(Skipped) Differentiation (Part II): Taylor Series
We need to know

- how is the Taylor series expansion used in constructing various estimates.

Key definitions and results

Theorem 1 (Taylor's). Let $f(x)$ be a continuous on $[a, b]$ and n-times differentiable on (a, b). For every $x \in[a, b]$ and $\alpha \in(a, b)$, there is c between x and α such that

$$
f(x)=\sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!}(x-\alpha)^{k}+\frac{f^{(n)}(c)}{n!}(x-\alpha)^{n} .
$$

We call $R_{n}(x):=\frac{f^{(n)}(c)}{n!}(x-\alpha)^{n}$ the Lagrange form of the remainder.

Remark. One may doubt whether we should impose $x \in[a, b]$ or $x \in(a, b)$ in the Taylor's Theorem. If one examines the proof carefully the Lagrange form of the remainder holds whenever $f(x)$ has nth order derivative between x and α (in order to apply Generalized Mean-Value Theorem). Thus $x \in[a, b]$ is a safe requirement

Remark. Suppose $f(x)$ is n-times differentiable on (a, b), $x \in[a, b]$ and h small enough such that $x+h \in(a, b)$. The following form of Taylor series will be very useful!

$$
f(x+h)=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2} h^{2}+\cdots+\frac{f^{(n-1)}(x)}{(n-1)!} h^{n-1}+\frac{f^{(n)}(x+\theta h)}{n!} h^{n}
$$

for some $\theta \in(0,1)$. The is obtained by replacing x by $x+h$ and α by x in Taylor's Theorem.

Remark. The remainder term of Taylor series has two more different forms, one is for those $f^{(n)}(x)$ integrable (the integral form) and one is for those $f^{(n)}(x)$ continuous (the Cauchy form). They can be found in lecture notes and we will not use them in this tutorial note.

Example 1 (nth Order Approximation). Let $f(x)$ be n-times differentiable on (a, b) and $x_{0} \in(a, b)$. Let

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} .
$$

denote the n-th Taylor series of $f(x)$ at x_{0}. Show that this is an \boldsymbol{n}-th order approximation of $f(x)$ in the sense that

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-T_{n}(x)}{\left(x-x_{0}\right)^{n}}=0
$$

by using the Generalized Mean-Value Theorem.

Remark. This result is usually written as

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+o\left(\left(x-x_{0}\right)^{k}\right) \quad \text { as } x \rightarrow x_{0}
$$

Sol In fact this is a very well-known theorem and can be found very powerful in computation of limits. Let's denote $R_{n}=f-T_{n}$, then we observe that

$$
R_{n}\left(x_{0}\right)=R_{n}^{\prime}\left(x_{0}\right)=\cdots=R_{n}^{(n)}\left(x_{0}\right)=0 .
$$

Therefore for every $x \in(a, b)$, by Generalized Mean-Value Theorem we have

$$
\begin{array}{rlr}
\frac{R_{n}(x)}{\left(x-x_{0}\right)^{n}} & =\frac{R_{n}(x)-R_{n}\left(x_{0}\right)}{\left(x-x_{0}\right)^{n}-\left(x_{0}-x_{0}\right)^{n}} \\
& =\frac{R_{n}^{\prime}\left(c_{1}\right)}{n\left(c_{1}-x_{0}\right)^{n-1}} & \\
& =\frac{R_{n}^{\prime}\left(c_{1}\right)-R_{n}^{\prime}\left(x_{0}\right)}{n\left(\left(c_{1}-x_{0}\right)^{n-1}-\left(x_{0}-x_{0}\right)^{n-1}\right)} \\
& =\frac{R_{n}^{\prime \prime}\left(c_{2}\right)}{n(n-1)\left(c_{2}-x_{0}\right)^{n-2}} & \quad\left(\exists c_{1} \text { btw } x, x_{0}\right) \\
& =\cdots & \quad\left(\exists c_{2} \text { btw } c_{1}, x_{0}\right) \\
& =\frac{R_{n}^{(n-1)}\left(c_{n-1}\right)}{n(n-1) \cdots 2\left(c_{n-1}-x_{0}\right)} \tag{*}\\
& =\frac{1}{n!} \cdot \frac{R_{n}^{(n-1)}\left(c_{n-1}\right)-R_{n}^{(n-1)}\left(x_{0}\right)}{c_{n-1}-x_{0}} . & \left(\exists c_{n-1} \text { btw } c_{n-2}, x_{0}\right)
\end{array}
$$

