Math2033 Mathematical Analysis (Spring 2013-2014)

Tutorial Note 6

Differentiation (Part I): L'Hôpital's Rule \& Mean-Value Theorem

- the integrating factor technique when we try to apply Mean-Value Theorem.
- the power of more general form of L'Hôpital's rule-the $\frac{*}{\infty}$ version.

Key definitions and results

Definition 1 (Differentiability). Let I be an open interval. A function $f: I \rightarrow \mathbb{R}$ is differentiable at $x_{0} \in I$ if the limit

$$
f^{\prime}\left(x_{0}\right):=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

exists. $f(x)$ is said to be differentiable if it is differentiable at every point of I.

Theorem 2 (L'Hôpital's Rule, $\frac{0}{0}$ Version). Let $f(x), g(x)$ be differeitable on (a, b) and both $g(x), g^{\prime}(x) \neq 0$ for all $x \in(a, b)$, where $-\infty \leq a<b \leq+\infty$. Suppose that
(a) $\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$, where $-\infty \leq L \leq+\infty$, and
(b) $\lim _{x \rightarrow a^{+}} f(x)=0=\lim _{x \rightarrow a^{+}} g(x)$,
then $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=L$. (Similarly, the rule is also true if $x \rightarrow b^{-}$.)
Theorem 3 (L'Hôpital's Rule, $\frac{*}{\infty}$ Version). Let $f(x), g(x)$ be differeitable on (a, b) and both $g(x), g^{\prime}(x) \neq 0$ for all $x \in(a, b)$, where $-\infty \leq a<b \leq+\infty$. Suppose that
(a) $\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$, where $-\infty \leq L \leq+\infty$, and
(b) $\lim _{x \rightarrow a^{+}} g(x)=+\infty$,
then $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=L$. (Similarly, the rule is also true if $x \rightarrow b^{-}$.)
Remark. In Math1014, Calculus II, we have already learnt the $\frac{\infty}{\infty}$ version of L'Hôpital's Rule. The $\frac{*}{\infty}$ version we have stated here is much better in the sense that the numerator $f(x)$ needs not have ∞ has its "limit" (i.e., it is allowed to behave arbitrarily).

Theorem 4 (Inverse Function). If $f(x)$ is continuous, injective on (a, b) and $f^{\prime}\left(x_{0}\right) \neq 0$ for some $x_{0} \in(a, b)$, then f^{-1} is differentiable at $y_{0}=f\left(x_{0}\right)$, moreover, $\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=1 / f^{\prime}\left(x_{0}\right)$.

Theorem 5 (Local Extreme). Let $f(x)$ be differentiable on (a, b). If $x_{0} \in(a, b)$ satisfies

$$
f\left(x_{0}\right)=\min f((a, b)) \quad \text { or } \quad f\left(x_{0}\right)=\max f((a, b)) \text {, }
$$

then $f^{\prime}\left(x_{0}\right)=0$.

Remark. The Local Extreme Theorem only applys for local maximum and local minimum on open intervals.

Theorem 6 (Mean-Value). Let $f(x)$ be continuous on $[a, b]$ and differentiable on (a, b), then there is an $x_{0} \in(a, b)$ such that

$$
f(b)-f(a)=f^{\prime}\left(x_{0}\right)(b-a) .
$$

Theorem 7 (Generalized Mean-Value). Let $f(x), g(x)$ be continuous on $[a, b]$ and differentiable on (a, b), then there is a $\zeta \in(a, b)$ such that

$$
g^{\prime}(\zeta)(f(b)-f(a))=f^{\prime}(\zeta)(g(b)-g(a))
$$

Remark (Integrating Factor). In solving ODE we are introduced the following useful technique: Given $f(x), p(x)$ nice and the following expression

$$
f^{\prime}(x)+p(x) f(x),
$$

we can multiply this by an integrating factor- $e^{P(x)}$, where $P(x)$ " $=" \int p(x) d x$, so as to rewrite the above as

$$
f^{\prime}(x)+p(x) f(x)=e^{-P(x)}\left[e^{P(x)}\left(f^{\prime}(x)+p(x) f(x)\right)\right]=e^{-P(x)}\left(e^{P(x)} f(x)\right)^{\prime} .
$$

This will be helpful when we try to seek for a function to which we apply Mean-Value Theorem. We illustrate this in Example 3. Similar situation also happens in Exercise 10 (harder!) when we try to write $P-r P^{\prime}$ as (sth)'.

