Math3033 (Fall 2013-2014)

Tutorial Note 7

Set Operations with Functions; Topology on \mathbb{R} : Openness, Closedness and Compactness

- Key Definitions and Results

Definition 1. Let $S \subseteq \mathbb{R}$, an element $s \in S$ is said to be an **interior point of S** if there is r > 0 such that $B(s,r) := (s - r, s + r) \subseteq S$.

Definition 2. In \mathbb{R} :

- (i) A set U is **open** if every $u \in U$ is an interior point.
- (ii) A set *L* is **closed** if $\mathbb{R} \setminus L$ is an open set.
- (iii) A set K is compact if K is both closed and bounded^(*).

Remark. By (b) of Example 1: a set U is open if and only if $\mathbb{R} \setminus U$ is closed.

Theorem 3. Let $f : A \rightarrow B$ be a function:

• $S_{\alpha} \subseteq T_{\alpha} \implies \bigcup S_{\alpha} \subseteq \bigcup T_{\alpha}$ • $U \subseteq V \subseteq A \implies f(U) \subseteq f(V)$ • $X \subseteq Y \implies f^{-1}(X) \subseteq f^{-1}(Y)$ • $A \subseteq B \implies A = B \setminus (B \setminus A)$ • $E \subseteq f^{-1}(f(E))$ • $S_{\alpha} \subseteq T_{\alpha} \implies \bigcap_{\alpha} S_{\alpha} \subseteq \bigcap_{\alpha} T_{\alpha}$ • $f(f^{-1}(F)) \subseteq F$ • $f\left(\bigcup S_{\alpha}\right) = \bigcup_{\alpha} f(S_{\alpha})$ • $A \setminus \bigcup_{\alpha} S_{\alpha} = \bigcap_{\alpha} (A \setminus S_{\alpha})$ • $A \setminus \bigcap_{\alpha} S_{\alpha} = \bigcup_{\alpha} (A \setminus S_{\alpha})$ • $f\left(\bigcap S_{\alpha}\right) \subseteq \bigcap f(S_{\alpha})$ • $A \cap \left(\bigcup S_{\alpha}\right) = \bigcup (A \cap S_{\alpha})$ • $f^{-1}\left(\bigcup S_{\alpha}\right) = \bigcup f^{-1}(S_{\alpha})$ • $f^{-1}\left(\bigcap S_{\alpha}\right) = \bigcap f^{-1}(S_{\alpha})$ • $A \cup \left(\bigcap_{\alpha} S_{\alpha}\right) = \bigcap_{\alpha} (A \cup S_{\alpha})$ • $X \subseteq A \implies f(A \setminus X) \supset f(A) \setminus f(X)$ • $Y \subseteq B \implies f^{-1}(B \setminus Y) = f^{-1}(B) \setminus f^{-1}(Y)$

- **Theorem 4 (Structure Theorem of Open Sets).** The following are equivalent:
 - (i) A set $U \subseteq \mathbb{R}$ is open.
 - (ii) U is a countable union of pairwise disjoint open intervals. Moreover, the decomposition is unique.

Theorem 5 (Topological Properties of Open Sets).

- (i) \emptyset and \mathbb{R} are open sets.
- (ii) The union of any collection of open sets is an open set.
- (iii) The intersection of finitely many open sets is an open set.

Theorem 6 (Topological Properties of Closed Sets).

- (i) \emptyset and \mathbb{R} are closed.
- (ii) The intersection of any collection of closed sets is closed.
- (iii) The union of finitely many closed sets is closed.

Theorem 7 (Topological Continuity). Let $A, B \subseteq \mathbb{R}$, the following are equivalent:

- (i) $f: A \to B$ is continuous.
- (ii) For every open set U, $f^{-1}(U) = V \cap A$, for some V open.
- (iii) For every closed set L, $f^{-1}(L) = K \cap A$, for some K closed.

- Extra Definitions and Results -

The following have nothing to do with final examination.

Definition 8. A family of subsets of \mathbb{R} , $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$, is said to be an **open cover** of $E \subseteq \mathbb{R}$ if each U_{α} is open in \mathbb{R} ; and $\bigcup_{\alpha \in A} U_{\alpha} \supseteq E$. A **finite subcover** of an open cover \mathcal{U} of $A \subseteq \mathbb{R}$ is a finite subset $\{U_1, \dots, U_n\}$ of \mathcal{U} such that $\bigcup_{i=1}^n U_i \supseteq A$.

