
Math3033 (Fall 2013-2014) Tutorial Note 7

Set Operations with Functions;
Topology on R: Openness, Closedness and Compactness

Key Definitions and Results

Definition 1. Let S ⊆ R, an element s ∈ S is said to be an interior point of SSS if
there is r > 0 such that B(s,r) := (s− r,s+ r) ⊆ S.

Definition 2. In R:

(i) A set U is open if every u ∈U is an interior point.

(ii) A set L is closed if R \ L is an open set.

(iii) A set K is compact if K is both closed and bounded(∗).

Remark. By (b) of Example 1: a set U is open if and only if R \U is closed.

Theorem 3. Let f : A→ B be a function:
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⋃
α

Sα ⊆
⋃
α

Tα
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• U ⊆ V ⊆ A Ô⇒ f (U) ⊆ f (V )

• X ⊆ Y Ô⇒ f −1(X) ⊆ f −1(Y )

• E ⊆ f −1( f (E))

• f ( f −1(F)) ⊆ F
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• X ⊆ A Ô⇒ f (A\ X) ⊇ f (A) \ f (X)

• Y ⊆ B Ô⇒ f −1(B \Y ) = f −1(B) \ f −1(Y )

(∗) A set S is said to be bounded if there is a constant M such that |s| ≤ M for every s ∈ S.

Theorem 4 (Structure Theorem of Open Sets). The following are equiva-
lent:

(i) A set U ⊆ R is open.

(ii) U is a countable union of pairwise disjoint open intervals. Moreover,
the decomposition is unique.

Theorem 5 (Topological Properties of Open Sets).

(i) ∅ and R are open sets.

(ii) The union of any collection of open sets is an open set.

(iii) The intersection of finitely many open sets is an open set.

Theorem 6 (Topological Properties of Closed Sets).

(i) ∅ and R are closed.

(ii) The intersection of any collection of closed sets is closed.

(iii) The union of finitely many closed sets is closed.

Theorem 7 (Topological Continuity). Let A,B ⊆ R, the following are equiva-
lent:

(i) f : A→ B is continuous.

(ii) For every open set U, f −1(U) = V ∩ A, for some V open.

(iii) For every closed set L, f −1(L) = K ∩ A, for some K closed.

Extra Definitions and Results

The following have nothing to do with final examination.

Definition 8. A family of subsets of R,U = {Uα : α ∈ A}, is said to be an open cover
of E ⊆R if each Uα is open in R; and

⋃
α∈AUα ⊇ E. A finite subcover of an

open coverU of A⊆R is a finite subset {U1,. . . ,Un} ofU such that
⋃n

i=1 Ui ⊇ A.

Theorem 9. K ⊂ R is compact ⇐⇒ any open cover of K has a finite subcover(†).

(†) We also say that any open cover of K can be thinned into a finite subcover



Example 1.

(a) Consider the closed interval [0,1].

(i) Show that every point in (0,1) is an interior point of [0,1] and;

(ii) Both 0 and 1 are not interior point of [0,1].

(b) Show that a set U ⊆ R is open if and only if R \U is closed.

(c) If U is open, show that E+U = {e+u : e ∈ E,u ∈U} is open for every E ⊆R.

Solution. (a) (i) For any x ∈ (0,1), we can choose δx =min{x,1− x} such that

(x− δx ,x+ δx ) ⊆ [0,1],

therefore x is an interior point of [0,1].
(ii) For any r ∈ (0,∞), both (−r,r) 6⊆ [0,1] and (1− r,1+ r) 6⊆ [0,1], so they are not

interior point.

(b) By definition, the set R\U is closed if and only if its complement R\(R\U)=U
is open.

(c) We note that
E +U =

⋃
e∈E

(e+U).

But the translation of an open set is still open, it is because

e+U = e+
⊔

(ai ,bi ) =
⊔

(e+ ai ,e+ bi ),

is a union of (disjoint) open intervals. Therefore E +U is open as it is a union of open
sets.

Notation: Here
⊔

is no more than
⋃

with the emphasis that the sets being
“unioned” are pairwise disjoint.

