Math3033 (Fall 2013-2014)

Tutorial Note 7
Set Operations with Functions;
Topology on \mathbb{R} : Openness, Closedness and Compactness

Key Definitions and Results

Definition 1. Let $S \subseteq \mathbb{R}$, an element $s \in S$ is said to be an interior point of S if there is $r>0$ such that $B(s, r):=(s-r, s+r) \subseteq S$.

Definition 2. In \mathbb{R} :
(i) A set U is open if every $u \in U$ is an interior point.
(ii) A set L is closed if $\mathbb{R} \backslash L$ is an open set.
(iii) A set K is compact if K is both closed and bounded ${ }^{(*)}$.

Remark. By (b) of Example 1: a set U is open if and only if $\mathbb{R} \backslash U$ is closed.

Theorem 3. Let $f: A \rightarrow B$ be a function:

- $S_{\alpha} \subseteq T_{\alpha} \Longrightarrow \bigcup_{\alpha} S_{\alpha} \subseteq \bigcup_{\alpha} T_{\alpha}$
- $A \subseteq B \Longrightarrow A=B \backslash(B \backslash A)$
- $S_{\alpha} \subseteq T_{\alpha} \Longrightarrow \bigcap_{\alpha} S_{\alpha} \subseteq \bigcap_{\alpha} T_{\alpha}$
- $A \backslash \bigcup_{\alpha} S_{\alpha}=\bigcap_{\alpha}\left(A \backslash S_{\alpha}\right)$
- $A \backslash \bigcap_{\alpha} S_{\alpha}=\bigcup_{\alpha}\left(A \backslash S_{\alpha}\right)$
- $A \cap\left(\bigcup_{\alpha} S_{\alpha}\right)=\bigcup_{\alpha}\left(A \cap S_{\alpha}\right)$
- $f^{-1}\left(\bigcup_{\alpha} S_{\alpha}\right)=\bigcup_{\alpha} f^{-1}\left(S_{\alpha}\right)$
- $A \cup\left(\bigcap_{\alpha} S_{\alpha}\right)=\bigcap_{\alpha}\left(A \cup S_{\alpha}\right)$
- $f^{-1}\left(\bigcap_{\alpha} S_{\alpha}\right)=\bigcap_{\alpha} f^{-1}\left(S_{\alpha}\right)$
- $X \subseteq A \Longrightarrow f(A \backslash X) \supseteq f(A) \backslash f(X)$
- $Y \subseteq B \Longrightarrow f^{-1}(B \backslash Y)=f^{-1}(B) \backslash f^{-1}(Y)$

[^0]Theorem 4 (Structure Theorem of Open Sets). The following are equivalent:
(i) A set $U \subseteq \mathbb{R}$ is open.
(ii) U is a countable union of pairwise disjoint open intervals. Moreover, the decomposition is unique.

Theorem 5 (Topological Properties of Open Sets).

(i) \emptyset and \mathbb{R} are open sets.
(ii) The union of any collection of open sets is an open set.
(iii) The intersection of finitely many open sets is an open set.

Theorem 6 (Topological Properties of Closed Sets).

(i) \emptyset and \mathbb{R} are closed.
(ii) The intersection of any collection of closed sets is closed.
(iii) The union of finitely many closed sets is closed.

Theorem 7 (Topological Continuity). Let $A, B \subseteq \mathbb{R}$, the following are equivalent:
(i) $f: A \rightarrow B$ is continuous.
(ii) For every open set $U, f^{-1}(U)=V \cap A$, for some V open.
(iii) For every closed set $L, f^{-1}(L)=K \cap A$, for some K closed.

Extra Definitions and Results

The following have nothing to do with final examination.
Definition 8. A family of subsets of $\mathbb{R}, \mathcal{U}=\left\{U_{\alpha}: \alpha \in A\right\}$, is said to be an open cover of $E \subseteq \mathbb{R}$ if each U_{α} is open in $\mathbb{R} ;$ and $\bigcup_{\alpha \in A} U_{\alpha} \supseteq E$. A finite subcover of an open cover \mathcal{U} of $A \subseteq \mathbb{R}$ is a finite subset $\left\{U_{1}, \ldots, U_{n}\right\}$ of \mathcal{U} such that $\bigcup_{i=1}^{n} U_{i} \supseteq A$.

