Math2033 Mathematical Analysis (Spring 2013-2014) Tutorial Note 5

Continuous Functions

— We need to know —

- how to apply the rigorous definition of continuity to solve problems;
- how to relate the concepts of continuity to limit of sequences;
- how to judge the existence of continuous functions satisfying certain properties, with the help of properties of continuous functions we know: Theorem $3 \sim 8$.

Key definitions and results —

Definition 1 (Limit of Functions). Let f(x) be a function on *S*. For $x_0 \in \mathbb{R}$, we say that $\lim_{x \to x_0} f(x) = L$ if we have

 $\forall \epsilon > 0, \exists \delta > 0 \quad \text{s.t.} \quad 0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon.$

Definition 2 (Continuity). A function f(x) on S is said to be **continuous at** $x_0 \in S$ if we have

 $\forall \epsilon > 0, \exists \delta > 0 \quad \text{s.t.} \quad |x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon.$

- **Remark.** In Definition 2 we require $x_0 \in S$ while in Definition 1, x_0 needs not lie in S! This is the only difference of the two definitions. Moreover, we implicitly require $x \in S$ in both definitions, we may write $\lim_{S \to x \to x_0}$ for emphasis when taking limit.
- **Remark.** The two sided limits are similarly defined with an obvious modification of Definition 1, we omit them for saving space.
- **Theorem 3 (Sequential Continuity).** $f: S \to \mathbb{R}$ is continuous at $x_0 \in S$ if and only if for every $\{x_n\}$ s.t. $x_n \to x_0$ in S, $\lim_{n\to\infty} f(x_n) = f(x_0)$.

Theorem 4 (Sign Preserving Property). If $g : S \to \mathbb{R}$ is continuous, $g(x_0) > 0$, then there is an interval $I = (x_0 - \delta, x_0 + \delta)$ with $\delta > 0$ such that

g > 0 on $S \cap I$.

The case $g(x_0) < 0$ is similar by considering -g.

Theorem 5 (Intermediate Value). If $f : [a,b] \to \mathbb{R}$ is continuous and y_0 is between f(a) and f(b), then there is an $x_0 \in [a,b]$ such that $f(x_0) = y_0$.

Theorem 6 (Extreme Value). If $f : [a,b] \to \mathbb{R}$ is continuous, then there are $x_1, x_2 \in [a,b]$, such that

$$f(x_1) = \max_{x \in [a,b]} f(x)$$
 and $f(x_2) = \min_{x \in [a,b]} f(x)$.

Theorem 7 (Continuous Injection). If f(x) is continuous and injective on [a,b], then f(x) is strictly monotone on [a,b] and

$$f([a,b]) = [f(a), f(b)] \text{ or } [f(b), f(a)].$$

Theorem 8 (Continuous Inverse). If f is continuous and injective on [a,b], then f^{-1} is continuous on f([a,b]).

Example 1. Let $f : \mathbb{R} \to \mathbb{R}$ be a function given by

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q}. \end{cases}$$

Show that *f* is **nowhere** continuous.

Sol Recall that a function $f : S \to \mathbb{R}$ is continuous at $x_0 \in S$ if and only if for every sequence $\{x_n\} \to x_0$ in S, $f(x_n) \to f(x_0)$.

To show f(x) is discontinuous at x_0 , it is enough to show there are two sequences converging to x_0 , but their images converge to different limits.

Specifically, by density of \mathbb{Q} there are $r_n \in \mathbb{Q}$, $r_n \to x_0$.

Similarly, by density of $\mathbb{R} \setminus \mathbb{Q}$, there are $w_n \in \mathbb{R} \setminus \mathbb{Q}$, $w_n \to x_0$.

Since $f(r_n) \to 1$ and $f(w_n) \to 0$, their images have different limits, so f(x) is discontinuous at x_0 .

Example 2 (ϵ - δ **Definition**). Prove each of the following using the ϵ - δ definition of continuity:

- (a) Show that $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \sqrt{|x+3|}$ is continuous on \mathbb{R} .
- (b) Show that $g : \mathbb{R} \to \mathbb{R}$ given by $g(x) = x^3$ is continuous on \mathbb{R}

<u>Sol</u> (a) Let $x_0 \in \mathbb{R}$, we show that f(x) is continuous at x_0 .