Now c_{n-1} depends on x, and we note that if $x<x_{0}$, then

$$
x<c_{1}<c_{2}<\cdots<c_{n-1}<x_{0}
$$

or if $x>x_{0}$, then

$$
x>c_{1}>c_{2}>\cdots>c_{n-1}>x_{0}
$$

In either case, we have when $x \rightarrow x_{0}, c_{n-1} \rightarrow x_{0}$, therefore by the definition of derivative,

$$
\lim _{x \rightarrow x_{0}} \frac{R_{n}(x)}{\left(x-x_{0}\right)^{n}}=\frac{1}{n!} R_{n}^{(n)}\left(x_{0}\right)=0
$$

Remark. With the same hypothesis in this example we can use Generalized MeanValue Theorem once more in $(*)$ to obtain

$$
\frac{f(x)-T_{n}(x)}{\left(x-x_{0}\right)^{n}}=\frac{1}{n!} R_{n}^{(n)}\left(c_{n}\right)
$$

for some c_{n} between x and x_{0}. But this does not imply our desired conclusion because $R_{n}^{(n)}$ is not necessarily continuous at x_{0}

Remark. From the proof we can refine the hypothesis of the example as follows. Note that we just require $R_{n}^{\prime}, R_{n}^{\prime \prime}, \ldots, R_{n}^{(n-1)}$ exist everywhere near x_{0} in order to apply Generalized Mean-Value Theorem $n-1$ times, and we require $R_{n}^{(n)}\left(x_{0}\right)$ exists at at the last step.

In other words, since $R_{n}=f-T_{n}$, where T_{n} is a polynomial (hence infinitely differentiable everywhere), the minimal hypothesis that we need to impose is:

- $f:(a, b) \rightarrow \mathbb{R}$ is such that $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n-1)}$ exist everywhere near x_{0}.
- $f^{(n)}\left(x_{0}\right)$ exists.

Combing these two, we have the same conclusion in this example.

Example 2. Suppose $f(x)$ is thrice (i.e., 3-times) differentiable on $(-1,1)$ such that

$$
f(-1)=0, \quad f(1)=1 \quad f^{\prime}(0)=0 .
$$

Prove that $f^{(3)}\left(x_{0}\right) \geq 3$ for some $x_{0} \in(-1,1)$.

Example 3. Suppose $f(x)$ is differentiable on (a, ∞) and $\left|f^{\prime \prime}(x)\right|$ is bounded on (a, ∞). Prove that

$$
\lim _{x \rightarrow \infty} f(x)=0 \Longrightarrow \lim _{x \rightarrow \infty} f^{\prime}(x)=0
$$

Remark. (*) holds for every $h>0$, we may take $h=2 \sqrt{\epsilon / M}$ to attain the minimum of the rightmost quantity, then for every $\epsilon>0$, there is $b>0$,

$$
x>b \Longrightarrow\left|f^{\prime}(x)\right|<2 \sqrt{M \epsilon} .
$$

Sol Since $f^{\prime \prime}$ is bounded on (a, ∞), by definition there is an M such that $\left|f^{\prime \prime}(x)\right| \leq M$ for every $x>a$.

