Math3033 (Fall 2013-2014) Tutorial Note 7

Set Operations with Functions;
Topology on R: Openness, Closedness and Compactness

Key Definitions and Results

Definition 1. Let S C R, an element s € S is said to be an interior point of S if
there is » > 0 such that B(s,r) :=(s—r,s+r) C S.

Definition 2. In R:
(1) A setU is open if every u € U is an interior point.
(i1) A set Lis closed if R\ L is an open set.

(ili) A set K is compact if K is both closed and bounded™).
Remark. By (b) of Example 1: a set U is open if and only if R\ U is closed.

Theorem 3. Let f: A — B be a function:
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() A set S is said to be bounded if there is a constant M such that |s| < M for every s € S.
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Theorem 4 (Structure Theorem of Open Sets). The following are equiva-
lent:

(i) A set U CRis open.

(i) U is a countable union of pairwise disjoint open intervals. Moreover,
the decomposition is unique.

Theorem 5 (Topological Properties of Open Sets).
(i) O and R are open sets.
(i1) The union of any collection of open sets is an open set.

(iii) The intersection of finitely many open sets is an open set.

Theorem 6 (Topological Properties of Closed Sets).
(i) O and R are closed.
(i) The intersection of any collection of closed sets is closed.

(iii) The union of finitely many closed sets is closed.

Theorem 7 (Topological Continuity). Let A,B C R, the following are equiva-
lent:

(i) f:A — B is continuous.
(ii) For every open set U, f~!(U) = V N A, for some V open.

(iii) For every closed set L, f‘l(L) = KnNA, for some K closed.

Extra Definitions and Results

The following have nothing to do with final examination.

Definition 8. A family of subsets of R, U = {U,, : @ € A}, is said to be an open cover
of E CRif| each U, is open in R; and’ Ugea Ua 2 E. ‘A finite subcover of an
open cover U of A CR is a finite subset {U],...,Uy,} of U such that | JI_, U; 2 A.

Theorem 9. K c R is compact <= any open cover of K has a finite subcover".

() We also say that any open cover of K can be thinned into a finite subcover



Example 1.
(a) Consider the closed interval [0,1].

(i) Show that every point in (0, 1) is an interior point of [0,1] and;

(i) Both 0 and 1 are not interior point of [0, 1].
(b) Show that a set U C R is open if and only if R\ U is closed.

(c) If U is open, show that E+U ={e+u:e € E,u € U} is open for every E CR.

Solution. (a) (i) For any x € (0,1), we can choose 6, = min{x,1 — x} such that
(x—0x,x+0x) €[0,1],

therefore x is an interior point of [0,1].
(ii) For any r € (0,00), both (=r,r) £ [0,1] and (1 —7,1+r) € [0,1], so they are not
interior point.

(b) By definition, the set R\ U is closed if and only if its complement R\ (R\U) =U
is open.
(c) We note that
E+U= ] (e+U).
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But the translation of an open set is still open, it is because
e+U= e+|_|(ai,bi) = |_|(e+ai,e+ b;),

is a union of (disjoint) open intervals. Therefore E + U is open as it is a union of open
sets.

Notation: Here | | is no more than (J with the emphasis that the sets being
“unioned” are pairwise disjoint.

Example 2. Study the openness and closedness of the following sets:

(a) {0}; (b) Upez(n—1,n); (©) Z; (d) Q; (e) Cantor Set C;

(f){;:neN}; (g){O}U{’ll:neN}; Mo,  ®OHR

Solution. (a) Itis closed since R\ {0} = (—00,0) U (0,00) is open.
(b) It is open since it is a union of open sets.
(c) It is closed since R\ Z = ,,cz(n — 1,n) is open.

(d) It is neither closed nor open.

If Q is open, pick g € Q, then there is r > 0 s.t. (g—r,q+r) C Q, but by density
there is an a e R\ Q, a € (¢ —r,q +r) C Q, a contradiction.

If Q is closed, then R\ Q is open, again by density of Q this is impossible.

(e) It is closed since it is an intersection of closed sets C,’s inductively defined

below:
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(f) It is not closed since
1 11
R\ =:neNp=(-e0,0lU ] [ —=.= | u(l,)
n et n+l'n
is not open as 0 is not an interior point.
(g) It is closed since
R\ ] e N U{0} ( O)UG P 1 U(1,00)
—:n = (—o0, —_ ,00
n e n+ln
is a union of open sets.

(h), (i) Both are open and closed by definition.

Exercise 1. Show that A€ = {x eR:inf{lx—al:a€ A} < e} is open.



Example 3 (Sequential Closure). Show that the following are equivalent:
(a) The set A C R is closed.

(b) For every x € R that is a limit of some sequence in A, x € A.

Solution. (a) = (b) Let x be a limit of some sequence in A, i.e., x = lim;, o ay, for some
a, € A, we need to show x € A. If not, i.e., x € R\ A, since A is closed, R \ A is open, so
there is an r > 0 such that

(x—r,x+r)CR\A.

