Math2033 Mathematical Analysis (Spring 2013-2014) Tutorial Note 7

(Skipped) Differentiation (Part Il): Taylor Series
We need to know

e how is the Taylor series expansion used in constructing various estimates.

Key definitions and results

Theorem 1 (Taylor’s). Let f(x) be a continuous on [a, b] and n-times differentiable
on (a,b). For every x € [a,b] and a € (a, b), there is ¢ between x and « such that

n=l ,(k) (n)
f)= Z f (Q)(x—a)k + S (C)(x—a)".

k! n!

) " .
We call R, (x) := ’ (x —a)" the Lagrange form of the remainder.
n!

Remark. One may doubt whether we should impose x € [a, b] or x € (a, b) in the Taylor's
Theorem. If one examines the proof carefully the Lagrange form of the remainder
holds whenever f(x) has nth order derivative between x and « (in order to apply
Generalized Mean-Value Theorem). Thus x € [a, b] is a safe requirement!

Remark. Suppose f(x) is n-times differentiable on (a, b), x € [a, b] and h small enough
such that x+ h € (a, b). The following form of Taylor series will be very useful!

3 , ' (x) FU) ni1 FD(x+0h) ,
f(x+h)_f(x)+f(x)h+Th +e =1)! AT+ o h

for some 6 € (0,1). The is obtained by replacing x by x+ h and « by x in Taylor's
Theorem.

Remark. The remainder term of Taylor series has two more different forms, one is for
those £(")(x) integrable (the integral form) and one is for those f(")(x) continuous
(the Cauchy form). They can be found in lecture notes and we will not use them in
this tutorial note.

Example 1 (nth Order Approximation). Let f(x) be n-times differentiable
on (a,b) and xq € (a,b). Let

n (k)
T(x) = kZO LU0

denote the n-th Taylor series of f(x) at xo. Show that this is an n-th order approx-
imation of f(x) in the sense that

lim L0 =T _

X Xx( (x - xo)”

by using the Generalized Mean-Value Theorem.

Remark. This result is usually written as

N e (k) (
f(x)= Z f k(l 0)(X—Xo)k-l-O((X—xo)k) as X — Xp.
k=0 :

Sol In fact this is a very well-known theorem and can be found very powerful in computation
of limits. Let’s denote R,, = f — Ty, then we observe that

Ru(x0) = R}, (x0) = -+ = R™(x0) = 0.

Therefore for every x € (a,b), by Generalized Mean-Value Theorem we have

Ry (x) _ Ry (x) — Ry (xo)
(x=x0)"  (x—x0)" = (x0—x0)"
= Ll)_ (dc; btw x, xg)
n(cy — xo)"!

_ Ry, (c1) = Ry, (x0)
n((cy —x0)" 1 = (xg —x0)" 1)
R}/ (c2)

= = 1)(cr xO)"_z (dco btw ¢y, x0)

(n—1)
Ry (cn-1)
= dc,,—1 btw ¢;,_2,
n(n= 1)~ 2(en1 ~ x0) (Fen-1 bt n-2,30)

_ 1 R e =Ry Vo) -

T Cn—1—X0

Now ¢,,_1 depends on x, and we note that if x < xp, then

xX<c1 <y <--<cp-1<Xx0,



or if x > xq, then
X>Cl >0 > > ol > X0 Example 2. Suppose f(x) is thrice (i.e., 3-times) differentiable on (-1, 1) such

In either case, we have when x — xq, ¢;,—1 — X, therefore by the definition of derivative, that

f=1)=0, f(H=1 f'(0)=0.
R 1

R i HR;")(xo) =0. 1 Prove that @ (xq) > 3 for some xq € (—1,1).

Remark. With the same hypothesis in this example we can use Generalized Mean-
Value Theorem once more in (x) to obtain Sol See lecture notes. ]

O =T 1 gy
(x—xp)" n!

for some ¢, between x and xq. But this does not imply our desired conclusion because
Rﬁ,”) is not necessarily continuous at x.

Remark. From the proof we can refine the hypothesis of the example as follows.

Note that we just require Ry,, Ry, ,. .. ,Rg,"_l) exist everywhere near x in order to apply

Generalized Mean-Value Theorem n — 1 times, and we require R;")(xo) exists at at the
last step.

In other words, since R, = f —T,,, where T, is a polynomial (hence infinitely differ-
entiable everywhere), the minimal hypothesis that we need to impose is:

e f:(a,b)— Rissuchthat f/, f”,..., f"D exist everywhere near x.

. f(")(xo) exists.

Combing these two, we have the same conclusion in this example.




