- how to apply the rigorous definition of continuity to solve problems;
- how to relate the concepts of continuity to limit of sequences;
- how to judge the existence of continuous functions satisfying certain properties, with the help of properties of continuous functions we know: Theorem $3 \sim 8$.
Key definitions and results

Definition 1 (Limit of Functions). Let $f(x)$ be a function on S. For $x_{0} \in \mathbb{R}$, we say that $\lim _{x \rightarrow x_{0}} f(x)=L$ if we have

$$
\forall \epsilon>0, \exists \delta>0 \quad \text { s.t. } \quad 0<\left|x-x_{0}\right|<\delta \Longrightarrow|f(x)-L|<\epsilon
$$

Definition 2 (Continuity). A function $f(x)$ on S is said to be continuous at $x_{0} \in S$ if we have

$$
\forall \epsilon>0, \exists \delta>0 \quad \text { s.t. } \quad\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

Remark. In Definition 2 we require $x_{0} \in S$ while in Definition 1 , x_{0} needs not lie in S This is the only difference of the two definitions. Moreover, we implicitly require $x \in S$ in both definitions, we may write $\lim _{S \ni x \rightarrow x_{0}}$ for emphasis when taking limit.

Remark. The two sided limits are similarly defined with an obvious modification of Definition 1, we omit them for saving space.

Theorem 3 (Sequential Continuity). $f: S \rightarrow \mathbb{R}$ is continuous at $x_{0} \in S$ if and only if for every $\left\{x_{n}\right\}$ s.t. $x_{n} \rightarrow x_{0}$ in $S, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$.

Theorem 4 (Sign Preserving Property). If $g: S \rightarrow \mathbb{R}$ is continuous, $g\left(x_{0}\right)>0$, then there is an interval $I=\left(x_{0}-\delta, x_{0}+\delta\right)$ with $\delta>0$ such that

$$
g>0 \quad \text { on } S \cap I
$$

The case $g\left(x_{0}\right)<0$ is similar by considering $-g$.
Theorem 5 (Intermediate Value). If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and y_{0} is between $f(a)$ and $f(b)$, then there is an $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)=y_{0}$.

Theorem 6 (Extreme Value). If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then there are $x_{1}, x_{2} \in$ $[a, b]$, such that

$$
f\left(x_{1}\right)=\max _{x \in[a, b]} f(x) \quad \text { and } \quad f\left(x_{2}\right)=\min _{x \in[a, b]} f(x)
$$

Theorem 7 (Continuous Injection). If $f(x)$ is continuous and injective on $[a, b]$, then $f(x)$ is strictly monotone on $[a, b]$ and

$$
f([a, b])=[f(a), f(b)] \text { or }[f(b), f(a)]
$$

Theorem 8 (Continuous Inverse). If f is continuous and injective on $[a, b]$, then f^{-1} is continuous on $f([a, b])$.

Example 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function given by

$$
f(x)= \begin{cases}1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q} .\end{cases}
$$

Show that f is nowhere continuous.

Sol Recall that a function $f: S \rightarrow \mathbb{R}$ is continuous at $x_{0} \in S$ if and only if for every sequence $\left\{x_{n}\right\} \rightarrow x_{0}$ in $S, f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$.
To show $f(x)$ is discontinuous at x_{0}, it is enough to show there are two sequences converging to x_{0}, but their images converge to different limits.

Specifically, by density of \mathbb{Q} there are $r_{n} \in \mathbb{Q}, r_{n} \rightarrow x_{0}$.
Similarly, by density of $\mathbb{R} \backslash \mathbb{Q}$, there are $w_{n} \in \mathbb{R} \backslash \mathbb{Q}, w_{n} \rightarrow x_{0}$.
Since $f\left(r_{n}\right) \rightarrow 1$ and $f\left(w_{n}\right) \rightarrow 0$, their images have different limits, so $f(x)$ is discontinuous at x_{0}.

Example 2 ($\epsilon-\delta$ Definition). Prove each of the following using the $\boldsymbol{\epsilon} \boldsymbol{-} \boldsymbol{\delta}$ defini-

 tion of continuity(a) Show that $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\sqrt{|x+3|}$ is continuous on \mathbb{R}.
(b) Show that $g: \mathbb{R} \rightarrow \mathbb{R}$ given by $g(x)=x^{3}$ is continuous on \mathbb{R}

Sol (a) Let $x_{0} \in \mathbb{R}$, we show that $f(x)$ is continuous at x_{0}.
For this, we analyse the expression $\left|f(x)-f\left(x_{0}\right)\right|$, which satisfies

$$
\left|f(x)-f\left(x_{0}\right)\right|=\mid \sqrt{|x+3|}-\sqrt{\left|x_{0}+3\right| \mid} \leq \sqrt{\left||x+3|-\left|x_{0}+3\right|\right|} \leq \sqrt{\left|x-x_{0}\right|},
$$

therefore by choosing $\delta=\epsilon^{2}$, we have

$$
\left|x-x_{0}\right|<\delta=\epsilon^{2} \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right| \leq \sqrt{\epsilon^{2}}=\epsilon
$$

Remark. For people who have slightly advanced knowledge, one may guess $f(x)$ is uniformly continuous, this is indeed true! We shall come back to this later.
(b) Let $x_{0} \in \mathbb{R}$, we analyse $\left|g(x)-g\left(x_{0}\right)\right|=\left|x-x_{0} \| x^{2}+x x_{0}+x_{0}^{2}\right|$.