Theorem 9. $K \subset \mathbb{R}$ is compact \Longleftrightarrow any open cover of K has a finite subcover ${ }^{(\dagger)}$.

[^1]
Example 1.

(a) Consider the closed interval $[0,1]$.
(i) Show that every point in $(0,1)$ is an interior point of $[0,1]$ and;
(ii) Both 0 and 1 are not interior point of $[0,1]$.
(b) Show that a set $U \subseteq \mathbb{R}$ is open if and only if $\mathbb{R} \backslash U$ is closed.
(c) If U is open, show that $E+U=\{e+u: e \in E, u \in U\}$ is open for every $E \subseteq \mathbb{R}$.

Solution. (a) (i) For any $x \in(0,1)$, we can choose $\delta_{x}=\min \{x, 1-x\}$ such that

$$
\left(x-\delta_{x}, x+\delta_{x}\right) \subseteq[0,1],
$$

therefore x is an interior point of $[0,1]$.
(ii) For any $r \in(0, \infty)$, both $(-r, r) \nsubseteq[0,1]$ and $(1-r, 1+r) \nsubseteq[0,1]$, so they are not interior point.
(b) By definition, the set $\mathbb{R} \backslash U$ is closed if and only if its complement $\mathbb{R} \backslash(\mathbb{R} \backslash U)=U$ is open.
(c) We note that

$$
E+U=\bigcup_{e \in E}(e+U)
$$

But the translation of an open set is still open, it is because

$$
e+U=e+\bigsqcup\left(a_{i}, b_{i}\right)=\bigsqcup\left(e+a_{i}, e+b_{i}\right),
$$

is a union of (disjoint) open intervals. Therefore $E+U$ is open as it is a union of open sets.

Notation: Here \rfloor is no more than U with the emphasis that the sets being "unioned" are pairwise disjoint.

Example 2. Study the openness and closedness of the following sets:
(a) $\{0\}$;
(b) $\bigcup_{n \in \mathbb{Z}}(n-1, n)$;
(c) \mathbb{Z};
(d) \mathbb{Q};
(e) Cantor Set C;
(f) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$;
(g) $\{0\} \cup\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$;
(h) \emptyset;
(i) \mathbb{R}

Solution. (a) It is closed since $\mathbb{R} \backslash\{0\}=(-\infty, 0) \cup(0, \infty)$ is open.
(b) It is open since it is a union of open sets.
(c) It is closed since $\mathbb{R} \backslash \mathbb{Z}=\bigcup_{n \in \mathbb{Z}}(n-1, n)$ is open.

(d) It is neither closed nor open.

If \mathbb{Q} is open, pick $q \in \mathbb{Q}$, then there is $r>0$ s.t. $(q-r, q+r) \subseteq \mathbb{Q}$, but by density there is an $a \in \mathbb{R} \backslash \mathbb{Q}, a \in(q-r, q+r) \subseteq \mathbb{Q}$, a contradiction.

If \mathbb{Q} is closed, then $\mathbb{R} \backslash \mathbb{Q}$ is open, again by density of \mathbb{Q} this is impossible.
(e) It is closed since it is an intersection of closed sets C_{n} 's inductively defined below:

(f) It is not closed since

$$
\mathbb{R} \backslash\left\{\frac{1}{n}: n \in \mathbb{N}\right\}=(-\infty, 0] \cup \bigcup_{n=1}^{\infty}\left(\frac{1}{n+1}, \frac{1}{n}\right) \cup(1, \infty)
$$

is not open as 0 is not an interior point.
(g) It is closed since

$$
\mathbb{R} \backslash\left(\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\}\right)=(-\infty, 0) \cup \bigcup_{n=1}^{\infty}\left(\frac{1}{n+1}, \frac{1}{n}\right) \cup(1, \infty)
$$

is a union of open sets.
(h), (i) Both are open and closed by definition.

Exercise 1. Show that $A^{\epsilon}=\{x \in \mathbb{R}: \inf \{|x-a|: a \in A\}<\epsilon\}$ is open.

Example 3 (Sequential Closure). Show that the following are equivalent:
(a) The set $A \subseteq \mathbb{R}$ is closed.
(b) For every $x \in \mathbb{R}$ that is a limit of some sequence in $A, x \in A$.

