Math3033 (Fall 2013-2014)

Tutorial Note 8

Lebesgue Inner, Outer Measures and Lebesgue Measure

- Key Definitions and Results

Definition 1.

(i) The **Lebesgue outer measure** of a subset $A \subseteq \mathbb{R}$ is

 $m^*(A) = \inf\{\lambda(U) : U \supseteq A, U \text{ open}\}.$

(ii) The **Lebesgue inner measure** of a subset $A \subseteq \mathbb{R}$ is

$$m_*(A) = \sup\{\lambda(K) : K \subseteq A, K \text{ compact}\}.$$

- (iii) A bounded set *A* is said to be **Lebesgue measurable** if $m_*(A) = m^*(A)$ and the common value is the **Lebesgue measure**, denoted by m(A).
- (iv) An unbounded set A is said to be **Lebesgue measurable** if $A \cap [a,b]$ is measurable for every $a \le b$. In this case the **Lebesgue measure** of A is

$$m(A) = \lim_{x \to +\infty} m(A \cap [-x, x]).$$

Definition 2. Let $\{E_k\}_{k=1}^{\infty}$ be a countable collection of subsets of \mathbb{R} .

(i) $\{E_k\}$ is ascending if $E_k \subseteq E_{k+1}$ (ii) $\{E_k\}$ is descending if $E_k \supseteq E_{k+1}$ for each k, in this case we define for each k, in this case we define

$$\lim_{k \to \infty} E_k = \bigcup_{k=1}^{\infty} E_k. \qquad \qquad \lim_{k \to \infty} E_k = \bigcap_{k=1}^{\infty} E_k$$

Theorem 3 (Existence of Nonmeasurable Sets). Any subset $E \subseteq \mathbb{R}$ with positive Lebesgue outer measure contains a nonmeasurable subset.

Theorem 4. Intervals are measurable whose measure are their length.

Theorem 5. Lebesgue measurable sets have the following properties.

(i) If *E* is measurable, so is $\mathbb{R} \setminus E$.

- (ii) If A_1, A_2, \ldots are measurable, so is $\bigcup_{i=1}^{\infty} A_i$.
- (iii) If A_1, A_2, \ldots are measurable, so is $\bigcap_{i=1}^{\infty} A_i$.

Theorem 6 (Properties of Outer Measure). The outer and inner measures have the following properties:

(i)
$$m^*(\emptyset) = 0.$$

(ii) $A \subseteq B \implies m_*(A) \le m_*(B)$ and $m^*(A) \le m^*(B).$ (Monotone)
(iii) $m^*\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} m^*(A_i).$ (Subadditive)

Theorem 7 (Completeness).

- (i) If $m^*(A) = 0$, then A is measurable with m(A) = 0.
- (ii) Any subset of a set of measure zero is measurable with measure zero.
- **Theorem 8 (Properties of Lebesgue Measure).** Let $A, B, E_1, E_2, ...$ be measurable subsets of \mathbb{R} .

(i)
$$A \subseteq B \implies m(A) \le m(B)$$
. (Monotone)

(ii)
$$x \in \mathbb{R} \implies A + x$$
 is measurable and $m(A + x) = m(A)$.

(Translation Invariant)

(iii)
$$m\left(\bigcup_{n=1}^{\infty} E_n\right) \le \sum_{n=1}^{\infty} m(E_n).$$
 (Subadditive)

(iv)
$$E_n$$
's pairwise disjoint $\implies m\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} m(E_n).$
(Countably Additive)

Theorem 9 (Monotone Set).

(i) If $\{A_k\}_{k=1}^{\infty}$ is an ascending collection of measurable sets, then

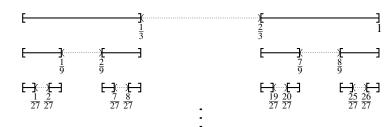
$$m\left(\bigcup_{k=1}^{\infty}A_k\right):=m\left(\lim_{k\to\infty}A_k\right)=\lim_{k\to\infty}m(A_k).$$

(ii) If $\{B_k\}_{k=1}^{\infty}$ is a descending collection of measurable sets and $m(B_N) < \infty$, for some $N \in \mathbb{N}$, then

$$m\left(\bigcap_{k=1}^{\infty} B_k\right) := m\left(\lim_{k\to\infty} B_k\right) = \lim_{k\to\infty} m(B_k).$$

Example 1. Show that Cantor set *C* has measure zero.