We expect when x is close to $x_{0}, x-x_{0} \rightarrow 0$, but $\left|x^{2}+x x_{0}+x_{0}^{2}\right|$ can be large, and small \times big can be big! We need to be careful in using the $\epsilon-\delta$ definition.

Indeed the term $\left|x^{2}+x x_{0}+x_{0}^{2}\right|$ causes no trouble even it is large!
The choice of x_{0} is fixed, it cannot be arbitrarily large.
As x is supposed to be close to x_{0}, let's say when $\left|x-x_{0}\right|<1$, we have $|x|<1+\left|x_{0}\right|$, $|x|$ cannot be arbitrarily large when $\left|x-x_{0}\right|<1$, so the whole term

$$
\left|x^{2}+x x_{0}+x_{0}^{2}\right|
$$

cannot be arbitrarily large as by triangle inequality thrice it has a bound

$$
\left(1+\left|x_{0}\right|\right)^{2}+\left(1+\left|x_{0}\right|\right)\left|x_{0}\right|+\left|x_{0}\right|^{2}=: C\left(x_{0}\right)
$$

when $\left|x-x_{0}\right|<1$, where $C\left(x_{0}\right)$ is a constant depending on x_{0}, which is really a constant since x_{0} is fixed.

Now for every $\delta<1$, we have

$$
\left|x-x_{0}\right|<\delta \Longrightarrow\left|g(x)-g\left(x_{0}\right)\right|<\delta C\left(x_{0}\right),
$$

$$
\delta=\min \left\{1, \epsilon / C\left(x_{0}\right)\right\}
$$

such that

$$
\left|x-x_{0}\right|<\delta \Longrightarrow\left|g(x)-g\left(x_{0}\right)\right|<\epsilon .
$$

Example 3.

(a) Can there be a continuous function $f(x)$ from $(0,1)$ onto $[0,1]$?
(b) Can there be a continuous function $g(x)$ from $[0,1]$ onto $(0,1)$?

Sol (a) Yes, $f(x)=\frac{1}{2} \sin (\pi x)+\frac{1}{2}$ is such a function.
(b) No, there can't be such a function.

Suppose a function $g:[0,1] \rightarrow(0,1)$ is onto and continuous, then for every $n \geq 2, \frac{1}{n} \in(0,1)$ and there is an $x_{n} \in[0,1]$ (by surjectivity) such that

$$
f\left(x_{n}\right)=\frac{1}{n} .
$$

Although $\frac{1}{n}$ converges, we cannot judge the convergence of $\left\{x_{n}\right\}$.
Fortunately, by Bolzano-Weierstrass (B-W) Theorem there is a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightarrow a$ for some $a \in[0,1]$. Therefore for every k,

$$
f\left(x_{n_{k}}\right)=\frac{1}{n_{k}},
$$

if we take $k \rightarrow \infty$, then by Sequential Continuity Theorem,

$$
f(a)=0,
$$

a contradiction. This solution is somewhat a copy of Extreme Value Theorem.
Alternatively, if f is continuous and onto, then $f([0,1])=(0,1)$ has a maximum and minimum by Extreme Value Theorem, this is impossible.

Remark. By homework 1 there is a bijection from $[0,1]$ to $(0,1]$, but there can't be continuous bijection map from $[0,1]$ to $(0,1]$ since $(0,1]$ has no minimum.

Example 4 (Presentation Exercise 62). If $f(x)=x^{3}$, then $f(f(x))=x^{9}$. Is there a contniuous function $g:[-1,1] \rightarrow[-1,1]$ such that

$$
g(g(x))=-x^{9}
$$

for every $x \in[-1,1]$?

Sol Let's suppose such $g:[-1,1] \rightarrow[-1,1]$ exists and derive a contradiction.
First, let's observe g must be injective. Suppose that $g(x)=g(y)$, then $g(g(x))=g(g(y))$, therefore $-x^{9}=-y^{9}$, and thus $x=y$.