Solution. (a) \Rightarrow (b) Let x be a limit of some sequence in A, i.e., $x=\lim _{n \rightarrow \infty} a_{n}$, for some $a_{n} \in A$, we need to show $x \in A$. If not, i.e., $x \in \mathbb{R} \backslash A$, since A is closed, $\mathbb{R} \backslash A$ is open, so there is an $r>0$ such that

$$
(x-r, x+r) \subseteq \mathbb{R} \backslash A .
$$

But $x \lim _{n \rightarrow \infty} a_{n}$, there must be an N such that $n>N \Longrightarrow\left|x-a_{n}\right|<r$, i.e., $a_{n} \in$ $(x-r, x+r)$, this a a contradiction as there will be (infinitely many) n such that $a_{n} \in$ $(x-r, x+r) \subseteq \mathbb{R} \backslash A$ and $a_{n} \in A$.
(b) \Leftarrow (a) To show A is closed, we try to show $\mathbb{R} \backslash A$ is open. Let $y \in \mathbb{R} \backslash A$, we hope there is an $r>0$ such that $(y-r, y+r) \subseteq \mathbb{R} \backslash A$.

For the sake of contradiction let's suppose there is no such $r>0$, i.e., let's assume for each $r>0$,

$$
(y-r, y+r) \nsubseteq \mathbb{R} \backslash A \Longleftrightarrow(y-r, y+r) \cap A \neq \emptyset
$$

In particular, for each n we take $r=1 / n$, then there will be an $a_{n} \in A$ such that

$$
a_{n} \in(y-1 / n, y+1 / n) \Longleftrightarrow\left|y-a_{n}\right|<\frac{1}{n}
$$

therefore

$$
y=\lim _{n \rightarrow \infty} a_{n} .
$$

By hypothesis $y \in A$, a contradiction to that $y \in \mathbb{R} \backslash A$ originally.

Example 4. Let $K \subseteq \mathbb{R}, f: K \rightarrow \mathbb{R}$ be continuous. Show that

$$
K \text { is compact } \Longrightarrow f(K):=\{f(x): x \in K\} \text { is compact. }
$$

Solution. $\boldsymbol{f}(\boldsymbol{K})$ is closed. We use the sequential criterion in Example 3. Indeed, let $x \in \mathbb{R}$ be s.t. $x=\lim _{n \rightarrow \infty} f\left(k_{n}\right)$, for some $k_{n} \in K$. We try to show $x \in f(K)$. As $\left\{k_{n}\right\}$ is bounded, it has a convergent subsequence $\left\{k_{n_{p}}\right\}$ such that $k_{n_{p}} \rightarrow k$. Since K is closed, $k \in K$ by Example 3. Therefore $x=\lim _{p \rightarrow \infty} f\left(k_{n_{p}}\right)=f(k)$ by continuity, thus $x \in f(K)$.
$\boldsymbol{f}(\boldsymbol{K})$ is bounded. We apply Supremum Limit Theorem to sup $|f|(K)$. If $\sup |f|(K)=\infty$, then there is a sequence in $x_{n} \in K$ such that $\left|f\left(x_{n}\right)\right| \rightarrow \infty$. But $\left\{x_{n}\right\}$ is bounded, it has a convergent subsequence $\left\{x_{n_{k}}\right\}$ with $x_{n_{k}} \rightarrow k$ for some $k \in K$ (recall that since K is closed, k must be in K, c.f. Example 3), therefore by continuity we have

$$
\mathbb{R} \ni|f(k)|=\lim _{k \rightarrow \infty}\left|f\left(x_{n_{k}}\right)\right|=\infty,
$$

a contradiction.

Exercise 2. Example 4 in particular shows that every continuous function defined on a compact set is bounded. Show the converse:
Let $K \subseteq \mathbb{R}$, show that if every continuous function defined on K is bounded, then K is compact.

Example 5. Let $K_{1}, K_{2}, \cdots \subseteq \mathbb{R}$ be a descending sequence of compact sets, i.e.,

$$
K_{1} \supseteq K_{2} \supseteq K_{3} \supseteq \cdots .
$$

Show that if $K_{n} \neq \emptyset$ for each n, then $\bigcap_{n=1}^{\infty} K_{n}$ is a nonempty compact set.

Solution. Let $K=\bigcap_{n=1}^{\infty} K_{n}$. K is of course compact since it is an intersection of closed sets and $K \subseteq K_{1}$. Now we show that $K \neq \emptyset$ by exhibiting an element in K.