Example 2. Study the openness and closedness of the following sets:

(a) {0}; (b)
⋃

n∈Z(n−1,n); (c) Z; (d) Q; (e) Cantor Set C;

(f)
{

1
n

: n ∈ N
}

; (g) {0}∪
{

1
n

: n ∈ N
}

; (h) ∅; (i) R

Solution. (a) It is closed since R \ {0} = (−∞,0)∪ (0,∞) is open.

(b) It is open since it is a union of open sets.

(c) It is closed since R \Z =
⋃
n∈Z(n−1,n) is open.

(d) It is neither closed nor open.
If Q is open, pick q ∈ Q, then there is r > 0 s.t. (q− r,q+ r) ⊆ Q, but by density

there is an a ∈ R \Q, a ∈ (q− r,q+ r) ⊆Q, a contradiction.
If Q is closed, then R \Q is open, again by density of Q this is impossible.

(e) It is closed since it is an intersection of closed sets Cn’s inductively defined
below:
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(f) It is not closed since

R \
{

1
n

: n ∈ N
}
= (−∞,0]∪

∞⋃
n=1

(
1

n+1
,
1
n

)
∪ (1,∞)

is not open as 0 is not an interior point.

(g) It is closed since

R \
({

1
n

: n ∈ N
}
∪{0}

)
= (−∞,0)∪

∞⋃
n=1

(
1

n+1
,
1
n

)
∪ (1,∞)

is a union of open sets.

(h), (i) Both are open and closed by definition.

Exercise 1. Show that Aε =
{

x ∈ R : inf{|x− a| : a ∈ A} < ε
}

is open.



Example 3 (Sequential Closure). Show that the following are equivalent:

(a) The set A ⊆ R is closed.

(b) For every x ∈ R that is a limit of some sequence in A, x ∈ A.

Solution. (a) ⇒ (b) Let x be a limit of some sequence in A, i.e., x = limn→∞ an , for some
an ∈ A, we need to show x ∈ A. If not, i.e., x ∈ R \ A, since A is closed, R \ A is open, so
there is an r > 0 such that

(x− r,x+ r) ⊆ R \ A.

But x limn→∞ an , there must be an N such that n > N Ô⇒ |x − an | < r , i.e., an ∈
(x − r,x + r), this a a contradiction as there will be (infinitely many) n such that an ∈
(x− r,x+ r) ⊆ R \ A and an ∈ A.

(b)⇐ (a) To show A is closed, we try to show R\ A is open. Let y ∈R\ A, we hope
there is an r > 0 such that (y− r,y+ r) ⊆ R \ A.

For the sake of contradiction let’s suppose there is no such r > 0, i.e., let’s assume
for each r > 0,

(y− r,y+ r) 6⊆ R \ A ⇐⇒ (y− r,y+ r)∩ A 6= ∅.

In particular, for each n we take r = 1/n, then there will be an an ∈ A such that

an ∈ (y−1/n,y+1/n) ⇐⇒ |y− an | <
1
n
,

therefore
y = lim

n→∞
an .

By hypothesis y ∈ A, a contradiction to that y ∈ R \ A originally.

Extra Examples

Example 4. Let K ⊆ R, f : K → R be continuous. Show that

K is compact Ô⇒ f (K) := { f (x) : x ∈ K} is compact.

Solution. fff (((KKK))) is closed. We use the sequential criterion in Example 3. Indeed, let x ∈R be
s.t. x = limn→∞ f (kn), for some kn ∈ K . We try to show x ∈ f (K). As {kn} is bounded,
it has a convergent subsequence {knp } such that knp → k. Since K is closed, k ∈ K by
Example 3. Therefore x = limp→∞ f (knp ) = f (k) by continuity, thus x ∈ f (K).

fff (((KKK))) is bounded. We apply Supremum Limit Theorem to sup | f |(K). If
sup | f |(K) = ∞, then there is a sequence in xn ∈ K such that | f (xn)| → ∞. But {xn}
is bounded, it has a convergent subsequence {xnk } with xnk → k for some k ∈ K (recall
that since K is closed, k must be in K , c.f. Example 3), therefore by continuity we have

R 3 | f (k)| = lim
k→∞

| f (xnk )| =∞,

a contradiction.