We will use the following form of Taylor series. Let $h>0$, then

$$
f(x+h)=f(x)+f^{\prime}(x) h+f^{\prime \prime}(x+\theta h) \frac{h^{2}}{2}
$$

for some $\theta \in(0,1)$
By the definition of $\lim _{x \rightarrow \infty} f(x)=0$, for every $\epsilon>0$, there is $b>0$ such that

$$
y>b \Longrightarrow|f(y)|<\epsilon .
$$

Therefore for every $h>0, x>b$, we also have $x+h>b$, hence

$$
\left|f^{\prime}(x) h+f^{\prime \prime}(x+\theta h) \frac{h^{2}}{2}\right|=|f(x+h)-f(x)| \leq|f(x+h)|+|f(x)|<2 \epsilon .
$$

On the other hand,

$$
\left|f^{\prime}(x) h+f^{\prime \prime}(x+\theta h) \frac{h^{2}}{2}\right| \geq\left|f^{\prime}(x)\right| h-\left|f^{\prime \prime}(x+\theta h)\right| \frac{h^{2}}{2} \geq\left|f^{\prime}(x)\right| h-M \cdot \frac{h^{2}}{2}
$$

so for every $h>0$, combining the above estimates we have

$$
\begin{equation*}
x>b \Longrightarrow\left|f^{\prime}(x)\right|<\frac{2 \epsilon+m \frac{h^{2}}{2}}{h}=2 \epsilon \frac{1}{h}+\frac{M}{2} h \tag{*}
\end{equation*}
$$

Since (*) holds for every $h>0$, we may take $h=\sqrt{\epsilon}$ and conclude that

- for any $\epsilon>0$,
- there is a $b>0$ such that,
- $x>b \Longrightarrow\left|f^{\prime}(x)\right|<\left(2+\frac{M}{2}\right) \sqrt{\epsilon}$.

Since M is a constant, for every $\varepsilon>0$, we may choose $\epsilon=\varepsilon^{2} /\left(2+\frac{M}{2}\right)^{2}$ at the beginning such that there is $b>0$,

$$
x>b \Longrightarrow\left|f^{\prime}(x)\right|<\left(2+\frac{M}{2}\right) \sqrt{\frac{\varepsilon^{2}}{\left(2+\frac{M}{2}\right)^{2}}}=\varepsilon,
$$

thus $\lim _{x \rightarrow \infty}\left|f^{\prime}(x)\right|=0$.

Example 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable such that $M_{k}:=\sup _{x \in \mathbb{R}}\left|f^{(k)}(x)\right|<$ ∞ for $k=0,1,2$. Show that

$$
M_{1} \leq \sqrt{2 M_{0} M_{2}}
$$

Sol For every $x \in \mathbb{R}$ and $h \in \mathbb{R}$, we still use the following form of Taylor series:

$$
f(x+h)=f(x)+f^{\prime}(x) h+f^{\prime \prime}(x+\theta h) \frac{h^{2}}{2}
$$

and

$$
f(x-h)=f(x)-f^{\prime}(x) h+f^{\prime \prime}\left(x+\theta^{\prime} h\right) \frac{h^{2}}{2} .
$$

By subtracting them, we have

$$
f(x+h)-f(x-h)=2 f^{\prime}(x) h+\left(f^{\prime \prime}(x+\theta h)-f^{\prime \prime}\left(x+\theta^{\prime} h\right)\right) \frac{h^{2}}{2} .
$$

Using the definition of M_{0}, M_{1} and M_{2}, we have

$$
0=\left|\begin{array}{c}
f(x-h)-f(x+h)+2 f^{\prime}(x) h \\
+ \\
\left(f^{\prime \prime}(x+\theta h)-f^{\prime \prime}\left(x+\theta^{\prime} h\right)\right) \frac{h^{2}}{2}
\end{array}\right| \leq 2 M_{0}+2 M_{1} h+M_{2} h^{2} .
$$