For this, for each n we pick $x_{n} \in K_{n}$, as $\left\{x_{n}\right\}$ is bounded, it has a convergent subsequence $\left\{x_{n_{k}}\right\}, x_{n_{k}} \rightarrow x$. We show that $x \in K$. Indeed, for each fixed $p \in \mathbb{N}$, there is N such that

$$
k>N \Longrightarrow n_{k}>p \Longrightarrow K_{n_{k}} \subseteq K_{p}
$$

So for $k>N, x_{n_{k}} \in K_{p}$ and thus $x=\lim _{k \rightarrow \infty} x_{n_{k}} \in K_{p}$ by Example 3. Since p is arbitrary, $x \in K:=\bigcap_{n=1}^{\infty} K_{n}$.

Example 6 (Dini's Theorem). Let $f_{n}:[a, b] \rightarrow \mathbb{R}$ be continuous and $f_{n} \rightarrow f$ pointwise on $[a, b]$. Suppose also that:
(i) $f_{n}(x)$ is pointwise increasing.
(ii) $f(x)$ is continuous.

Show that $f_{n} \rightrightarrows f$ on $[a, b]$ by using the finite covering result: Theorem 9 .

Solution. Method 1 (Descending Compact Sets Technique). We try to use Example 5. We know that for any fixed $\epsilon>0$,

$$
\bigcap_{n=1}^{\infty} \underbrace{\left\{x \in[a, b]: f-f_{n} \geq \epsilon\right\}}_{K_{n}}=\emptyset .
$$

Since f and f_{n} are continuous, so is $f-f_{n}$, thus by Topological Continuity Theorem the set K_{n} is a closed subset of [a,b], so K_{n} is compact. By Example 5 there is an N such that $K_{N}=\emptyset$ since $\left\{K_{n}\right\}$ is descending. Now $n \geq N \Longrightarrow K_{n}=\emptyset$, thus for any $x \in[a, b]$ and for any $n \geq N, f(x)-f_{n}(x)<\epsilon$ (iff $x \notin K_{n}=\emptyset$), which is the definition of uniform convergence.

Method 2 (Open Covering Technique). Fix $\epsilon>0$, for every $x \in[a, b]$, there is an $n \in \mathbb{N}$ such that

$$
f(x)-f_{n}(x)<\epsilon
$$

thus $x \in \bigcup_{n=1}^{\infty}\left(f-f_{n}\right)^{-1}(-\infty, \epsilon)$. Note that this is true for each $x \in[a, b]$, we have

$$
\begin{equation*}
[a, b] \subseteq \bigcup_{n=1}^{\infty}\left(f-f_{n}\right)^{-1}(-\infty, \epsilon) \tag{*}
\end{equation*}
$$

Note that it becomes straightforward to create an open cover of [a, b]. By hypothesis for each n both f and f_{n} are continuous, so by Topological Continuity Theorem there is an open set $U_{n} \subseteq \mathbb{R}$ such that

$$
\left(f-f_{n}\right)^{-1}(-\infty, \epsilon)=U_{n} \cap[a, b]
$$

It follows from $(*)$ that $[a, b] \subseteq \bigcup_{n=1}^{\infty} U_{n}$. Since $[a, b]$ is compact, by Theorem 9 the open cover $\left\{U_{n}\right\}$ of $[a, b]$ can be thinned into an finite subcover. We may also include redundant sets in $\left\{U_{n}\right\}$ to assume $[a, b] \subseteq \bigcup_{n=1}^{N} U_{n}$ for some $N \in \mathbb{N}$. Thus

$$
[a, b]=\bigcup_{n=1}^{N}\left(U_{n} \cap[a, b]\right)=\bigcup_{n=1}^{N}\left(f-f_{n}\right)^{-1}(-\infty, \epsilon)=\left(f-f_{N}\right)^{-1}(-\infty, \epsilon)
$$

The last equality follow from the fact that $\left\{\left(f-f_{n}\right)^{-1}(-\infty, \epsilon)\right\}_{n=1}^{\infty}$ is ascending.
Now for every $x \in[a, b]$, for every $n \geq N, f(x)-f_{n}(x) \leq f(x)-f_{N}(x)<\epsilon$, thus $f_{n} \rightrightarrows f$ on $[a, b]$.

[^0]: *) A set S is said to be bounded if there is a constant M such that $|s| \leq M$ for every $s \in S$.

[^1]: \dagger We also say that any open cover of K can be thinned into a finite subcover