Example 1. Suppose that $f(x) \geq 0$ and differentiable on $(0,1)$. Show that if $f(x)=0$ for at least two $x \in(0,1)$, then $f^{\prime \prime \prime}(c)=0$ for some $c \in(0,1)$.

Sol Let $a, b \in(0,1)$ be such that $f(a)=f(b)=0$. By Mean-Value Theorem we directly have

$$
f(a)-f(b)=0=f^{\prime}(d)(b-a), \quad \text { for some } d \in(a, b),
$$

i.e., $f^{\prime}(d)=0$ for some $d \in(a, b)$.

Since we are given that $f(x) \geq 0$, thus $f(a)=0$ and $f(b)=0$ are local (in fact, global) minimum, therefore

$$
f^{\prime}(a)=0 \quad \text { and } \quad f^{\prime}(b)=0 .
$$

Now $a<d<b$ and $f^{\prime}(a)=f^{\prime}(d)=f^{\prime}(b)=0$, by applying Mean-Value Theorem on $[a, d]$ and $[d, b]$ respectively to $f^{\prime}(x)$, we have $f^{\prime \prime}\left(c_{1}\right)=0$ and $f^{\prime \prime}\left(c_{2}\right)=0$ for some $c_{1} \in(a, d)$ and $c_{2} \in(d, b)$.

Since $f^{\prime \prime}\left(c_{1}\right)=f^{\prime \prime}\left(c_{2}\right)=0$, another application of Mean-Value Theorem gives $f^{\prime \prime \prime}(c)=0$ for some $c \in\left(c_{1}, c_{2}\right) \subseteq(a, b) \subseteq(0,1)$.

Example 2. Let $f(x)$ be twice differentiable on $(0, \infty)$ such that

$$
\lim _{x \rightarrow \infty} f(x)=0 \quad \text { and } \quad \lim _{x \rightarrow \infty} f^{\prime \prime}(x)=L
$$

for some $L \in \mathbb{R}$. Show that $\lim _{x \rightarrow \infty} f^{\prime}(x)=L$ and then show that $L=0$.

Sol This example can be solved by applying L'Hôpital's Rule several times.
Note that we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(f(x)-f^{\prime}(x)\right) & =\lim _{x \rightarrow \infty} \frac{e^{x}\left(f(x)-f^{\prime}(x)\right)}{e^{x}} \\
& \xlongequal{\text { if RHS ヨ }} \lim _{x \rightarrow \infty} \frac{e^{x}\left(f(x)-f^{\prime}(x)+f^{\prime}(x)-f^{\prime \prime}(x)\right)}{e^{x}} \\
& =\lim _{x \rightarrow \infty}\left(f(x)-f^{\prime \prime}(x)\right) \\
& =0-L .
\end{aligned}
$$

Since $\lim _{x \rightarrow \infty} f(x)$ also exists, thus $\ell=\lim _{x \rightarrow \infty} f^{\prime}(x)$ exists and the above gives

$$
0-\ell=-L \Longrightarrow \ell=L .
$$

By applying the same trick once more, we have

$$
0=\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{e^{x} f(x)}{e^{x}} \xlongequal{\text { if RHS ヨ }} \lim _{x \rightarrow \infty} \frac{e^{x}\left(f(x)+f^{\prime}(x)\right)}{e^{x}}=0+L .
$$

Remark. In fact even more is true. If $f:(0, \infty) \rightarrow \mathbb{R}$ is twice differentiable, $\lim _{x \rightarrow \infty} f(x)=$ 0 with $f^{\prime \prime}(x)$ bounded, then $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$. This follows from careful use of Taylor expansion and will be done in the next tutorial note.