For this, we analyse the expression $|f(x) - f(x_0)|$, which satisfies

$$|f(x) - f(x_0)| = |\sqrt{|x+3|} - \sqrt{|x_0+3|} \le \sqrt{\left||x+3| - |x_0+3|\right|} \le \sqrt{|x-x_0|},$$

therefore by choosing $\delta = \epsilon^2$, we have

$$|x - x_0| < \delta = \epsilon^2 \implies |f(x) - f(x_0)| \le \sqrt{\epsilon^2} = \epsilon.$$

Remark. For people who have slightly advanced knowledge, one may guess f(x) is **uniformly continuous**, this is indeed true! We shall come back to this later.

(**b**) Let $x_0 \in \mathbb{R}$, we analyse $|g(x) - g(x_0)| = |x - x_0||x^2 + xx_0 + x_0^2|$.

We expect when x is close to $x_0, x - x_0 \rightarrow 0$, but $|x^2 + xx_0 + x_0^2|$ can be large, and small \times big can be big! We need to be careful in using the ϵ - δ definition.

Indeed the term $|x^2 + xx_0 + x_0^2|$ causes no trouble even it is large!

The choice of x_0 is fixed, it cannot be arbitrarily large.

As x is supposed to be close to x_0 , let's say when $|x - x_0| < 1$, we have $|x| < 1 + |x_0|$, |x| cannot be arbitrarily large when $|x - x_0| < 1$, so the whole term

$$|x^2 + xx_0 + x_0^2|$$

cannot be arbitrarily large as by triangle inequality thrice it has a bound

$$(1+|x_0|)^2 + (1+|x_0|)|x_0| + |x_0|^2 =: C(x_0)$$

when $|x - x_0| < 1$, where $C(x_0)$ is a constant depending on x_0 , which is really a constant since x_0 is fixed.

Now for every $\delta < 1$, we have

$$|x - x_0| < \delta \implies |g(x) - g(x_0)| < \delta C(x_0)$$

Therefore for every $\epsilon > 0$, we may choose

 $\delta = \min\{1, \epsilon/C(x_0)\}$

such that

$$|x - x_0| < \delta \implies |g(x) - g(x_0)| < \epsilon.$$

Example 3.

- (a) Can there be a continuous function f(x) from (0,1) onto [0,1]?
- (b) Can there be a continuous function g(x) from [0, 1] **onto** (0, 1)?

<u>Sol</u> (a) Yes, $f(x) = \frac{1}{2}\sin(\pi x) + \frac{1}{2}$ is such a function.

(**b**) No, there can't be such a function.

Suppose a function $g : [0,1] \to (0,1)$ is onto and continuous, then for every $n \ge 2$, $\frac{1}{n} \in (0,1)$ and there is an $x_n \in [0,1]$ (by surjectivity) such that

$$f(x_n) = \frac{1}{n}$$

Although $\frac{1}{n}$ converges, we cannot judge the convergence of $\{x_n\}$.

Fortunately, by Bolzano-Weierstrass (B-W) Theorem there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \rightarrow a$ for some $a \in [0, 1]$. Therefore for every k,

$$f(x_{n_k}) = \frac{1}{n_k},$$

if we take $k \to \infty$, then by Sequential Continuity Theorem,

f(a) = 0,

a contradiction. This solution is somewhat a copy of Extreme Value Theorem.

Alternatively, if f is continuous and onto, then f([0,1]) = (0,1) has a maximum and minimum by Extreme Value Theorem, this is impossible.

Remark. By homework 1 there is a bijection from [0,1] to (0,1], but there **can't be** <u>continuous</u> bijection map from [0,1] to (0,1] since (0,1] has no minimum.

Example 4 (Presentation Exercise 62). If $f(x) = x^3$, then $f(f(x)) = x^9$. Is there a continuous function $g : [-1,1] \rightarrow [-1,1]$ such that

 $g(g(x)) = -x^9$

for every $x \in [-1, 1]$?

<u>Sol</u> Let's suppose such $g: [-1,1] \rightarrow [-1,1]$ exists and derive a contradiction.

First, let's observe g must be injective. Suppose that g(x) = g(y), then g(g(x)) = g(g(y)), therefore $-x^9 = -y^9$, and thus x = y.

By Continuous Injection Theorem, g must be strictly monotone, but this leads us to a contradiction by considering the following cases.

Case 1. Suppose that g(x) is strictly increasing, then

$$x > y \implies g(x) > g(y) \implies g \circ g(x) > g \circ g(y),$$

therefore $g \circ g(x) = -x^9$ is strictly increasing, a contradiction.

