Math3033 (Fall 2013-2014) Tutorial Note 8

Lebesgue Inner, Outer Measures and Lebesgue Measure

Key Definitions and Results
Definition 1.

(i) The Lebesgue outer measure of a subset A C R is

m*(A) = inf{A(U) : U 2 A, U open}.

(i) The Lebesgue inner measure of a subset A C R is

m.(A) = sup{A(K) : K C A, K compact}.

(iii) A bounded set A is said to be Lebesgue measurable if m.(A) = m*(A) and
the common value is the Lebesgue measure, denoted by m(A).

(iv) An unbounded set A is said to be Lebesgue measurable if AN [a,b] is
measurable for every a < b. In this case the Lebesgue measure of A is

m(A) = 1_1)111 m(AN[—x,x]).

Definition 2. Let {E};, be a countable collection of subsets of R.

(1) {Ey} is ascending if Ey C Ey4 (ii) {Eg} is descending if E; 2 Ey1

for each k, in this case we define for each k, in this case we define
lim Ey = Ex. lim Ey = Ey.
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Theorem 3 (Existence of Nonmeasurable Sets). Any subset £ C R with posi-
tive Lebesgue outer measure contains a nonmeasurable subset.

Theorem 4. Intervals are measurable whose measure are their length.

Theorem 5. Lebesgue measurable sets have the following properties.
(1) If E is measurable, sois R\ E.
(i) If Aj,A,... are measurable, so is ;2 A;.

(iii) If Aj,A,... are measurable, so is (72 A;.

Theorem 6 (Properties of Outer Measure). The outer and inner measures
have the following properties:

() m*(©)=0.

(ii)) AC B = m.(A) <m.(B) and m*(A) < m*(B). (Monotone)

(i) m* ( U Ai> <> m'(A)). (Subadditive)
= i=1

Theorem 7 (Completeness).
(i) If m*(A) =0, then A is measurable with m(A) = 0.
(i1) Any subset of a set of measure zero is measurable with measure zero.

Theorem 8 (Properties of Lebesgue Measure). Let A,B,E|,E;,... be mea-
surable subsets of R.

(i) AC B = m(A) <m(B). (Monotone)

(i) x e R = A+ x is measurable and m(A + x) = m(A).
(Translation Invariant)

o]

(iif) m( U E) < > m(Ey). (Subadditive)
n=1

n=1

00

(iv) E,’s pairwise disjoint == m< U En) = Z m(Ep).
n=1 n=1

(Countably Additive)

Theorem 9 (Monotone Set).

(i) If {Ag}y, is an ascending collection of measurable sets, then

Ay | = Iim Ay | = 1i Ap).
m<kU:1 k) m(kl_r)rgo k) kl_IBom( k)

(ii) If {Bx};_, is a descending collection of measurable sets and m(By) < oo,
for some N € N, then

By | := lim B, ) = li By).
m(}Dl k) m(kg{}o k) kgr;om( %)




Example 1. Show that Cantor set C has measure zero.

Solution.
[ n ' |
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Denote the Cantor set in the nth stage by C,,. We note that
— 2" 1
m(Cn) = X 37 .
As {Cy} is descending, we have

C= ﬂlcn = JE%OCn.
n=

As m(Cy) <1 < oo, by Monotone Set Theorem we have

2 n
m(C)=m(nlEIgoCn> = lim m(Cy) = lim (5) = 0.

Example 2. Let E; and E; be two measurable subsets of R that have finite
measure, show that

m(E1 U Ey) =m(Ey) +m(Ey)—m(E| N Ey).

Solution. Recall that for any set A,B C R we have
A=(ANB)U(A\B).

That is, the set B and its complement B¢ can be used to split A, and vice versa. Therefore
when A, B are measurable, Countable Additivity of Lebesgue measure tells us

m(A) =m(ANB)+m(A\ B).
Replacing A by £} U E and B by E|, we have

m(Ey U Ey) = m((E1 U E2)NE) +m((E1 U Ey) \ Er)
=m(E)+m(Ex\ Ey).

We repeat the process to get
m(E3) = m(E; N E1) +m(E2 \ Ev),

combining them to eliminate m(E> \ E1), we are done.

Exercise 1. Define AAB = (A\ B)U(B\ A), show that if A,B C R are measurable,

m(AAB) =0 = m(A) = m(B).



Example 3. Let E C R be uncountable and C C [0,1] the Cantor set. Suppose
that for every e € E, there is a ¢ € QQ such that e + g € C, show that E is measur-
able.

Solution. We use the condition on E to obtain set containment. Let e € E, then dg € Q,
e+tqeC,ie,dgeQ, eeC—gq,s0e€Uyeq(C—q). This is true for each e € E, thus

Ec|J(C-9.
q€Q

By Subadditivity of outer measure we have

m(E)< Y. m"(C-g)= >, mC-q)= Y, mC)=0. (1)
qeQ q<€Q q€Q
——
countable

Therefore m*(E) = 0 and hence E is measurable with m(E) = 0.

