
Math3033 (Fall 2013-2014) Tutorial Note 6

Consequence of Uniform Convergence

Key Definitions and Results

Theorem 1 (Continuity Theorem for Uniform Convergence).

• Sequence Version. Let fn : E→ R be a sequence of functions such that:

(i) fn ⇒ f on E.

(ii) For each n, limx→c f (x) exists.

Then f also has limit at c: lim
x→c

lim
n→∞

fn(x) = lim
n→∞

lim
x→c

fn(x).

• Series Version. Let fn : E→ R be a sequence of functions such that:

(i)
ř∞

n=1 fn converges uniformly on E.

(ii) For each n, limx→c fn(x) exists.

Then
ř∞

n=1 fn also has limit at c: lim
x→c

∞
ÿ

n=1

fn(x) =
∞
ÿ

n=1

lim
x→c

fn(x).

Theorem 2 (Integration Theorem for Uniform Convergence).

• Sequence Version. Let fn : [a,b]→ R be a sequence of Riemann integrable
functions such that fn ⇒⇒⇒ f on [a,b], then f is also Riemann integrable on
[a,b], moreover,

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
f dx.

• Series Version. Let fn : [a,b]→R be a sequence of Riemann integrable func-
tions. If

ř∞
n=1 fn converges uniformly, then

ř∞
n=1 fn is Riemann integrable

on [a,b], moreover, ∫ b

a

∞
ÿ

n=1

fn(x) dx =
∞
ÿ

n=1

∫ b

a
fn(x) dx.

Theorem 3 (Differentiation).

• Sequence Version. Let f1, f2,· · · : (a,b)→R be differentiable functions such
that:

(i) fn(x0) converges for some x0 ∈ (a,b).

(ii) f ′n(x) converges uniformly on (a,b).

Then fn converges uniformly on (a,b) and
(

lim
n→∞

fn(x)
)′
= lim

n→∞
f ′n(x).

• Series Version. Let f1, f2,· · · : (a,b)→ R be differentiable functions such
that:

(i)
ř∞

n=1 fn(x0) converges for some x0 ∈ (a,b).

(ii)
ř∞

n=1 f ′n converges uniformly on (a,b).

Then
ř∞

n=1 fn converges uniformly on (a,b) and
( ∞

ÿ

n=1

fn(x)
)′
=

∞
ÿ

n=1

f ′n(x).

Theorem 4 (Differentiation of Power Series). If
∞
ÿ

n=0

an(x − c)n converges

pointwise on (a,b), then it is differentiable on (a,b) with

d
dx

( ∞
ÿ

n=0

an(x− c)n
)
=

∞
ÿ

n=1

nan(x− c)n−1.

Remark. The Differentiation Theorem of Power Series states that whenever a power
series converges on an open interval I, it is infinitely differentiable on III.

Theorem 5 (Abel’s Limit). If
∞
ÿ

k=0

ak (x− c)k converges pointwise on a closed and

bounded interval [u,3], then the series converges uniformly on [u,3].

Theorem 6. We have the following properties for uniform convergence:

• Bounded Multiplier Property. Suppose f is bounded on E and gn ⇒ g on
E, then f gn ⇒ f g on E.

• Substitution Property. Suppose gn ⇒ g on E and f : F→ E is any function,
then gn ◦ f ⇒ g ◦ f on E.

Theorem 7 (Dini). Let fn : [a,b]→ R be continuous and fn → f pointwise on
[a,b]. Suppose also that:

(i) fn(x) is pointwise increasing.

(ii) f (x) is continuous.

Then fn converges to f uniformly on [a,b].



Example 1. Reconsider Example 6 in tutorial note 5. Show that the series

f (x) =
∞
ÿ

n=0

x2

(1+ x2)n

does not converge uniformly on (0,1) by using the continuity theorem for uni-
form convergence.

Solution. For any x 6= 0 the series converges pointwise to

f (x) = x2
∞
ÿ

n=0

1
(1+ x2)n

= x2 ·
1+ x2

x2 = 1+ x2.

If the convergence were uniform on (0,1), then it would be uniform also on [0,1] (easily
seen by uniform Cauchy criterion, see the complete statement in the following “fact”),
therefore f would be continuous on [0,1] by Continuity Theorem. However,

f (x) =

{
0, x = 0,
1+ x2, x ∈ (0,1].

Therefore the contrapositive of Continuity Theorem tells us

f not continuous Ô⇒ the convergence is not uniform.

Fact. Suppose that f1, f2,· · · : [a,b]→R is a sequence of continuous functions such
that it converges uniformly on (a,b), then it also converges uniformly on [a,b].

Proof. If fn converges uniformly on (a,b), then it is uniformly Cauchy on (a,b),
thus for every ε > 0, there is an N such that

m,n > N Ô⇒ ‖ fm − fn‖(a,b) < ε.

However, if ‖ fm − fn‖(a,b) < ε , then | fm(x)− fn(x)| < ε for every x ∈ (a,b), by tak-
ing limit x → a+ and x → b− respectively we have | fm − fn | ≤ ε on [a,b], thus
‖ fm − fn‖[a,b] ≤ ε . We conclude that

m,n > N Ô⇒ ‖ fm − fn‖[a,b] ≤ ε,

so { fn} converges uniformly on [a,b].

Example 2.

(a) Show that the series
∞
ÿ

k=1

1
k

sin
x
k

converges uniformly on (−1,1).

(b) How about the uniform convergence of
∞
ÿ

k=1

1
k

cos
x
k

on (−1,1)?

Solution. (a) Since

•
∞
ÿ

k=1

1
k

(
sin

x
k

)′
=

∞
ÿ

k=1

1
k2 cos

x
k

converges uniformly on (−1,1) by M-test.

