
Math2033 Mathematical Analysis (Spring 2013-2014) Tutorial Note 7

(Skipped) Differentiation (Part II): Taylor Series

We need to know

• how is the Taylor series expansion used in constructing various estimates.

Key definitions and results

Theorem 1 (Taylor’s). Let f (x) be a continuous on [a, b] and n-times differentiable
on (a, b). For every x ∈ [a, b] and α ∈ (a, b), there is c between x and α such that

f (x) =

n−1
ÿ

k=0

f (k)(α)
k!

(x−α)k +
f (n)(c)

n!
(x−α)n .

We call Rn(x) :=
f (n)(c)

n!
(x−α)n the Lagrange form of the remainder.

Remark. One may doubt whether we should impose x ∈ [a,b] or x ∈ (a,b) in the Taylor’s
Theorem. If one examines the proof carefully the Lagrange form of the remainder
holds whenever f (x) has nth order derivative between x and α (in order to apply
Generalized Mean-Value Theorem). Thus x ∈ [a,b] is a safe requirement!

Remark. Suppose f (x) is n-times differentiable on (a,b), x ∈ [a,b] and h small enough
such that x +h ∈ (a,b). The following form of Taylor series will be very useful!

f (x +h) = f (x) + f ′(x)h+
f ′′(x)

2
h2 + · · ·+ f (n−1)(x)

(n−1)!
hn−1 +

f (n)(x +θh)

n!
hn

for some θ ∈ (0,1). The is obtained by replacing x by x +h and α by x in Taylor’s
Theorem.

Remark. The remainder term of Taylor series has two more different forms, one is for
those f (n)(x) integrable (the integral form) and one is for those f (n)(x) continuous
(the Cauchy form). They can be found in lecture notes and we will not use them in
this tutorial note.

Example 1 (nth Order Approximation). Let f (x) be n-times differentiable
on (a, b) and x0 ∈ (a, b). Let

Tn(x) =

n
ÿ

k=0

f (k)(x0)
k!

(x− x0)k .

denote the n-th Taylor series of f (x) at x0. Show that this is an nnn-th order approx-
imation of f (x) in the sense that

lim
x→x0

f (x)−Tn(x)
(x− x0)n

= 0

by using the Generalized Mean-Value Theorem.

Remark. This result is usually written as

f (x) =
n

ÿ

k=0

f (k)(x0)

k!
(x− x0)k +o((x− x0)k) as x → x0.

Sol In fact this is a very well-known theorem and can be found very powerful in computation
of limits. Let’s denote Rn = f −Tn , then we observe that

Rn(x0) = R′n(x0) = · · · = R(n)
n (x0) = 0.

Therefore for every x ∈ (a, b), by Generalized Mean-Value Theorem we have

Rn(x)
(x− x0)n

=
Rn(x)− Rn(x0)

(x− x0)n − (x0 − x0)n

=
R′n(c1)

n(c1 − x0)n−1 (∃c1 btw x, x0)

=
R′n(c1)− R′n(x0)

n((c1 − x0)n−1 − (x0 − x0)n−1)

=
R′′n (c2)

n(n−1)(c2 − x0)n−2 (∃c2 btw c1, x0)

= · · ·
...

=
R(n−1)
n (cn−1)

n(n−1) · · ·2(cn−1 − x0)
(∃cn−1 btw cn−2, x0)

=
1
n!
·

R(n−1)
n (cn−1)− R(n−1)

n (x0)
cn−1 − x0

. (∗)

Now cn−1 depends on x, and we note that if x < x0, then

x < c1 < c2 < · · · < cn−1 < x0;



or if x > x0, then
x > c1 > c2 > · · · > cn−1 > x0.

In either case, we have when x→ x0, cn−1→ x0, therefore by the definition of derivative,

lim
x→x0

Rn(x)
(x− x0)n

=
1
n!

R(n)
n (x0) = 0.

Remark. With the same hypothesis in this example we can use Generalized Mean-
Value Theorem once more in (∗) to obtain

f (x)−Tn(x)
(x− x0)n

=
1
n!

R(n)
n (cn)

for some cn between x and x0. But this does not imply our desired conclusion because
R(n)
n is not necessarily continuous at x0.

Remark. From the proof we can refine the hypothesis of the example as follows.
Note that we just require R′n , R′′n , . . . , R(n−1)

n exist everywhere near x0 in order to apply
Generalized Mean-Value Theorem n−1 times, and we require R(n)

n (x0) exists at at the
last step.

In other words, since Rn = f −Tn , where Tn is a polynomial (hence infinitely differ-
entiable everywhere), the minimal hypothesis that we need to impose is:

• f : (a, b)→ R is such that f ′, f ′′, . . . , f (n−1) exist everywhere near x0.

• f (n)(x0) exists.

Combing these two, we have the same conclusion in this example.

Example 2. Suppose f (x) is thrice (i.e., 3-times) differentiable on (−1,1) such
that

f (−1) = 0, f (1) = 1 f ′(0) = 0.

Prove that f (3)(x0) ≥ 3 for some x0 ∈ (−1,1).

Sol See lecture notes.



Example 3. Suppose f (x) is differentiable on (a,∞) and | f ′′(x)| is bounded on
(a,∞). Prove that

lim
x→∞

f (x) = 0 Ô⇒ lim
x→∞

f ′(x) = 0.

Sol Since f ′′ is bounded on (a,∞), by definition there is an M such that | f ′′(x)| ≤ M for every
x > a.

We will use the following form of Taylor series. Let h > 0, then

f (x + h) = f (x) + f ′(x)h + f ′′(x + θh)
h2

2

for some θ ∈ (0,1).