Theorem 9. $K \subset \mathbb{R}$ is compact \iff any open cover of *K* has a finite subcover^(†).

(†) We also say that any open cover of K can be **thinned into** a finite subcover

^(*) A set S is said to be bounded if there is a constant M such that $|s| \le M$ for every $s \in S$.

Example 1.

- (a) Consider the closed interval [0,1].
 - (i) Show that every point in (0,1) is an interior point of [0,1] and;(ii) Both 0 and 1 are not interior point of [0,1].
- (b) Show that a set $U \subseteq \mathbb{R}$ is open if and only if $\mathbb{R} \setminus U$ is closed.
- (c) If *U* is open, show that $E + U = \{e + u : e \in E, u \in U\}$ is open for every $E \subseteq \mathbb{R}$.

Solution. (a) (i) For any $x \in (0,1)$, we can choose $\delta_x = \min\{x, 1-x\}$ such that

$$(x-\delta_x,x+\delta_x)\subseteq[0,1],$$

therefore *x* is an interior point of [0,1].

(ii) For any $r \in (0,\infty)$, both $(-r,r) \notin [0,1]$ and $(1-r,1+r) \notin [0,1]$, so they are not interior point.

(b) By definition, the set $\mathbb{R} \setminus U$ is closed if and only if its complement $\mathbb{R} \setminus (\mathbb{R} \setminus U) = U$ is open.

(c) We note that

$$E + U = \bigcup_{e \in E} (e + U).$$

But the translation of an open set is still open, it is because

$$e + U = e + \bigsqcup (a_i, b_i) = \bigsqcup (e + a_i, e + b_i)$$

is a union of (disjoint) open intervals. Therefore E + U is open as it is a union of open sets.

Notation: Here \sqcup is no more than \bigcup with the emphasis that the sets being "unioned" are pairwise disjoint.

Example 2. Study the openness and closedness of the following sets:					
(a) {0};	(b) $\bigcup_{n \in \mathbb{Z}}$	$_{\mathbb{Z}}(n-1,n);$	(c) Z;	(d) Q;	(e) Cantor Set <i>C</i> ;
(f) $\left\{\frac{1}{n}:n\right\}$	$\in \mathbb{N} \bigg\};$	$(g) \{0\} \cup \left\{\frac{1}{n}\right\}$	$\frac{I}{\mathfrak{i}}: n \in \mathbb{N} \bigg\};$	(h) Ø;	(i) R

Solution. (a) It is closed since $\mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$ is open.

(b) It is **open** since it is a union of open sets.

(c) It is **closed** since $\mathbb{R} \setminus \mathbb{Z} = \bigcup_{n \in \mathbb{Z}} (n-1,n)$ is open.

(d) It is **neither closed nor open**.

If \mathbb{Q} is open, pick $q \in \mathbb{Q}$, then there is r > 0 s.t. $(q-r,q+r) \subseteq \mathbb{Q}$, but by density there is an $a \in \mathbb{R} \setminus \mathbb{Q}$, $a \in (q-r,q+r) \subseteq \mathbb{Q}$, a contradiction.

If $\mathbb Q$ is closed, then $\mathbb R\setminus\mathbb Q$ is open, again by density of $\mathbb Q$ this is impossible.

(e) It is **closed** since it is an intersection of closed sets C_n 's inductively defined below:

(f) It is **not closed** since

$$\mathbb{R} \setminus \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} = (-\infty, 0] \cup \bigcup_{n=1}^{\infty} \left(\frac{1}{n+1}, \frac{1}{n} \right) \cup (1, \infty)$$

is not open as 0 is not an interior point.

(g) It is **closed** since

$$\mathbb{R} \setminus \left(\left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \cup \{0\} \right) = (-\infty, 0) \cup \bigcup_{n=1}^{\infty} \left(\frac{1}{n+1}, \frac{1}{n} \right) \cup (1, \infty)$$

is a union of open sets.

(h), (i) Both are open and closed by definition.