• The series
ř∞

k=1
1
k sin 0

k converges with 0 ∈ (−1,1).

By the Differentiation Theorem the series converges uniformly.

(b) Although
∞
ÿ

k=1

1
k

(
cos

x
k

)′
= −

∞
ÿ

k=1

1
k2 sin

x
k

converges uniformly on (−1,1), we cannot apply the Differentiation Theorem yet because
we still need to find a point in (−1,1) at which the series converges.

Actually such point does not exist: for every x ∈ R,

∞
ÿ

k=1

1
k

cos
x
k
=∞.

Exercise 1 (Math2043 2008 Final). Show that lim
x→0

1
x

( ∞
ÿ

n=1

(−1)n
1

n+ x2

)′
exists

and compute it. You may need to know how to compute Fourier series.

Exercise 2 (Math2043 2006 Final). Let an > 0, r = lim
ln an

ln n
and f (x) =

∞
ÿ

n=1

an

nx
.

(a) Prove the for any r′ > r , we have an < nr
′

for sufficiently big n.

(b) Prove the for any R > r +1, the series uniformly converges on [R,∞).

(c) Prove the f (x) has derivatives of any order on (r +1,∞).

(d) Prove that the series diverges on (−∞,r). On the other hand, show that the series
may converge for some x < r +1 by constructing an example.



Example 3 (Practice Exercise #59). Show that

∫ 1

0

1− cos x2

x4 dx =
∞
ÿ

k=1

(−1)k+1

(2k)!(4k −3)
.

Solution. Note that LHS is an improper integral, we must switch to proper integral in order
to apply Integration Theorem. For this, we use the following result:

Theorem. If f : (a,b]→R is locally integrable and bounded near a, then f is improper
integrable, moreover, ∫ b

a
f dx =

∫ b

a
f̃ dx,

for any f̃ : [a,b]→ R such that f = f̃ on (a,b], i.e., for any function f̃ that extends f
to [a,b].

Now for any x 6= 0 we have

1− cos x2

x4 =

∞
ÿ

k=1

(−1)k+1x4k−4

(2k)!
,

RHS is a function on R, thus we conclude that RHS is a function that extends LHS to
[0,1], let’s check that LHS is bounded near 0:

lim
x→0

1− cos x2

x4 = lim
x→0

1
2

sin x2

x2 =
1
2
.

Hence by the theorem we have just quoted,∫ 1

0

1− cos x2

x4 dx =
∫ 1

0

∞
ÿ

k=1

(−1)k+1x4k−4

(2k)!
dx.

Now RHS is a proper integral, the rest is routine: check that the convergence is uni-
form on [0,1] and switch the order of integral sign and summation sign. This is very
straightforward by M-test.

Exercise 3 (2007 Midterm). Determine lim
x→0+

ex −1
√

x
. Prove carefully that

∫ 1

0

ex −1
√

x
dx =

∞
ÿ

k=1

2
k!(2k +1)

.

Note that LHS is an improper integral.



Example 4.

(a) Show that
∞
ÿ

k=1

(−1)k
e−k x

k
converges uniformly on [0,∞).

(b) (i) Show that the series
∞
ÿ

k=1

(−1)k
(2− x)k

2k k
converges uniformly on [0,2].

(ii) Show that the series
∞
ÿ

k=1

(−1)k
(2− x)k+

√
5

2k k
converges uniformly on

[0,2].

Solution. (a) Write the series as
∞
ÿ

k=1

(−1)k
(e−x )k

k
.

Since x ∈ [0,∞), we have e−x ∈ (0,1], by substitution property it is enough to show the
power series

∞
ÿ

k=1

(−1)k
xk

k

converges uniformly on [0,1]. For this, we prove that the power series converges point-
wise on [0,1], after that Abel’s Limit Theorem will guarantee the uniformity.

The radius of convergence is

1

lim k

√
|(−1)k 1

k |

= 1.

Therefore the power series converges on (−1,1), in particular, on [0,1). When x = 1, the
power series becomes

∞
ÿ

k=1

(−1)k
1
k
,

which also converges by Alternating Series Test, thus we are done.

(b) (i) We try to use Abel’s Limit Theorem. Firstly we write the series as the
standard form of power series as follows

∞
ÿ

k=1

(x−2)k

2k k
,

its radius of convergence is 2, hence it converges on (0,4), thus on (0,2]. At x = 0, the
power series becomes

∞
ÿ

k=1

(−1)k

k
,

which also converges by Alternating Series Test, so by Abel’s Limit Theorem, done.
(ii) This time we cannot use Abel’s Limit Theorem directly because the series is

not a power series, as k +
√

5 6∈ N for every k. We observe that

∞
ÿ

k=1

(−1)k
(2− x)k+

√
5

2k k
= (2− x)

√
5︸ ︷︷ ︸

bounded on [0, 2]

∞
ÿ

k=1

(−1)k
(2− x)k

2k k︸ ︷︷ ︸
converges uniformly by part (a)

,

by Bounded Multiplier Property, done.

Exercise 4. It is given 1/(1+ x2) =
ř∞

n=0(−1)n x2n for x ∈ (−1,1), prove that

∞
ÿ

n=0

(−1)n

2n+1
=
π

4
.

Exercise 5. Show that

1−
1
5
+

1
9
−

1
13
+ · · · =

1
4
√

2
(π+2ln(

√
2+1)).

Exercise 6. Dini’s Theorem is difficult to use since the pointwise limit of a sequence
of functions is rarely computable explicitly. One possible application can be seen in
Practice Exercise 72 in the lecture notes of this course.

Show that in Dini’s Theorem, the condition (i) that fn is pointwise increasing cannot
be removed.


