
Math3033 (Fall 2013-2014) Tutorial Note 8

Lebesgue Inner, Outer Measures and Lebesgue Measure

Key Definitions and Results

Definition 1.

(i) The Lebesgue outer measure of a subset A ⊆ R is

m∗(A) = inf{λ(U) : U ⊇ A, U open}.

(ii) The Lebesgue inner measure of a subset A ⊆ R is

m∗(A) = sup{λ(K) : K ⊆ A, K compact}.

(iii) A bounded set A is said to be Lebesgue measurable if m∗(A) = m∗(A) and
the common value is the Lebesgue measure, denoted by m(A).

(iv) An unbounded set A is said to be Lebesgue measurable if A∩ [a,b] is
measurable for every a ≤ b. In this case the Lebesgue measure of A is

m(A) = lim
x→+∞

m(A∩ [−x,x]).

Definition 2. Let {Ek }
∞
k=1 be a countable collection of subsets of R.

(i) {Ek } is ascending if Ek ⊆ Ek+1
for each k, in this case we define

lim
k→∞

Ek =

∞⋃
k=1

Ek .

(ii) {Ek } is descending if Ek ⊇ Ek+1
for each k, in this case we define

lim
k→∞

Ek =

∞⋂
k=1

Ek .

Theorem 3 (Existence of Nonmeasurable Sets). Any subset E ⊆R with posi-
tive Lebesgue outer measure contains a nonmeasurable subset.

Theorem 4. Intervals are measurable whose measure are their length.

Theorem 5. Lebesgue measurable sets have the following properties.

(i) If E is measurable, so is R \E.

(ii) If A1,A2,. . . are measurable, so is
⋃∞

i=1 Ai .

(iii) If A1,A2,. . . are measurable, so is
⋂∞

i=1 Ai .

Theorem 6 (Properties of Outer Measure). The outer and inner measures
have the following properties:

(i) m∗(∅) = 0.

(ii) A ⊆ B Ô⇒ m∗(A) ≤ m∗(B) and m∗(A) ≤ m∗(B). (Monotone)

(iii) m∗
( ∞⋃

i=1

Ai

)
≤

∞
ÿ

i=1

m∗(Ai ). (Subadditive)

Theorem 7 (Completeness).

(i) If m∗(A) = 0, then A is measurable with m(A) = 0.

(ii) Any subset of a set of measure zero is measurable with measure zero.

Theorem 8 (Properties of Lebesgue Measure). Let A,B,E1,E2,. . . be mea-
surable subsets of R.

(i) A ⊆ B Ô⇒ m(A) ≤ m(B). (Monotone)

(ii) x ∈ R Ô⇒ A+ x is measurable and m(A+ x) = m(A).
(Translation Invariant)

(iii) m
( ∞⋃

n=1

En

)
≤

∞
ÿ

n=1

m(En). (Subadditive)

(iv) En’s pairwise disjoint Ô⇒ m
( ∞⋃

n=1

En

)
=

∞
ÿ

n=1

m(En).

(Countably Additive)

Theorem 9 (Monotone Set).

(i) If {Ak }
∞
k=1 is an ascending collection of measurable sets, then

m
( ∞⋃

k=1

Ak

)
:= m

(
lim
k→∞

Ak

)
= lim

k→∞
m(Ak ).

(ii) If {Bk }
∞
k=1 is a descending collection of measurable sets and mmm(((BBBNNN ))) <<<∞∞∞,

for some NNN ∈∈∈ N, then

m
( ∞⋂

k=1

Bk

)
:= m

(
lim
k→∞

Bk

)
= lim

k→∞
m(Bk ).



Example 1. Show that Cantor set C has measure zero.

Solution.
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Denote the Cantor set in the nth stage by Cn . We note that

m(Cn) = 2n ×
1

3n
.

As {Cn} is descending, we have

C =

∞⋂
n=1

Cn =: lim
n→∞

Cn .

As mmm(((CCC111))) ≤≤≤ 111 <<<∞∞∞, by Monotone Set Theorem we have

m(C) = m
(

lim
n→∞

Cn

)
= lim

n→∞
m(Cn) = lim

n→∞

(
2
3

)n

= 0.