Example 3. Let $f(x)$ be continuous on $[a, b]$, differentiable on (a, b) and $f(a)=$ $f(b)=0$. Prove that for each $\lambda \in \mathbb{R}$, there is $c \in(a, b)$ such that

$$
f^{\prime}(c)=\lambda f(c)
$$

Sol Note that $f^{\prime}(c)-\lambda f(c)=0$
iff $f^{\prime}(x)-\lambda f(x)=0$ at $x=c$
iff $e^{-\lambda x}\left(f^{\prime}(x)-\lambda f(x)\right)=0$ at $x=c$
iff $\left(e^{-\lambda x} f(x)\right)^{\prime}=0$ at $x=c$.
Let $g(x)=e^{-\lambda x} f(x)$, then we need to show there is $c \in(a, b)$ such that $g^{\prime}(c)=0$. But this follows directly from Mean-Value Theorem since $g(a)=g(b)=0$.

Example 4 (Intermediate Value Property). Let $f:(a, b) \rightarrow \mathbb{R}$ be differentiable. Let's suppose also that

- $u, v \in(a, b)$ satisfy $f^{\prime}(u) \neq f^{\prime}(v)$;
- $m \neq f^{\prime}(u), f^{\prime}(v)$ be between $f^{\prime}(u), f^{\prime}(v)$

Show that there is a $c \in(u, v)$ such that $f^{\prime}(c)=m$.

Sol First we assume $f^{\prime}(u)<f^{\prime}(v)$. Let $m \in\left(f^{\prime}(u), f^{\prime}(v)\right)$, we need find $c \in(u, v)$ such that

$$
f^{\prime}(c)=\left.m \Longleftrightarrow(f(x)-m x)^{\prime}\right|_{x=c}=0
$$

Let's define $g(x)=f(x)-m x$.
By hypothesis, $g^{\prime}(u)=f^{\prime}(u)-m<0$ and $g^{\prime}(v)=f^{\prime}(v)-m>0$. Also, by Extreme Value Theorem there is $c \in[u, v]$ such that $g(c)=\min g([u, v])$.

We expect $g^{\prime}(c)=0$, for this, we need to show $c \neq u, v$ in other to apply Local Extreme Theorem (which only works for local min or max over an open interval).
To prove $c \neq u$, we try to show $g(u)$ cannot be a global min on $[u, v]$ (therefore $g(c) \neq$ $g(u) \Longrightarrow c \neq u)$. Since $g^{\prime}(u)<0$, which means that there is $x>u$ such that $g(x)<g(u)$ (otherwise if $g(x) \geq g(u)$ for all $x \geq u$, then this implies $g^{\prime}(u) \geq 0$, a contradiction). We conclude $c \neq u$.
Similarly, since $g^{\prime}(v)>0, g(v)$ cannot be a global min on $[u, v]$. Thus $c \neq v$.
Now $g(c)$ is a global min on $[u, v]$, it is a local min on (u, v) (as it is shown that $c \neq u, v$), thus $g^{\prime}(c)=0$, as desired.

Finally we handle the case that $f^{\prime}(u)>f^{\prime}(v)$. Note that we can return to the previous situation: $-f(x)$ is differentiable on (a, b) and $(-f)^{\prime}(u)<(-f)^{\prime}(v)$.

Applying $-f(x)$ to what we have just proved, we have for every $-m \in\left((-f)^{\prime}(u),(-f)^{\prime}(v)\right)$, there is $c \in(u, v)$ such that $(-f)^{\prime}(c)=-m$, thus $f^{\prime}(c)=m$.

Remark. If $f^{\prime}(x)$ is continuous, then the conclusion holds immediately by Intermediate Value Theorem. This example asserts that "Intermediate Value Property" is still possible even if $f^{\prime}(x)$ is not continuous.