Case 2. Similarly, if g(x) is strictly decreasing, then

$$x > y \implies g(x) < g(y) \implies g \circ g(x) > g \circ g(y),$$

so $g \circ g(x)$ is strictly increasing, again a contradiction.

Combining two cases above, we conclude that such g cannot exist.

Example 5 (Mean-Value Theorem for Integrals). Let f(x) be continuous on [a,b] and $g(x) \ge 0$ be integrable on [a,b]. Show that there is $c \in [a,b]$ such that

$$\int_{a}^{b} f(x)g(x)\,dx = f(c)\int_{a}^{b} g(x)\,dx.$$

<u>Sol</u> Let $m = \min_{x \in [a,b]} f(x)$ and $M = \max_{x \in [a,b]} f(x)$, such min and max exist by Extreme Value Theorem.

Since $g(x) \ge 0$, direct comparison gives

$$m\int_{a}^{b} g(x)dx \le \int_{a}^{b} f(x)g(x)dx \le M\int_{a}^{b} g(x)dx.$$
(*)

Case 1. Suppose that $\int_{a}^{b} g(x) dx > 0$, then

$$m \le \frac{\int_{a}^{b} f(x)g(x)dx}{\int_{a}^{b} g(x)dx} \le M$$

and therefore by Intermediate Value Theorem, there is $c \in [a, b]$ such that

$$\frac{\int_{a}^{b} f(x)g(x)dx}{\int_{a}^{b} g(x)dx} = f(c).$$

Case 2. Suppose that $\int_{a}^{b} g(x) dx = 0$, then the method in case 1 fails since we cannot divide a number by zero, but by (*) we have

$$\int_{a}^{b} f(x)g(x)\,dx = 0,$$

therefore there is $c \in [a,b]$ such that $\int_a^b f(x)g(x) dx = 0 = f(c) \int_a^b g(x) dx$. Any choice $c \in [a,b]$ will do.

Exercises

- **1.** Let $f : [0,1] \rightarrow [0,1]$ be continuous, show that there must be an $x_0 \in [0,1]$ such that $f(x_0) = x_0$.
- Let f: R → R be continuous function such that f(r+1/n) = f(r) for all r ∈ Q and n ∈ N. Prove that f is a constant function.
- **3.** Let $f, g : [a, b] \to \mathbb{R}$ be two continuous functions with

 $\sup_{x\in[a,b]}f(x)=M=\sup_{x\in[a,b]}g(x).$

Show that there is $x_0 \in [a, b]$ such that $f(x_0) = g(x_0)$.

4. Prove there is no differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(f(x)) = x^2 - 3x + 3.$$

Hint: Consider fixed points and apply chain rule for differentiation.

5. Let $f : [a,b] \to \mathbb{R}$ be **Hölder's continuous** of order $\alpha > 0$, i.e., there is a constant *L* such that

$$|f(x) - f(y)| \le L|x - y|^{\alpha}$$
 for all $x, y \in [a, b]$.

Show that if $\alpha > 1$, then f(x) must be a constant function.

Remark. Therefore the requirement $\alpha \in (0, 1]$ is always imposed to rule out such triviality. When $\alpha = 1$, f(x) is said to be **Lipchitz continuous** and *L* is called a **Lipscthiz constant**.

- **6.** Let $f : [a,b] \to \mathbb{R}$ be continuous. Suppose for every $x \in [a,b]$ there is a $y \in [a,b]$ such that $|f(y)| \le \frac{1}{2} |f(x)|$, prove that f(c) = 0 for some $c \in [a,b]$.
- **7.** Let f(x) be continuous on [0,1] with f(0) = f(1). Show that for each $n \in \mathbb{N}$, there is a $\zeta \in [0, 1-1/n]$ such that $f(\zeta + 1/n) = f(\zeta)$.
- **8.** Let f(x) be continuous on [a,b]. Show that $M : [a,b] \to \mathbb{R}$ defined by $M(x) := \sup\{f(t) : a \le t \le x\}$ is continuous on [a,b].
- 9. (2006 Spring) Let f(x), g(x): [0,1] → R be continuous. If there are x₁, x₂, ... ∈ [0,1] such that g(x_n) = f(x_{n+1}), prove that there is w ∈ [0,1] such that g(w) = f(w). Caution: {x_{n_i}} converges does not imply {x_{n_i+1}} converges.
- **10.** Let $f,g:[0,1] \rightarrow [0,1]$ be continuous functions such that f(g(x)) = g(f(x)) for every $x \in [0,1]$. Prove that f(x) = g(x) must have a solution.