Example 2. Let E1 and E2 be two measurable subsets of R that have finite
measure, show that

m(E1∪E2) = m(E1) + m(E2)−m(E1∩E2).

Solution. Recall that for any set A,B ⊆ R we have

A = (A∩ B)t (A\ B).

That is, the set B and its complement Bc can be used to split A, and vice versa. Therefore
when A,B are measurable, Countable Additivity of Lebesgue measure tells us

m(A) = m(A∩ B) + m(A\ B).

Replacing A by E1∪E2 and B by E1, we have

m(E1∪E2) = m((E1∪E2)∩E1) + m((E1∪E2) \E1)

= m(E1) + m(E2 \E1).

We repeat the process to get

m(E2) = m(E2∩E1) + m(E2 \E1),

combining them to eliminate m(E2 \E1), we are done.

Exercise 1. Define A∆B = (A\ B)∪ (B \ A), show that if A,B ⊆ R are measurable,

m(A∆B) = 0 Ô⇒ m(A) = m(B).



Example 3. Let E ⊆ R be uncountable and C ⊆ [0,1] the Cantor set. Suppose
that for every e ∈ E, there is a q ∈Q such that e + q ∈ C, show that E is measur-
able.

Solution. We use the condition on E to obtain set containment. Let e ∈ E, then ∃q ∈ Q,
e + q ∈ C, i.e., ∃q ∈Q, e ∈ C− q, so e ∈

⋃
q∈Q(C− q). This is true for each e ∈ E, thus

E ⊆
⋃
q∈Q

(C− q).

By Subadditivity of outer measure we have

m∗(E) ≤
ÿ

q ∈Q︸ ︷︷ ︸
countable

m∗(C− q) =
ÿ

q∈Q
m(C− q) =

ÿ

q∈Q
m(C) = 0. (1)

Therefore m∗(E) = 0 and hence E is measurable with m(E) = 0.

Remark. In (1) we cannot drop the ∗ in m∗(E) as it is not known that whether the set E is
measurable, in fact we don’t have an explicit formula for E. More precisely, any subset
of
⋃
q∈Q(C− q) can be chosen to be the “E” in this example.

Remark. In (1) we have used that m∗(C−q) = m(C−q) = m(C), in fact we can also say that

m∗(C− q) = m∗(C) = m(C)

since m∗ is also translation invariant, no matter the set C itself is measurable or not. In
fact, m is translation invariant due to the fact that m∗ does (can you prove this? consider
outer approximation of any sets by definition of outer measure).

Exercise 2. Let E ⊆ R be such that m∗(E) > 0. Show that E contains a bounded
subset with positive outer measure.

Exercise 3. Let E ⊆R. Suppose for each x ∈ E there is an open interval (x− δx ,x +

δx ) such that
m∗
(
E∩ (x− δx ,x + δx )

)
= 0,

show that m∗(E) = 0.
If we further assume E is measurable, show that m(E) = 0 alternatively by using

inner approximation by compact sets and finite covering arguments.

Example 4. Let E1,E2,. . . be a sequence of measurable subsets of R with
m(En) = 0 for each n ∈ N. Let

H1 =
{

x ∈ R : x lies in at least 1 of En’s
}

H2 =
{

x ∈ R : x lies in EXACTLY 1 of En’s
}
,

show that H1,H2 are all measurable and m(H1) = m(H2) = 0.

Solution. Easy to see that H1 =
⋃∞
n=1 En . Since H1 is a countable union of measurable sets,

H1 is measurable. Subadditivity of Lebesgue measure yields

m(H1) ≤
∞
ÿ

n=1

m(En) =

∞
ÿ

n=1

0 = 0,

so m(H1) = 0.
Next consider H2, we note that

x ∈ H2 ⇐⇒ x ∈ Hi ,∃! i

⇐⇒ ∃i,∀ j 6= i,x ∈ Hi ,x 6∈ H j ,

so we have

H2 =

∞⋃
i=1

∞⋂
j=1
j 6=i

(Hi \H j ) =

∞⋃
i=1

(
measurable︷ ︸︸ ︷

Hi \

measurable︷ ︸︸ ︷
∞⋃
j=1
j 6=i

H j

)
︸ ︷︷ ︸

measurable

.