Exercises

1. A function $g(x)$ on (a, b) is said to have a simple discontinuity at x if

$$
g\left(x^{-}\right):=\lim _{t \rightarrow x^{-}} g(t) \quad \text { and } \quad g\left(x^{+}\right):=\lim _{t \rightarrow x^{+}} g(t)
$$

exist but $g\left(x^{-}\right) \neq g\left(x^{+}\right)$. Suppose that $f(x)$ is differentiable on (a, b).
(a) Show that $f^{\prime}(x)$ cannot have any simple discontinuities in (a, b). Hint: Recall that $f^{\prime}(x)$ possesses Intermediate Value Property mentioned in Example 4.
(b) If $\lim _{x \rightarrow c} f^{\prime}(x)$ exists for some $c \in(a, b)$, show that $f^{\prime}(x)$ is continuous at c.
2. Let $f(x), g(x)$ be differentiable on (a, b) such that

$$
f(x) g^{\prime}(x)-f^{\prime}(x) g(x) \neq 0 \quad \text { for every } x \in(a, b)
$$

If there are x_{0}, x_{1} such that $a<x_{0}<x_{1}<b$ and $f\left(x_{0}\right)=f\left(x_{1}\right)=0$, then prove that there exists x_{0} such that $f^{\prime \prime}\left(x_{0}\right)=0$.
3. Let $f(x)$ be a differentiable function on $(0, \infty)$. Suppose $f(x)$ is bounded, i.e., there is an M such that $|f(x)| \leq M$ for all $x \in(0, \infty)$. Show that there is a sequence of numbers $\left\{x_{n}\right\}, x_{n} \rightarrow \infty$, such that $f^{\prime}\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that

$$
\left|f(x)-\sin \left(x^{2}\right)\right| \leq \frac{1}{4} \quad \text { for every } x \in \mathbb{R}
$$

Prove that there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $\lim _{n \rightarrow \infty} f^{\prime}\left(x_{n}\right)=+\infty$.
5. Let $g(x)$ be a differentiable on \mathbb{R} and $g^{\prime}(x)$ bounded on \mathbb{R}. Show that if $\delta>0$ is small enough, then $f(x)$ on \mathbb{R} given by

$$
f(x)=x+\delta g(x)
$$

is bijective.
6. Let $f(x), g(x), h(x)$ be continuous on $[a, b]$ and differentiable on (a, b), show that there is $c \in(a, b)$ such that

$$
\operatorname{det}\left[\begin{array}{lll}
f(a) & g(a) & h(a) \\
f(b) & g(b) & h(b) \\
f^{\prime}(c) & g^{\prime}(c) & h^{\prime}(c)
\end{array}\right]=0
$$

Note that the Generalized Mean-Value Theorem is the case that $h \equiv 1$.
7. Let $f: \mathbb{R} \rightarrow(0, \infty)$ be a differentiable function such that $f^{\prime}(x)=f(f(x))$ for all $x \in \mathbb{R}$. Show that there is no such function.
8. (2007 Spring) Let $f(x)$ be continuous on $[0,1]$, differentiable on $(0,1), f(0)=0$ and $f(1)=1$. Let $k_{1}, k_{2}, \ldots, k_{n}>0$ be such that $k_{1}+k_{2}+\cdots+k_{n}=1$. Prove that there are pairwise distinct $t_{1}, t_{2}, \ldots, t_{n} \in(0,1)$ such that

$$
\frac{k_{1}}{f^{\prime}\left(t_{1}\right)}+\frac{k_{2}}{f^{\prime}\left(t_{2}\right)}+\cdots+\frac{k_{n}}{f^{\prime}\left(t_{n}\right)}=1
$$

9. Let $f(x)$ be defined on $(-\epsilon, \epsilon)$ and continuous at $x=0$. If

$$
\lim _{x \rightarrow 0} \frac{f(2 x)-f(x)}{x}=m
$$

prove that $f(x)$ is differentiable at 0 , moreover, $f^{\prime}(0)=m$.
10. Let $P(x)$ be a nonconstant polynomial with real coefficients and only has real roots. Prove that for every $r \in \mathbb{R}$, the polynomial

$$
Q_{r}(x):=P(x)-r P^{\prime}(x)
$$

only has real roots as well.
11. Suppose $f(x)$ is continuous on $[a, b]$, differentiable on $(a, b), f(a)=0$ and $0 \leq$ $f^{\prime}(x) \leq 1$, prove that

$$
\left(\int_{a}^{b} f(x) d x\right)^{2} \geq \int_{a}^{b} f(x)^{3} d x
$$