Solution.





$$m(C_n) = 2^n \times \frac{1}{3^n}.$$

As $\{C_n\}$ is descending, we have

$$C = \bigcap_{n=1}^{\infty} C_n =: \lim_{n \to \infty} C_n$$

As $m(C_1) \le 1 < \infty$, by Monotone Set Theorem we have

$$m(C) = m\left(\lim_{n \to \infty} C_n\right) = \lim_{n \to \infty} m(C_n) = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0$$

Example 2. Let E_1 and E_2 be two measurable subsets of \mathbb{R} that have finite measure, show that

$$m(E_1 \cup E_2) = m(E_1) + m(E_2) - m(E_1 \cap E_2).$$

Solution. Recall that for any set $A, B \subseteq \mathbb{R}$ we have

 $A = (A \cap B) \sqcup (A \setminus B).$

That is, the set *B* and its complement B^c can be used to split *A*, and vice versa. Therefore when *A*,*B* are measurable, Countable Additivity of Lebesgue measure tells us

 $m(A) = m(A \cap B) + m(A \setminus B).$

Replacing *A* by $E_1 \cup E_2$ and *B* by E_1 , we have

$$m(E_1 \cup E_2) = m((E_1 \cup E_2) \cap E_1) + m((E_1 \cup E_2) \setminus E_1)$$

= $m(E_1) + m(E_2 \setminus E_1).$

We repeat the process to get

$$m(E_2) = m(E_2 \cap E_1) + m(E_2 \setminus E_1),$$

combining them to eliminate $m(E_2 \setminus E_1)$, we are done.

Exercise 1. Define $A \Delta B = (A \setminus B) \cup (B \setminus A)$, show that if $A, B \subseteq \mathbb{R}$ are measurable,

$$m(A\Delta B) = 0 \implies m(A) = m(B).$$

Example 3. Let $E \subseteq \mathbb{R}$ be uncountable and $C \subseteq [0,1]$ the Cantor set. Suppose that for every $e \in E$, there is a $q \in \mathbb{Q}$ such that $e + q \in C$, show that *E* is measurable.

Solution. We use the condition on *E* to obtain set containment. Let $e \in E$, then $\exists q \in \mathbb{Q}$, $e + q \in C$, i.e., $\exists q \in \mathbb{Q}$, $e \in C - q$, so $e \in \bigcup_{q \in \mathbb{Q}} (C - q)$. This is true for each $e \in E$, thus

$$E \subseteq \bigcup_{q \in \mathbb{Q}} (C - q)$$

By Subadditivity of outer measure we have

$$m^{*}(E) \leq \sum_{\substack{q \in \mathbb{Q} \\ \text{countable}}} m^{*}(C-q) = \sum_{q \in \mathbb{Q}} m(C-q) = \sum_{q \in \mathbb{Q}} m(C) = 0.$$
(1)

Therefore $m^*(E) = 0$ and hence *E* is measurable with m(E) = 0.

Remark. In (1) we cannot drop the * in $m^*(E)$ as it is not known that whether the set *E* is measurable, in fact we don't have an explicit formula for *E*. More precisely, any subset of $\bigcup_{q \in \mathbb{O}} (C-q)$ can be chosen to be the "*E*" in this example.

Remark. In (1) we have used that $m^*(C-q) = m(C-q) = m(C)$, in fact we can also say that

$$m^*(C-q) = m^*(C) = m(C)$$

since m^* is also translation invariant, no matter the set *C* itself is measurable or not. In fact, *m* is translation invariant due to the fact that m^* does (can you prove this? consider outer approximation of any sets by definition of outer measure).

Exercise 2. Let $E \subseteq \mathbb{R}$ be such that $m^*(E) > 0$. Show that *E* contains a bounded subset with positive outer measure.

Exercise 3. Let $E \subseteq \mathbb{R}$. Suppose for each $x \in E$ there is an open interval $(x - \delta_x, x + \delta_x)$ such that

$$m^* \left(E \cap (x - \delta_x, x + \delta_x) \right) = 0$$

show that $m^*(E) = 0$.

If we further assume *E* is measurable, show that m(E) = 0 alternatively by using inner approximation by compact sets and finite covering arguments.

Example 4. Let E_1, E_2, \ldots be a sequence of measurable subsets of \mathbb{R} with $m(E_n) = 0$ for each $n \in \mathbb{N}$. Let

$$H_1 = \{ x \in \mathbb{R} : x \text{ lies in at least 1 of } E_n \text{'s} \}$$
$$H_2 = \{ x \in \mathbb{R} : x \text{ lies in EXACTLY 1 of } E_n \text{'s} \},$$

show that H_1, H_2 are all measurable and $m(H_1) = m(H_2) = 0$.

Solution. Easy to see that $H_1 = \bigcup_{n=1}^{\infty} E_n$. Since H_1 is a countable union of measurable sets, H_1 is measurable. Subadditivity of Lebesgue measure yields

$$m(H_1) \le \sum_{n=1}^{\infty} m(E_n) = \sum_{n=1}^{\infty} 0 = 0,$$

so $m(H_1) = 0$.

Next consider H_2 , we note that

$$x \in H_2 \iff x \in H_i, \exists ! i$$
$$\iff \exists i, \forall j \neq i, x \in H_i, x \notin H_i$$

ma a a a su ma h l a

so we have

$$H_{2} = \bigcup_{i=1}^{\infty} \bigcap_{\substack{j=1\\j\neq i}}^{\infty} (H_{i} \setminus H_{j}) = \bigcup_{\substack{i=1\\j\neq i}}^{\infty} \left(H_{i} \setminus \bigcup_{\substack{j=1\\j\neq i}}^{\max} H_{j} \right).$$
measurable

Finally, since $H_2 \subseteq H_1$, we have $m(H_2) = 0$ by either Subadditivity or Monotonicity of Lebesgue measure.