Since this holds for every $h \in \mathbb{R}$ (as the domain of f is \mathbb{R}), it follows that the degree two polynomial

$$
M_{2} h^{2}+2 M_{1} h+2 M_{0}
$$

either has only one solution or has no solution, i.e.,

$$
\Delta=4 M_{1}^{2}-4 M_{2} \cdot 2 M_{0} \leq 0 \Longleftrightarrow M_{1} \leq \sqrt{2 M_{0} M_{2}}
$$

Remark. We give a generalization in Exercise 5. Note that if $f(x)$ is just differentiable on (a, ∞) for some $a \in \mathbb{R}$, then we have a weaker inequality $J_{1} \leq 2 \sqrt{J_{0} J_{2}}$, where $J_{k}=$ $\sup _{x \in(a, \infty)}\left|f^{(k)}(x)\right|<\infty, k=0,1,2$, c.f. Rudin p. 115 or Presentation Exercise 78.

Exercises

1. Let $f(x)$ be defined near a such that $f(a) \neq 0$ and $f^{\prime}(a)$ exists, show that

$$
\lim _{n \rightarrow \infty}\left(\frac{f(a+1 / n)}{f(a)}\right)^{n}=e^{f^{\prime}(a) / f(a)}
$$

2. Suppose $f(x)$ has second order derivative near 0 (i.e., on $(-\delta, \delta), \exists \delta>0)$. Let

$$
\lim _{x \rightarrow 0}\left(1+x+\frac{f(x)}{x}\right)^{1 / x}=e^{x} .
$$

Find $f(0), f^{\prime}(0)$ and $f^{\prime \prime}(0)$, and then find $\lim _{x \rightarrow 0}\left(1+\frac{f(x)}{x}\right)^{1 / x}$.
3. (2007 Spring) Let $f(x)$ be thrice differentiable on \mathbb{R}. If $f(x)$ and $f^{\prime \prime \prime}(x)$ are bounded on \mathbb{R}, show that $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are also bounded on \mathbb{R}.
4. Let $f(x)$ be twice differentiable on $[a, b]$ and $f^{\prime}(a)=f^{\prime}(b)=0$, prove that there is a $c \in(a, b)$ such that

$$
\left|f^{\prime \prime}(c)\right| \geq \frac{4}{(b-a)^{2}}|f(b)-f(a)| .
$$

5. Let $f(x)$ be p-times differentiable on \mathbb{R} and $M_{j}=\sup \left|f^{(j)}(x)\right|<\infty$ for $j=$ $0,1,2, \ldots, p$, where $p \geq 2$. Show that for every $1 \leq k \leq \begin{gathered}x \in \mathbb{R} \\ p-1\end{gathered}$

$$
M_{k} \leq 2^{k(p-k) / 2} M_{0}^{1-k / p} M_{p}^{k / p} .
$$

6. (2007 Spring) Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous and $f(0)=f(1)$. If $f(x)$ is twice differentiable on $(0,1)$, and there is $M>0$ such that $\left|f^{\prime \prime}(x)\right| \leq M$ for all $x \in(0,1)$, then prove that $\left|f^{\prime}(x)\right| \leq \frac{1}{2} M$ for all $x \in(0,1)$.
7. (2010 Spring) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable such that for every $x \in[0,1]$, $\left|f^{\prime \prime}(x)\right| \leq 2010$. If there is $c \in(0,1)$ such that $f(c)>f(0)$ and $f(c)>f(1)$, prove that

$$
\left|f^{\prime}(0)\right|+\left|f^{\prime}(1)\right| \leq 2010 .
$$

8. (Putnam 2007) Suppose $f:[0,1] \rightarrow \mathbb{R}$ has continuous derivative on $[0,1]$ (implicitly, $f_{+}^{\prime}(0), f_{-}^{\prime}(0)$ exist) and $\int_{0}^{1} f(x) d x=0$. Prove that for every $\alpha \in(0,1)$,

$$
\left|\int_{0}^{\alpha} f(x) d x\right| \leq \frac{1}{8} \max _{0 \leq x \leq 1}\left|f^{\prime}(x)\right| .
$$