Example 3. Suppose f(x) is differentiable on (a,o0) and |f”'(x)| is bounded on Remark. () holds for every h > 0, we may take i = 2v/e/M to attain the minimum
(a, c0). Prove that of the rightmost quantity, then for every € > 0, there is b > 0,
lim f(x)=0 = lim f'(x)=0.
xﬁoof( ) xﬁoof( ) x>b = |f'(x)| <2VMe.

Sol Since f”” is bounded on (a, o), by definition there is an M such that | f”’(x)| < M for every
x> a.

We will use the following form of Taylor series. Let 4 > 0, then

fx+h) =)+ (Oh+f"(x+ Hh)h?2
for some 6 € (0, 1).
By the definition of limy_,« f(x) =0, for every € > 0, there is b > 0 such that
y>b = |fnl<e

Therefore for every h > 0,x > b, we also have x + h > b, hence

h2
f'(X)h+f"(X+9h)7 = fx+h) = fOI<f(xe+ M) +]f ()] < 2.
On the other hand,
h? h? h?
f’(X)h+f”(x+0h)? > If'(X)Ih—If”(X+«9h)|3 >|f ()lh-M- ER

so for every / > 0, combining the above estimates we have

h2
+m>5 1 M
iy =2e—+—h. (%)

x>b:>|f(x)|<T at o

Since () holds for every & > 0, we may take & = /e and conclude that

e for any € > 0,
e there is a b > 0 such that,
o x>b = |f'(x)|< (2+ %) e

M
Since M is a constant, for every € > 0, we may choose € = & / (2 + 7)2 at the beginning
such that there is b > 0,

, M_ | &
x>b = |f(x)|<(2+7) @:3,

thus limy—e0 | f/(x)] = 0. 1




Example 4. Let f : R — R be twice differentiable such that My := sup|f*(x)| <

xeR
oo for k =0,1,2. Show that
M < \/2MyM,;.

Sol Forevery x € R and & € R, we still use the following form of Taylor series:
h2
fG+h)y=f+f (Oh+f"(x+ 9h)7

and

h2
fx=h)=f(x)=f (x)h +f"(x+9'h)7

By subtracting them, we have

h2
f+m) = fx—h)=2f ()h+ (f(x+0h) — f"(x+0'h)) >

Using the definition of My, M| and M>, we have

Fx—h) = f(x+h) +2f"(x)h
0= + L | <2My+2M b+ Mo,

h
(f"(x+0R) = f"(x+0'h)) >
Since this holds for every & € R (as the domain of f is R), it follows that the degree two

polynomial
Moh? +2Myh+2My

either has only one solution or has no solution, i.e.,

A=4M7 —4My - 2My <0 < M; <+/2MoM;. 1

Remark. We give a generalization in Exercise 5. Note that if f(x) is just differentiable
on (a,00) for some a € R, then we have a weaker inequality J; < 2v/JyJo, where Ji =
SUPxe(a,00) |f(k)(x)| < oo, k=0,1,2, c.f. Rudin p.115 or Presentation Exercise 78.

Exercises

1. Let f(x) be defined near a such that f(a) # 0 and f’(a) exists, show that

- (f@amN" s
r}‘—r&( F@) > = ’

2. Suppose f(x) has second order derivative near O (i.e., on (-6, d), 36 > 0). Let

1/x
lim (1+x+f(x)> =t

x—0

LSO
Find f(0), f’(0) and f’’(0), and then find lin}) ( )

3. (2007 Spring) Let f(x) be thrice differentiable on R. If f(x) and f"”(x) are
bounded on R, show that f’(x) and f”’(x) are also bounded on R.

4. Let f(x) be twice differentiable on [a, b] and f’(a) = f’(b) = 0, prove that there is
a c¢ € (a, b) such that

4
If" (o)l = mlf(b) - f(al.

5. Let f(x) be p-times differentiable on R and M; = sup] FP%) < oo for j =
xeR
0,1,2,...,p, where p > 2. Show that forevery | <k <p-1,

My < zk(P—k)/2M3—k/PMI/)</p.

6. (2007 Spring) Let 1 : [0,1] — R be continuous and f(0) = f(1). If f(x) is twice
differentiable on (0, 1), and there is M > 0 such that | f”'(x)| < M for all x € (0, 1),
then prove that | f/(x)| < %M for all x € (0, 1).

7. (2010 Spring) Let f : R — R be twice differentiable such that for every x € [0, 1],
|f”(x)] <2010. If there is ¢ € (0,1) such that f(c) > f(0) and f(c) > f(1), prove
that

L") +1f" (1)l < 2010.

8. (Putnam 2007) Suppose f : [0,1] — R has continuous derivative on [0, 1] (im-
1
plicitly, f%(0), f7(0) exist) and / f(x)dx = 0. Prove that for every @ € (0, 1),
0

/ f(x)dx

< §0‘?a§ L (0)I.