Exercise 4 (2005 Final). Prove that the intersection of measurable subsets in \mathbb{R} can be a nonmeasurable set in \mathbb{R} .

Exercise 5. Show that if *K* is compact and *L* is closed, then

$$K + L := \{k + l : k \in K, l \in L\}$$

is closed by using the sequential criterion in Example 3 of tutorial note 7, therefore K + L is measurable in this case. Is K + L still measurable if compactness of K is replaced by closedness?

Example 5. [2005 Final] Let $E_1, E_2, \dots, E_k \subseteq [0,1]$ be measurable such that $\sum_{i=1}^k m(E_i) > k-1$, prove that $m\left(\bigcap_{i=1}^k E_i\right) > 0$.

Solution. We understand union (due to the Subadditivity) more than intersection, so let's translate the quantity in the following way:

$$1 - m\left(\bigcap_{i=1}^{k} E_i\right) = m\left([0,1] \setminus \bigcap_{i=1}^{k} E_i\right) = m\left(\bigcup_{i=1}^{k} ([0,1] \setminus E_i)\right).$$

By Subadditivity we have

$$1 - m\left(\bigcap_{i=1}^{k} E_i\right) \le \sum_{i=1}^{k} m([0,1] \setminus E_i) = \sum_{i=1}^{k} (1 - m(E_i)) = k - \sum_{i=1}^{k} m(E_i).$$

Since $\sum_{i=1}^{k} m(E_i) > k - 1$, we obtain

$$1 - m\left(\bigcap_{i=1}^{k} E_i\right) < k - (k-1) = 1,$$

therefore $m(\bigcap_{i=1}^{k} E_i) > 0$.

Exercise 6 (2005 Final (Version 2)). Let $E_1, E_2, E_3, \dots \subseteq [0,1]$ be measurable such that $\lim_{k\to\infty} m(E_k) = 1$. Prove that there is a subsequence $E_{k_1}, E_{k_2}, E_{k_3}, \dots$ of E_k 's such that $m\left(\bigcap_{n=1}^{\infty} E_{k_n}\right) > \frac{1}{2}$.

The next two exercises focus on the <u>outer regularity</u> of Lebesgue measure. Try to approximate the length of measurable sets from outside by open sets.

Exercise 7 (2003 Final). Let *E* be a bounded measurable set in \mathbb{R} such that $m(E \cap I) \leq \frac{1}{2}m(I)$ for every interval *I*. Prove that m(E) = 0.

Exercise 8. Let *E* be measurable and define $cE := \{xe : e \in E\}$, show that

$$m(cE) = |c|m(E)$$

You are given that when E is measurable, so is cE.

Example 6 (2010 Final). Let

$$P = \{x \in [0,1] : \text{ in } x = 0.a_1a_2a_3..._{[10]}, a_i\text{'s are prime}\}^{(*)}.$$

Show that *P* is measurable and compute m(P).

Solution. Let

$$P_n = \{0.a_1 \dots a_n \dots \in [0,1] : a_1, \dots, a_n \text{ are prime}\}.$$

Then we have

$$P = \bigcap_{n=1}^{\infty} P_n$$

to show P is measurable, it is enough to show each P_n is measurable. Let's denote $\mathcal{P} = \{2,3,5,7\}$ the set of primes, for simplicity. Note that

$$P_n = \bigcup_{(a_1, \dots, a_n) \in \mathcal{P}^n} \{0.a_1 \dots a_n \dots : a_{n+1}, a_{n+2}, \dots \in \{0, \dots, 9\}\}$$
$$= \bigcup_{(a_1, \dots, a_n) \in \mathcal{P}^n} [0.a_1 \dots a_n, 0.a_1 \dots a_{n-1}(a_n+1)].$$

So each P_n is a union of finitely many intervals, P_n is measurable, so is P. Let's compute m(P). Since P_n is descending, we have

$$P = \bigcap_{n=1}^{\infty} P_n =: \lim_{n \to \infty} P_n.$$

Since $m(P_1) < \infty$, by Montone Set Theorem we obtain

$$m(P) = m\left(\lim_{n \to \infty} P_n\right) = \lim_{n \to \infty} m(P_n).$$

On the other hand, by Subadditivity we have

$$m(P_n) \le \sum_{(a_1, \dots, a_n) \in \mathcal{P}^n} m([0.a_1 \dots a_n, 0.a_1 \dots a_{n-1}(a_n+1)])$$
$$= \sum_{(a_1, \dots, a_n) \in \mathcal{P}^n} \frac{1}{10^n} = \frac{2^n}{5^n}.$$

So $\lim_{n\to\infty} m(P_n) = 0$, i.e., m(P) = 0.