Exercise 1. Show that $A^{\epsilon} = \{x \in \mathbb{R} : \inf\{|x-a| : a \in A\} < \epsilon\}$ is open.

Example 3 (Sequential Closure). Show that the following are equivalent:

(a) The set $A \subseteq \mathbb{R}$ is closed.

(b) For every $x \in \mathbb{R}$ that is a limit of some sequence in $A, x \in A$.

Solution. (a) \Rightarrow (b) Let *x* be a limit of some sequence in *A*, i.e., $x = \lim_{n \to \infty} a_n$, for some $a_n \in A$, we need to show $x \in A$. If not, i.e., $x \in \mathbb{R} \setminus A$, since *A* is closed, $\mathbb{R} \setminus A$ is open, so there is an r > 0 such that

$$(x-r,x+r) \subseteq \mathbb{R} \setminus A.$$

But $x \lim_{n \to \infty} a_n$, there must be an *N* such that $n > N \implies |x - a_n| < r$, i.e., $a_n \in (x - r, x + r)$, this a contradiction as there will be (infinitely many) *n* such that $a_n \in (x - r, x + r) \subseteq \mathbb{R} \setminus A$ and $a_n \in A$.

(b) \Leftarrow (a) To show *A* is closed, we try to show $\mathbb{R} \setminus A$ is open. Let $y \in \mathbb{R} \setminus A$, we hope there is an r > 0 such that $(y - r, y + r) \subseteq \mathbb{R} \setminus A$.

For the sake of contradiction let's suppose there is no such r > 0, i.e., let's assume for each r > 0,

$$(y-r,y+r) \not\subseteq \mathbb{R} \setminus A \iff (y-r,y+r) \cap A \neq \emptyset$$

In particular, for each *n* we take r = 1/n, then there will be an $a_n \in A$ such that

$$a_n \in (y-1/n, y+1/n) \iff |y-a_n| < \frac{1}{n},$$

therefore

$$y = \lim_{n \to \infty} a_n$$
.

By hypothesis $y \in A$, a contradiction to that $y \in \mathbb{R} \setminus A$ originally.

Example 4. Let $K \subseteq \mathbb{R}$, $f : K \to \mathbb{R}$ be continuous. Show that

K is compact $\implies f(K) := \{f(x) : x \in K\}$ is compact.

Solution. f(K) is closed. We use the sequential criterion in Example 3. Indeed, let $x \in \mathbb{R}$ be s.t. $x = \lim_{n \to \infty} f(k_n)$, for some $k_n \in K$. We try to show $x \in f(K)$. As $\{k_n\}$ is bounded, it has a convergent subsequence $\{k_{n_p}\}$ such that $k_{n_p} \to k$. Since K is closed, $k \in K$ by Example 3. Therefore $x = \lim_{p \to \infty} f(k_{n_p}) = f(k)$ by continuity, thus $x \in f(K)$.

f(K) is bounded. We apply Supremum Limit Theorem to $\sup |f|(K)$. If $\sup |f|(K) = \infty$, then there is a sequence in $x_n \in K$ such that $|f(x_n)| \to \infty$. But $\{x_n\}$ is bounded, it has a convergent subsequence $\{x_{n_k}\}$ with $x_{n_k} \to k$ for some $k \in K$ (recall that since K is closed, k must be in K, c.f. Example 3), therefore by continuity we have

$$\mathbb{R} \ni |f(k)| = \lim_{k \to \infty} |f(x_{n_k})| = \infty,$$

a contradiction.

Exercise 2. Example 4 in particular shows that every continuous function defined on a compact set is bounded. Show the converse:

Let $K \subseteq \mathbb{R}$, show that if every continuous function defined on *K* is bounded, then *K* is compact.

Example 5. Let $K_1, K_2, \dots \subseteq \mathbb{R}$ be a descending sequence of compact sets, i.e.,

 $K_1 \supseteq K_2 \supseteq K_3 \supseteq \cdots$.

Show that if $K_n \neq \emptyset$ for each *n*, then $\bigcap_{n=1}^{\infty} K_n$ is a **nonempty** compact set.

Solution. Let $K = \bigcap_{n=1}^{\infty} K_n$. *K* is of course compact since it is an intersection of closed sets and $K \subseteq K_1$. Now we show that $K \neq \emptyset$ by exhibiting an element in *K*.

