
Math2033 Mathematical Analysis (Spring 2013-2014) Tutorial Note 5

Continuous Functions

We need to know

• how to apply the rigorous definition of continuity to solve problems;

• how to relate the concepts of continuity to limit of sequences;

• how to judge the existence of continuous functions satisfying certain properties,
with the help of properties of continuous functions we know: Theorem 3 ∼ 8.

Key definitions and results

Definition 1 (Limit of Functions). Let f (x) be a function on S. For x0 ∈R, we say
that lim

x→x0
f (x) = L if we have

∀ε > 0,∃δ > 0 s.t. 0 < |x− x0| < δ Ô⇒ | f (x)− L| < ε .

Definition 2 (Continuity). A function f (x) on S is said to be continuous at xxx000 ∈∈∈ SSS
if we have

∀ε > 0,∃δ > 0 s.t. |x− x0| < δ Ô⇒ | f (x)− f (x0)| < ε .

Remark. In Definition 2 we require x0 ∈ S while in Definition 1, x0 needs not lie in S!
This is the only difference of the two definitions. Moreover, we implicitly require
xxx ∈∈∈ SSS in both definitions, we may write limS3x→x0 for emphasis when taking limit.

Remark. The two sided limits are similarly defined with an obvious modification of Def-
inition 1, we omit them for saving space.

Theorem 3 (Sequential Continuity). f : S→R is continuous at x0 ∈ S if and only
if for every {xn} s.t. xn → x0 in S, limn→∞ f (xn) = f (x0).

Theorem 4 (Sign Preserving Property). If g : S → R is continuous, g(x0) > 0,
then there is an interval I = (x0− δ, x0+ δ) with δ > 0 such that

g > 0 on S∩ I.

The case g(x0) < 0 is similar by considering −g.

Theorem 5 (Intermediate Value). If f : [a, b]→R is continuous and y0 is between
f (a) and f (b), then there is an x0 ∈ [a, b] such that f (x0) = y0.

Theorem 6 (Extreme Value). If f : [a, b]→R is continuous, then there are x1, x2 ∈

[a, b], such that

f (x1) = max
x∈[a,b]

f (x) and f (x2) = min
x∈[a,b]

f (x).

Theorem 7 (Continuous Injection). If f (x) is continuous and injective on [a, b],
then f (x) is strictly monotone on [a, b] and

f ([a, b]) = [ f (a), f (b)] or [ f (b), f (a)].

Theorem 8 (Continuous Inverse). If f is continuous and injective on [a, b], then
f −1 is continuous on f ([a, b]).

Example 1. Let f : R→ R be a function given by

f (x) =

{
1, x ∈Q,
0, x 6∈Q.

Show that f is nowhere continuous.

Sol Recall that a function f : S→ R is continuous at x0 ∈ S if and only if for every sequence
{xn} → x0 in S, f (xn)→ f (x0).

To show f (x) is discontinuous at x0, it is enough to show there are two sequences converg-
ing to x0, but their images converge to different limits.

Specifically, by density of Q there are rn ∈Q, rn → x0.

Similarly, by density of R \Q, there are 4n ∈ R \Q, 4n → x0.

Since f (rn)→ 1 and f (4n)→ 0, their images have different limits, so f (x) is discontinuous
at x0.



Example 2 (ε-δ Definition). Prove each of the following using the εεε-δδδ defini-
tion of continuity:

(a) Show that f : R→ R given by f (x) =
√
|x+3| is continuous on R.

(b) Show that g : R→ R given by g(x) = x3 is continuous on R

Sol (a) Let x0 ∈ R, we show that f (x) is continuous at x0.

For this, we analyse the expression | f (x)− f (x0)|, which satisfies

| f (x)− f (x0)| = |
√
|x+3| −

√
|x0 +3|| ≤

√∣∣|x+3| − |x0 +3|
∣∣ ≤√|x− x0|,

therefore by choosing δ = ε2, we have

|x− x0| < δ = ε
2 Ô⇒ | f (x)− f (x0)| ≤

√
ε2 = ε .

Remark. For people who have slightly advanced knowledge, one may guess f (x) is
uniformly continuous, this is indeed true! We shall come back to this later.

(b) Let x0 ∈ R, we analyse |g(x)−g(x0)| = |x− x0||x2 + xx0 + x2
0|.

We expect when x is close to x0, x− x0→ 0, but |x2+ xx0+ x2
0| can be large, and small ×

big can be big! We need to be careful in using the ε-δ definition.

Indeed the term |x2 + xx0 + x2
0| causes no trouble even it is large!

The choice of x0 is fixed, it cannot be arbitrarily large.

As x is supposed to be close to x0, let’s say when |x − x0| < 1, we have |x| < 1+ |x0|, |x|
cannot be arbitrarily large when |x− x0| < 1, so the whole term

|x2 + xx0 + x2
0|

cannot be arbitrarily large as by triangle inequality thrice it has a bound

(1+ |x0|)2 + (1+ |x0|)|x0|+ |x0|
2 =: C(x0)

when |x − x0| < 1, where C(x0) is a constant depending on x0, which is really a constant
since x0 is fixed.

Now for every δ < 1, we have

|x− x0| < δ Ô⇒ |g(x)−g(x0)| < δC(x0),

Therefore for every ε > 0, we may choose

δ =min{1, ε/C(x0)}

such that
|x− x0| < δ Ô⇒ |g(x)−g(x0)| < ε .



Example 3.

(a) Can there be a continuous function f (x) from (0,1) onto [0,1]?

(b) Can there be a continuous function g(x) from [0,1] onto (0,1)?

Sol (a) Yes, f (x) = 1
2 sin(πx)+ 1

2 is such a function.

(b) No, there can’t be such a function.