Finally, since H2 ⊆ H1, we have m(H2) = 0 by either Subadditivity or Monotonicity of
Lebesgue measure.

Exercise 4 (2005 Final). Prove that the intersection of measurable subsets in R
can be a nonmeasurable set in R.

Exercise 5. Show that if K is compact and L is closed, then

K + L := {k + l : k ∈ K,l ∈ L}

is closed by using the sequential criterion in Example 3 of tutorial note 7, therefore
K + L is measurable in this case. Is K + L still measurable if compactness of K is
replaced by closedness?



Example 5. [2005 Final] Let E1,E2,. . . ,Ek ⊆ [0,1] be measurable such that
k

ÿ

i=1

m(Ei ) > k −1, prove that m
( k⋂

i=1

Ei

)
> 0.

Solution. We understand union (due to the Subadditivity) more than intersection, so let’s
translate the quantity in the following way:

1−m
( k⋂

i=1
Ei

)
= m

(
[0,1] \

k⋂
i=1

Ei

)
= m

( k⋃
i=1

([0,1] \Ei )
)
.

By Subadditivity we have

1−m
( k⋂

i=1
Ei

)
≤

k
ÿ

i=1

m([0,1] \Ei ) =

k
ÿ

i=1

(1−m(Ei )) = k −
k

ÿ

i=1

m(Ei ).

Since
řk

i=1 m(Ei ) > k −1, we obtain

1−m
( k⋂

i=1
Ei

)
< k − (k −1) = 1,

therefore m(
⋂k
i=1 Ei ) > 0.

Exercise 6 (2005 Final (Version 2)). Let E1,E2,E3,· · · ⊆ [0,1] be measurable
such that limk→∞m(Ek ) = 1. Prove that there is a subsequence Ek1 ,Ek2 ,Ek3 ,. . . of

Ek ’s such that m
( ∞⋂

n=1

Ekn

)
>

1
2

.

The next two exercises focus on the outer regularity of Lebesgue measure. Try
to approximate the length of measurable sets from outside by open sets.

Exercise 7 (2003 Final). Let E be a bounded measurable set in R such that m(E∩

I) ≤
1
2

m(I) for every interval I. Prove that m(E) = 0.

Exercise 8. Let E be measurable and define cE := {xe : e ∈ E}, show that

m(cE) = |c|m(E).

You are given that when E is measurable, so is cE.

Example 6 (2010 Final). Let

P = {x ∈ [0,1] : in x = 0.a1a2a3 . . .[10], ai ’s are prime}(∗).

Show that P is measurable and compute m(P).

Solution. Let
Pn = {0.a1 . . . an . . . ∈ [0,1] : a1,. . . ,an are prime}.

Then we have

P =

∞⋂
n=1

Pn ,

to show P is measurable, it is enough to show each Pn is measurable.
Let’s denote P = {2,3,5,7} the set of primes, for simplicity. Note that

Pn =
⋃

(a1, ...,an )∈Pn

{0.a1 . . . an . . . : an+1,an+2,· · · ∈ {0,. . . ,9}}

=
⋃

(a1, ...,an )∈Pn

[0.a1 . . . an ,0.a1 . . . an−1(an + 1)]. (2)

So each Pn is a union of finitely many intervals, Pn is measurable, so is P.
Let’s compute m(P). Since Pn is descending, we have

P =

∞⋂
n=1

Pn =: lim
n→∞

Pn .

Since mmm(((PPP111))) <<<∞∞∞, by Montone Set Theorem we obtain

m(P) = m
(

lim
n→∞

Pn

)
= lim

n→∞
m(Pn).

On the other hand, by Subadditivity we have

m(Pn) ≤
ÿ

(a1, ...,an )∈Pn

m([0.a1 . . . an ,0.a1 . . . an−1(an + 1)])

=
ÿ

(a1, ...,an )∈Pn

1
10n

=
2n

5n
.

So limn→∞m(Pn) = 0, i.e., m(P) = 0.