For this, for each *n* we pick $x_n \in K_n$, as $\{x_n\}$ is bounded, it has a convergent subsequence $\{x_{n_k}\}, x_{n_k} \to x$. We show that $x \in K$. Indeed, for each fixed $p \in \mathbb{N}$, there is *N* such that

$$k > N \implies n_k > p \implies K_{n_k} \subseteq K_p.$$

So for k > N, $x_{n_k} \in K_p$ and thus $x = \lim_{k \to \infty} x_{n_k} \in K_p$ by Example 3. Since p is arbitrary, $x \in K := \bigcap_{n=1}^{\infty} K_n$.

Exercise 3. Suppose that $f : \mathbb{R} \to \mathbb{R}$ satisfies two conditions:

(i) For each compact set K, f(K) is compact.

(ii) For any descending sequence of compact sets $K_1 \supseteq K_2 \supseteq \cdots$,

$$f\left(\bigcap_{n=1}^{\infty}K_n\right) = \bigcap_{n=1}^{\infty}f(K_n).$$

Use the idea in the example above to prove that f is continuous.

Example 6 (Dini's Theorem). Let $f_n : [a,b] \to \mathbb{R}$ be continuous and $f_n \to f$ pointwise on [a,b]. Suppose also that:

(i) $f_n(x)$ is pointwise increasing.

(ii) f(x) is continuous.

Show that $f_n \rightrightarrows f$ on [a,b] by using the finite covering result: Theorem 9.

Solution. Method 1 (Descending Compact Sets Technique). We try to use Example 5. We know that for any fixed $\epsilon > 0$,

$$\bigcap_{n=1}^{\infty} \underbrace{\{x \in [a,b] : f - f_n \ge \epsilon\}}_{K_n} = \emptyset$$

Since *f* and *f_n* are continuous, so is $f - f_n$, thus by Topological Continuity Theorem the set K_n is a closed subset of [a,b], so K_n is compact. By Example 5 there is an *N* such that $K_N = \emptyset$ since $\{K_n\}$ is descending. Now $n \ge N \implies K_n = \emptyset$, thus for any $x \in [a,b]$ and for any $n \ge N$, $f(x) - f_n(x) < \epsilon$ (iff $x \notin K_n = \emptyset$), which is the definition of uniform convergence.

Method 2 (Open Covering Technique). Fix $\epsilon > 0$, for every $x \in [a,b]$, there is an $n \in \mathbb{N}$ such that

$$f(x) - f_n(x) < \epsilon$$

thus $x \in \bigcup_{n=1}^{\infty} (f - f_n)^{-1}(-\infty, \epsilon)$. Note that this is true for each $x \in [a, b]$, we have

$$[a,b] \subseteq \bigcup_{n=1}^{\infty} (f - f_n)^{-1} (-\infty, \epsilon).$$
(*)

Note that it becomes straightforward to create an open cover of [a,b]. By hypothesis for each *n* both *f* and *f_n* are continuous, so by Topological Continuity Theorem there is an open set $U_n \subseteq \mathbb{R}$ such that

$$(f - f_n)^{-1}(-\infty, \epsilon) = U_n \cap [a, b]$$

It follows from (*) that $[a,b] \subseteq \bigcup_{n=1}^{\infty} U_n$. Since [a,b] is **compact**, by Theorem 9 the open cover $\{U_n\}$ of [a,b] can be thinned into an **finite subcover**. We may also include redundant sets in $\{U_n\}$ to assume $[a,b] \subseteq \bigcup_{n=1}^{N} U_n$ for some $N \in \mathbb{N}$. Thus

$$[a,b] = \bigcup_{n=1}^{N} (U_n \cap [a,b]) = \bigcup_{n=1}^{N} (f - f_n)^{-1} (-\infty,\epsilon) = (f - f_N)^{-1} (-\infty,\epsilon)$$

The last equality follow from the fact that $\{(f - f_n)^{-1}(-\infty, \epsilon)\}_{n=1}^{\infty}$ is ascending.

Now for every $x \in [a,b]$, for every $n \ge N$, $f(x) - f_n(x) \le f(x) - f_N(x) < \epsilon$, thus $f_n \Rightarrow f$ on [a,b].