But xlim, . a;, there must be an N such that n > N = |x—ay| <vr, ie., a, €
(x —r,x +r), this a a contradiction as there will be (infinitely many) n such that a, €
(x—r,x+r)CR\ A and a, € A.

(b) <= (a) To show A is closed, we try to show R\ A is open. Let y € R\ A, we hope
there is an r > 0 such that (y —r,y+r) CR\ A.
For the sake of contradiction let’s suppose there is no such r > 0, i.e., let’s assume
foreach r > 0,
(y=-ry+r)Z€R\A < (y—-r,y+r)NA#0.

In particular, for each n we take r = 1/n, then there will be an a,, € A such that
1
an € (y=1/n.y+1/n) = |y—an| <.

therefore

y= lim a,.
n—oo

By hypothesis y € A, a contradiction to that y € R\ A originally.

Extra Examples

Example 4. Let K CR, f: K — R be continuous. Show that

K is compact = f(K) :={f(x): x € K} is compact.

Solution. f(K)is closed. We use the sequential criterion in Example 3. Indeed, let x € R be
s.t. x =lim,, o f(ky), for some k,, € K. We try to show x € f(K). As {k,} is bounded,
it has a convergent subsequence {kp,} such that k,, — k. Since K is closed, k € K by
Example 3. Therefore x = limp o f(kn,) = f(k) by continuity, thus x € f(K).

f(K) is bounded. We apply Supremum Limit Theorem to sup|f|(K). If
sup|f|(K) = oo, then there is a sequence in x, € K such that [f(x,)| = co. But {x,}
is bounded, it has a convergent subsequence {x,, } with x,, — k for some k € K (recall
that since K is closed, k must be in K, c.f. Example 3), therefore by continuity we have

R3|f = lim | f(xn, )] = co,

a contradiction.

Exercise 2. Example 4 in particular shows that every continuous function defined
on a compact set is bounded. Show the converse:

Let K € R, show that if every continuous function defined on K is bounded, then K
is compact.



Example 5. Let K1,K»,--- C R be a descending sequence of compact sets, i.e.,
Ki2K;2K32:--.

Show that if K,, # 0 for each n, then (,,_; K,, is a nonempty compact set.

Solution. Let K =(;_; K. K is of course compact since it is an intersection of closed sets
and K C K. Now we show that K # 0 by exhibiting an element in K.
For this, for each n we pick x, € K, as {x,} is bounded, it has a convergent
subsequence {x,, }, x,, — x. We show that x € K. Indeed, for each fixed p € N, there is
N such that
k>N = n>p = Ky, CKp.

So for k > N, xp, € Kp and thus x = limg_, x,, € K, by Example 3. Since p is
arbitrary, x € K := ;- K,.

Example 6 (Dini’'s Theorem). Let f, : [a,b] — R be continuous and f, — f
pointwise on [a,b]. Suppose also that:

(1) fa(x)is pointwise increasing.
(i1) f(x) is continuous.

Show that f,, = f on [a,b] by using the finite covering result: Theorem 9.

Exercise 3. Suppose that f : R — R satisfies two conditions:
(i) For each compact set K, f(K) is compact.

(i1) For any descending sequence of compact sets K1 2 K> 2 -+,

(9]

f( N Kn) = f(Kp).
n=1 n

=1

Use the idea in the example above to prove that f is continuous.

Solution. Method 1 (Descending Compact Sets Technique). We try to use Example 5.
We know that for any fixed € > 0,

(N{xe€labl: f-fa>el=0.

n=l K,

Since f and f;, are continuous, so is f — f,, thus by Topological Continuity Theorem the
set K, is a closed subset of [a,b], so K, is compact. By Example 5 there is an N such
that K = 0 since {K},} is descending. Now n > N = K, =0, thus for any x € [a,b]
and for any n > N, f(x)— fn(x) < € (iff x ¢ K, = 0), which is the definition of uniform
convergence.

Method 2 (Open Covering Technique). Fix € > 0, for every x € [a,b], there is an
n € N such that
fx) = fn(x) <e,

thus x e Uy (f — fn)*l(—oo,e). Note that this is true for each x € [a,b], we have

la.b] € |J(f = f) ' (~0.€). ()

n=1

Note that it becomes straightforward to create an open cover of [a,b]. By hypothe-
sis for each n both f and f,, are continuous, so by Topological Continuity Theorem there
is an open set U,, € R such that

(f = fa) ' (=0,€) = Uy N [a,b).

It follows from (x) that [a,b] C U;le U,. Since [a,b] is compact, by Theorem 9 the
open cover {U,} of [a,b] can be thinned into an finite subcover. We may also include
redundant sets in {U,, } to assume [a,b] C U,IL] U,, for some N € N. Thus

N N
[a.b] = |J Wn Nla.b)) = |J(f = fu)  (=00,0) = (f = fn) 7 (—0,€).

n=1 n=1

The last equality follow from the fact that {(f — f,,) (—oo,e)}::1 is ascending.
Now for every x € [a,b], for every n > N, f(x)— fn(x) < f(x)— fn(x) < €, thus
fn = fonla,b].



