasing on $[a, b]$. Let P be a partition on $[a, b]$, then $Q:=f(P)$ will be a partition of $[f(a), f(b)]$.
(a) Explain why f^{-1} must be Riemann integrable.
(b) Show that $b f(b)-a f(a)=U(f, P)+L\left(f^{-1}, Q\right)$.
(c) Deduce that

$$
b f(b)-a f(a) \leq \int_{a}^{b} f(x) d x+\int_{f(a)}^{f(b)} f^{-1}(x) d x
$$

Explain why we have equality when f is continuous.
6. (Young's Inequality) Fix a $c>0$, suppose that $f:[0, c] \rightarrow \mathbb{R}$ is strictly increasing with $f(0)=0$.
(a) By using Exercise 5, show that whenever $a \in[0, c]$ and $b \in[0, f(c)]$,

$$
\begin{equation*}
a b \leq \int_{0}^{a} f(x) d x+\int_{0}^{b} f^{-1}(x) d x \tag{*}
\end{equation*}
$$

Remark. This inequality has a very strong geometrical intuition:

We have to avoid any graphical reasoning in our rigorous proof. Also by the same reasoning we allow $a b \geq 0$ and $a b<0$, try to convince yourself this is true by extending the graph below the y-axis () .
(b) Suppose further that $f(x)$ is continuous on $[0, c]$, show that equality in $(*)$ holds if and only if $b=f(a)$.
Hint: Recall Continuous Inverse Theorem.
(c) From (a), deduce that for any $a, b \geq 0$ and $p, q>1$ such that $\frac{1}{p}+\frac{1}{q}=1$,

$$
a b \leq \frac{1}{p} a^{p}+\frac{1}{q} b^{q} .
$$

7. Let $k \in \mathbb{N}$ and let $f:[0, \infty) \rightarrow[0, \infty)$ be a continuous function such that $f(f(x))=$ x^{k} for every $x \in[0, \infty)$. Show that

$$
\int_{0}^{1} f(x)^{2} d x \geq \frac{2 k-1}{k^{2}+6 k-3}
$$

Hint: Use Exercise 6.