By Continuous Injection Theorem, g must be strictly monotone, but this leads us to a contradiction by considering the following cases.
Case 1. Suppose that $g(x)$ is strictly increasing, then

$$
x>y \Longrightarrow g(x)>g(y) \Longrightarrow g \circ g(x)>g \circ g(y)
$$

therefore $g \circ g(x)=-x^{9}$ is strictly increasing, a contradiction.
Case 2. Similarly, if $g(x)$ is strictly decreasing, then

$$
x>y \Longrightarrow g(x)<g(y) \Longrightarrow g \circ g(x)>g \circ g(y)
$$

so $g \circ g(x)$ is strictly increasing, again a contradiction.
Combining two cases above, we conclude that such g cannot exist.

Example 5 (Mean-Value Theorem for Integrals). Let $f(x)$ be continuous on $[a, b]$ and $g(x) \geq 0$ be integrable on $[a, b]$. Show that there is $c \in[a, b]$ such that

$$
\int_{a}^{b} f(x) g(x) d x=f(c) \int_{a}^{b} g(x) d x
$$

Sol Let $m=\min _{x \in[a, b]} f(x)$ and $M=\max _{x \in[a, b]} f(x)$, such min and max exist by Extreme Value Theorem.

Since $g(x) \geq 0$, direct comparison gives

$$
\begin{equation*}
m \int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) g(x) d x \leq M \int_{a}^{b} g(x) d x \tag{*}
\end{equation*}
$$

Case 1. Suppose that $\int_{a}^{b} g(x) d x>0$, then

$$
m \leq \frac{\int_{a}^{b} f(x) g(x) d x}{\int_{a}^{b} g(x) d x} \leq M,
$$

and therefore by Intermediate Value Theorem, there is $c \in[a, b]$ such that

$$
\frac{\int_{a}^{b} f(x) g(x) d x}{\int_{a}^{b} g(x) d x}=f(c) .
$$

Case 2. Suppose that $\int_{a}^{b} g(x) d x=0$, then the method in case 1 fails since we cannot divide a number by zero, but by (*) we have

$$
\int_{a}^{b} f(x) g(x) d x=0
$$

therefore there is $c \in[a, b]$ such that $\int_{a}^{b} f(x) g(x) d x=0=f(c) \int_{a}^{b} g(x) d x$. Any choice $c \in[a, b]$ will do.

Exercises

1. Let $f:[0,1] \rightarrow[0,1]$ be continuous, show that there must be an $x_{0} \in[0,1]$ such that $f\left(x_{0}\right)=x_{0}$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous function such that $f(r+1 / n)=f(r)$ for all $r \in \mathbb{Q}$ and $n \in \mathbb{N}$. Prove that f is a constant function.
3. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be two continuous functions with

$$
\sup _{x \in[a, b]} f(x)=M=\sup _{x \in[a, b]} g(x) .
$$

Show that there is $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)=g\left(x_{0}\right)$.
4. Prove there is no differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(f(x))=x^{2}-3 x+3
$$

Hint: Consider fixed points and apply chain rule for differentiation.
5. Let $f:[a, b] \rightarrow \mathbb{R}$ be Hölder's continuous of order $\alpha>0$, i.e., there is a constant L such that

$$
|f(x)-f(y)| \leq L|x-y|^{\alpha} \quad \text { for all } x, y \in[a, b] .
$$

Show that if $\alpha>1$, then $f(x)$ must be a constant function.
Remark. Therefore the requirement $\alpha \in(0,1]$ is always imposed to rule out such triviality. When $\alpha=1, f(x)$ is said to be Lipchitz continuous and L is called a Lipscthiz constant
6. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Suppose for every $x \in[a, b]$ there is a $y \in[a, b]$ such that $|f(y)| \leq \frac{1}{2}|f(x)|$, prove that $f(c)=0$ for some $c \in[a, b]$.
7. Let $f(x)$ be continuous on $[0,1]$ with $f(0)=f(1)$. Show that for each $n \in \mathbb{N}$, there is a $\zeta \in[0,1-1 / n]$ such that $f(\zeta+1 / n)=f(\zeta)$.
8. Let $f(x)$ be continuous on $[a, b]$. Show that $M:[a, b] \rightarrow \mathbb{R}$ defined by $M(x):=$ $\sup \{f(t): a \leq t \leq x\}$ is continuous on $[a, b]$.
9. (2006 Spring) Let $f(x), g(x):[0,1] \rightarrow \mathbb{R}$ be continuous. If there are $x_{1}, x_{2}, \cdots \in$ $[0,1]$ such that $g\left(x_{n}\right)=f\left(x_{n+1}\right)$, prove that there is $w \in[0,1]$ such that $g(w)=f(w)$.
Caution: $\left\{x_{n_{i}}\right\}$ converges does not imply $\left\{x_{n_{i}+1}\right\}$ converges.
10. Let $f, g:[0,1] \rightarrow[0,1]$ be continuous functions such that $f(g(x))=g(f(x))$ for every $x \in[0,1]$. Prove that $f(x)=g(x)$ must have a solution.