Exercise 2. Example 4 in particular shows that every continuous function defined
on a compact set is bounded. Show the converse:

Let K ⊆ R, show that if every continuous function defined on K is bounded, then K
is compact.



Example 5. Let K1,K2,· · · ⊆ R be a descending sequence of compact sets, i.e.,

K1 ⊇ K2 ⊇ K3 ⊇ · · · .

Show that if Kn 6= ∅ for each n, then
⋂∞

n=1 Kn is a nonempty compact set.

Solution. Let K =
⋂∞
n=1 Kn . K is of course compact since it is an intersection of closed sets

and K ⊆ K1. Now we show that K 6= ∅ by exhibiting an element in K .
For this, for each n we pick xn ∈ Kn , as {xn} is bounded, it has a convergent

subsequence {xnk }, xnk → x. We show that x ∈ K . Indeed, for each fixed p ∈ N, there is
N such that

k > N Ô⇒ nk > p Ô⇒ Knk ⊆ Kp .

So for k > N , xnk ∈ Kp and thus x = limk→∞ xnk ∈ Kp by Example 3. Since p is
arbitrary, x ∈ K :=

⋂∞
n=1 Kn .

Exercise 3. Suppose that f : R→ R satisfies two conditions:

(i) For each compact set K , f (K) is compact.

(ii) For any descending sequence of compact sets K1 ⊇ K2 ⊇ · · · ,

f
( ∞⋂

n=1

Kn

)
=

∞⋂
n=1

f (Kn).

Use the idea in the example above to prove that f is continuous.

Example 6 (Dini’s Theorem). Let fn : [a,b]→R be continuous and fn→ f
pointwise on [a,b]. Suppose also that:

(i) fn(x) is pointwise increasing.

(ii) f (x) is continuous.

Show that fn ⇒ f on [a,b] by using the finite covering result: Theorem 9.

Solution. Method 1 (Descending Compact Sets Technique). We try to use Example 5.
We know that for any fixed ε > 0,

∞⋂
n=1
{x ∈ [a,b] : f − fn ≥ ε}︸ ︷︷ ︸

Kn

= ∅.

Since f and fn are continuous, so is f − fn , thus by Topological Continuity Theorem the
set Kn is a closed subset of [a,b], so Kn is compact. By Example 5 there is an N such
that KN = ∅ since {Kn} is descending. Now n ≥ N Ô⇒ Kn = ∅, thus for any x ∈ [a,b]
and for any n ≥ N , f (x)− fn(x) < ε (iff x 6∈ Kn = ∅), which is the definition of uniform
convergence.

Method 2 (Open Covering Technique). Fix ε > 0, for every x ∈ [a,b], there is an
n ∈ N such that

f (x)− fn(x) < ε,

thus x ∈
⋃∞
n=1( f − fn)−1(−∞,ε). Note that this is true for each x ∈ [a,b], we have

[a,b] ⊆
∞⋃
n=1

( f − fn)−1(−∞,ε). (∗)

Note that it becomes straightforward to create an open cover of [a,b]. By hypothe-
sis for each n both f and fn are continuous, so by Topological Continuity Theorem there
is an open set Un ⊆ R such that

( f − fn)−1(−∞,ε) =Un ∩ [a,b].

It follows from (∗) that [a,b] ⊆
⋃∞
n=1 Un . Since [a,b] is compact, by Theorem 9 the

open cover {Un} of [a,b] can be thinned into an finite subcover. We may also include
redundant sets in {Un} to assume [a,b] ⊆

⋃N
n=1 Un for some N ∈ N. Thus

[a,b] =
N⋃
n=1

(Un ∩ [a,b]) =
N⋃
n=1

( f − fn)−1(−∞,ε) = ( f − fN )−1(−∞,ε).

The last equality follow from the fact that
{

( f − fn)−1(−∞,ε)
}∞
n=1 is ascending.

Now for every x ∈ [a,b], for every n ≥ N , f (x)− fn(x) ≤ f (x)− fN (x) < ε , thus
fn ⇒ f on [a,b].