Remark. In (1) we cannot drop the * in m*(E) as it is not known that whether the set E is
measurable, in fact we don’t have an explicit formula for E. More precisely, any subset
of Ugeq(C — q) can be chosen to be the “E” in this example.

Remark. In (1) we have used that m*(C — q) = m(C — q) = m(C), in fact we can also say that
m*(C —q) =m*(C) =m(C)

since m* is also translation invariant, no matter the set C itself is measurable or not. In
fact, m is translation invariant due to the fact that m* does (can you prove this? consider
outer approximation of any sets by definition of outer measure).

Exercise 2. Let E C R be such that m*(E) > 0. Show that E contains a bounded
subset with positive outer measure.

Exercise 3. Let E C R. Suppose for each x € E there is an open interval (x —8,x +
0 ) such that
m (EN(x—=0x,x+0y)) =0,

show that m*(E) = 0.
If we further assume E is measurable, show that m(E) = 0 alternatively by using
inner approximation by compact sets and finite covering arguments.

Example 4. Let E|,E;,... be a sequence of measurable subsets of R with
m(E,) =0 for each n € N. Let

Hy={x€eR:xliesinatleast 1 of E,’s}
Hy = {xeR: xlies in EXACTLY 1 of E,,’s},

show that Hy,H, are all measurable and m(H;) = m(H,) = 0.

Solution. Easy to see that H; = ;- E. Since H is a countable union of measurable sets,
H is measurable. Subadditivity of Lebesgue measure yields
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m(Hy) < ) m(En) = f} 0=0,

n=1 n=1
so m(H;) =0.
Next consider H,, we note that
x€H, < xeH;,Ai
<~ di¥j#ixeH;,x¢Hj,
so we have
measurable
measurable

(Hi\Hj)= (Hi\ JH/ )

i J=1
J#i

8
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DX

H, =
l =
j#

i

~ .

measurable
Finally, since Hy C H;, we have m(H,) = 0 by either Subadditivity or Monotonicity of
Lebesgue measure.

Exercise 4 (2005 Final). Prove that the intersection of measurable subsets in R
can be a nonmeasurable set in R.

Exercise 5. Show that if K is compact and L is closed, then
K+L:={k+l:keK,IlelL}

is closed by using the sequential criterion in Example 3 of tutorial note 7, therefore
K + L is measurable in this case. Is K + L still measurable if compactness of K is
replaced by closedness?



Example 5. [2005 Final] Let E,E,,...,E; C [0,1] be measurable such that
k k
Zm(Ei) > k — 1, prove that m(ﬂ E,-) > 0.

i=1 i=1

Solution. We understand union (due to the Subadditivity) more than intersection, so let’s
translate the quantity in the following way:

k k k
1 —m(ﬂ Ei) = m([O,l]\ N E,~> = m(U([O,]]\Ei)>.
i=1 i=1 i=1
By Subadditivity we have

k k k k
1—m( N Ei) < Dm0\ E) = Y (1 =m(E) = k=Y m(Ep).
i=1 i=1

i=1

Since ¥_, m(E;) > k -1, we obtain

k
l—m(ﬂEi> <k-(k-1)=1,
i=1

therefore m(N*_, E;) > 0.

Exercise 6 (2005 Final (Version 2)). Let Ej,E;,E3,--- C [0,1] be measurable
such that limy ., m(E) = 1. Prove that there is a subsequence Ey ,Ey,,E;,... of

= 1
E}’s such that m E > —.
crmn((15)

The next two exercises focus on the outer regularity of Lebesgue measure. Try
to approximate the length of measurable sets from outside by open sets.

Exercise 7 (2003 Final). Let E be a bounded measurable set in R such that m(EN
1
)< Em(l) for every interval I. Prove that m(E) = 0.
Exercise 8. Let E be measurable and define cE := {xe : e € E}, show that
m(cE) = |c|m(E).

You are given that when E is measurable, so is cE.

Example 6 (2010 Final). Let
P={x€[0,1]:in x =0.a1aza3 .. .10}, a;’s are prime}(*).

Show that P is measurable and compute m(P).

Solution. Let
P,={0.ay...a, ... €[0,1]: ay,...,a, are prime}.

Then we have
P=)Pn.
n=1

to show P is measurable, it is enough to show each P, is measurable.
Let’s denote P = {2,3,5,7} the set of primes, for simplicity. Note that

Po=|J {0ai...an...:api1.a040.-€40,....9})
(apy...,an)ePr

= U [0.a1...a,,0.a] ...an-1(an + D). 2)
(ayy....,ap)eP”

So each P, is a union of finitely many intervals, P, is measurable, so is P.
Let’s compute m(P). Since P, is descending, we have

Since m(P;) < oo, by Montone Set Theorem we obtain
)= m(fim, £a) = fim (P
On the other hand, by Subadditivity we have
m(P,) < Z m([0.ay ...an,0.a1 ...an_1(an + 1]
(at,...,an)eP"

1 2n

n T sn”
(Ayy...,@p )P 10 3

So lim;, o m(P,) =0, i.e., m(P) = 0.