By the definition of limx→∞ f (x) = 0, for every ε > 0, there is b > 0 such that

y > b Ô⇒ | f (y)| < ε .

Therefore for every h > 0, x > b, we also have x + h > b, hence∣∣∣∣ f ′(x)h + f ′′(x + θh)
h2

2

∣∣∣∣ = | f (x + h)− f (x)| ≤ | f (x + h)|+ | f (x)| < 2ε .

On the other hand,∣∣∣∣ f ′(x)h + f ′′(x + θh)
h2

2

∣∣∣∣ ≥ | f ′(x)|h− | f ′′(x + θh)|
h2

2
≥ | f ′(x)|h−M ·

h2

2
,

so for every h > 0, combining the above estimates we have

x > b Ô⇒ | f ′(x)| <
2ε + m h2

2
h

= 2ε
1
h

+
M
2

h. (∗)

Since (∗) holds for every h > 0, we may take h =
√
ε and conclude that

• for any ε > 0,

• there is a b > 0 such that,

• x > b Ô⇒ | f ′(x)| <
(

2 + M
2

)√
ε .

Since M is a constant, for every ε > 0, we may choose ε = ε2
/(

2 +
M
2

)2
at the beginning

such that there is b > 0,

x > b Ô⇒ | f ′(x)| < (2 +
M
2

)

√
ε2

(2 + M
2 )2

= ε,

thus limx→∞ | f ′(x)| = 0.

Remark. (∗) holds for every h > 0, we may take h = 2
√
ε/M to attain the minimum

of the rightmost quantity, then for every ε > 0, there is b > 0,

x > b Ô⇒ | f ′(x)| < 2
√

Mε .



Example 4. Let f : R→R be twice differentiable such that Mk := sup
x∈R
| f (k)(x)| <

∞ for k = 0,1,2. Show that
M1 ≤

√
2M0 M2.

Sol For every x ∈ R and h ∈ R, we still use the following form of Taylor series:

f (x + h) = f (x) + f ′(x)h + f ′′(x + θh)
h2

2

and

f (x− h) = f (x)− f ′(x)h + f ′′(x + θ′h)
h2

2
.

By subtracting them, we have

f (x + h)− f (x− h) = 2 f ′(x)h +
(

f ′′(x + θh)− f ′′(x + θ′h)
) h2

2
.

Using the definition of M0, M1 and M2, we have

0 =

∣∣∣∣∣∣∣
f (x− h)− f (x + h) + 2 f ′(x)h

+(
f ′′(x + θh)− f ′′(x + θ′h)

) h2

2

∣∣∣∣∣∣∣ ≤ 2M0 + 2M1h + M2h2.

Since this holds for every h ∈ R (as the domain of f is R), it follows that the degree two
polynomial

M2h2 + 2M1h + 2M0

either has only one solution or has no solution, i.e.,

∆ = 4M2
1 −4M2 ·2M0 ≤ 0 ⇐⇒ M1 ≤

√
2M0 M2.

Remark. We give a generalization in Exercise 5. Note that if f (x) is just differentiable
on (a,∞) for some a ∈ R, then we have a weaker inequality J1 ≤ 2

√
J0J2, where Jk =

supx∈(a,∞) |f (k)(x)|<∞, k = 0,1,2, c.f. Rudin p.115 or Presentation Exercise 78.

Exercises

1. Let f (x) be defined near a such that f (a) 6= 0 and f ′(a) exists, show that

lim
n→∞

(
f (a + 1/n)

f (a)

)n

= e f ′(a)/ f (a).

2. Suppose f (x) has second order derivative near 0 (i.e., on (−δ,δ), ∃δ > 0). Let

lim
x→0

(
1 + x +

f (x)
x

)1/x

= eλ .

Find f (0), f ′(0) and f ′′(0), and then find lim
x→0

(
1 +

f (x)
x

)1/x

.

3. (2007 Spring) Let f (x) be thrice differentiable on R. If f (x) and f ′′′(x) are
bounded on R, show that f ′(x) and f ′′(x) are also bounded on R.

4. Let f (x) be twice differentiable on [a, b] and f ′(a) = f ′(b) = 0, prove that there is
a c ∈ (a, b) such that

| f ′′(c)| ≥
4

(b− a)2 | f (b)− f (a)|.

5. Let f (x) be p-times differentiable on R and Mj = sup
x∈R
| f ( j)(x)| < ∞ for j =

0,1,2, . . . , p, where p ≥ 2. Show that for every 1 ≤ k ≤ p−1,

Mk ≤ 2k(p−k)/2 M1−k/p
0 Mk/p

p .

6. (2007 Spring) Let f : [0,1]→R be continuous and f (0) = f (1). If f (x) is twice
differentiable on (0,1), and there is M > 0 such that | f ′′(x)| ≤ M for all x ∈ (0,1),
then prove that | f ′(x)| ≤ 1

2 M for all x ∈ (0,1).

7. (2010 Spring) Let f :R→R be twice differentiable such that for every x ∈ [0,1],
| f ′′(x)| ≤ 2010. If there is c ∈ (0,1) such that f (c) > f (0) and f (c) > f (1), prove
that

| f ′(0)|+ | f ′(1)| ≤ 2010.

8. (Putnam 2007) Suppose f : [0,1]→ R has continuous derivative on [0,1] (im-

plicitly, f ′+(0), f ′−(0) exist) and
∫ 1

0
f (x) dx = 0. Prove that for every α ∈ (0,1),

∣∣∣∣∫ α

0
f (x) dx

∣∣∣∣ ≤ 1
8

max
0≤x≤1

| f ′(x)|.