Suppose a function g : [0,1]→ (0,1) is onto and continuous, then for every n ≥ 2, 1
n ∈ (0,1)

and there is an xn ∈ [0,1] (by surjectivity) such that

f (xn) =
1
n

.

Although 1
n converges, we cannot judge the convergence of {xn}.

Fortunately, by Bolzano-Weierstrass (B-W) Theorem there is a subsequence {xnk } of {xn}
such that xnk → a for some a ∈ [0,1]. Therefore for every k,

f (xnk ) =
1

nk
,

if we take k →∞, then by Sequential Continuity Theorem,

f (a) = 0,

a contradiction. This solution is somewhat a copy of Extreme Value Theorem.

Alternatively, if f is continuous and onto, then f ([0,1]) = (0,1) has a maximum and min-
imum by Extreme Value Theorem, this is impossible.

Remark. By homework 1 there is a bijection from [0,1] to (0,1], but there can’t be
continuous bijection map from [0,1] to (0,1] since (0,1] has no minimum.

Example 4 (Presentation Exercise 62). If f (x) = x3, then f ( f (x)) = x9. Is
there a contniuous function g : [−1,1]→ [−1,1] such that

g(g(x)) = −x9

for every x ∈ [−1,1]?

Sol Let’s suppose such g : [−1,1]→ [−1,1] exists and derive a contradiction.

First, let’s observe g must be injective. Suppose that g(x) = g(y), then g(g(x)) = g(g(y)),
therefore −x9 = −y9, and thus x = y.

By Continuous Injection Theorem, g must be strictly monotone, but this leads us to a
contradiction by considering the following cases.

Case 1. Suppose that g(x) is strictly increasing, then

x > y Ô⇒ g(x) > g(y) Ô⇒ g ◦g(x) > g ◦g(y),

therefore g ◦g(x) = −x9 is strictly increasing, a contradiction.

Case 2. Similarly, if g(x) is strictly decreasing, then

x > y Ô⇒ g(x) < g(y) Ô⇒ g ◦g(x) > g ◦g(y),

so g ◦g(x) is strictly increasing, again a contradiction.

Combining two cases above, we conclude that such g cannot exist.



Example 5 (Mean-Value Theorem for Integrals). Let f (x) be continuous
on [a, b] and g(x) ≥ 0 be integrable on [a, b]. Show that there is c ∈ [a, b] such
that ∫ b

a
f (x)g(x) dx = f (c)

∫ b

a
g(x) dx.

Sol Let m = minx∈[a,b] f (x) and M = maxx∈[a,b] f (x), such min and max exist by Extreme
Value Theorem.

Since g(x) ≥ 0, direct comparison gives

m
∫ b

a

g(x) dx ≤
∫ b

a

f (x)g(x) dx ≤ M
∫ b

a

g(x) dx. (∗)

Case 1. Suppose that
∫ b

a
g(x) dx > 0, then

m ≤

∫ b

a
f (x)g(x) dx∫ b

a
g(x) dx

≤ M ,

and therefore by Intermediate Value Theorem, there is c ∈ [a, b] such that∫ b

a
f (x)g(x) dx∫ b

a
g(x) dx

= f (c).

Case 2. Suppose that
∫ b

a
g(x) dx = 0, then the method in case 1 fails since we cannot divide

a number by zero, but by (∗) we have∫ b

a

f (x)g(x) dx = 0,

therefore there is c ∈ [a, b] such that
∫ b

a
f (x)g(x) dx = 0 = f (c)

∫ b

a
g(x) dx. Any choice

c ∈ [a, b] will do.

Exercises

1. Let f : [0,1]→ [0,1] be continuous, show that there must be an x0 ∈ [0,1] such
that f (x0) = x0.

2. Let f : R→R be continuous function such that f (r +1/n) = f (r) for all r ∈Q and
n ∈ N. Prove that f is a constant function.

3. Let f ,g : [a, b]→ R be two continuous functions with

sup
x∈[a,b]

f (x) = M = sup
x∈[a,b]

g(x).

Show that there is x0 ∈ [a, b] such that f (x0) = g(x0).

4. Prove there is no differentiable function f : R→ R such that

f ( f (x)) = x2−3x+3.

Hint: Consider fixed points and apply chain rule for differentiation.

5. Let f : [a, b]→ R be Hölder’s continuous of order α > 0, i.e., there is a constant
L such that

| f (x)− f (y)| ≤ L|x− y|α for all x, y ∈ [a, b].

Show that if α > 1, then f (x) must be a constant function.

Remark. Therefore the requirement α ∈ (0,1] is always imposed to rule out such
triviality. When α = 1, f (x) is said to be Lipchitz continuous and L is called a
Lipscthiz constant.

6. Let f : [a, b]→ R be continuous. Suppose for every x ∈ [a, b] there is a y ∈ [a, b]

such that | f (y)| ≤
1
2
| f (x)|, prove that f (c) = 0 for some c ∈ [a, b].

7. Let f (x) be continuous on [0,1] with f (0) = f (1). Show that for each n ∈N, there
is a ζ ∈ [0,1−1/n] such that f (ζ +1/n) = f (ζ).

8. Let f (x) be continuous on [a, b]. Show that M : [a, b]→ R defined by M(x) :=
sup{ f (t) : a ≤ t ≤ x} is continuous on [a, b].

9. (2006 Spring) Let f (x),g(x) : [0,1]→ R be continuous. If there are x1, x2, · · · ∈
[0,1] such that g(xn)= f (xn+1), prove that there is 4 ∈ [0,1] such that g(4)= f (4).

Caution: {xni } converges does not imply {xni+1} converges.

10. Let f ,g : [0,1]→ [0,1] be continuous functions such that f (g(x)) = g( f (x)) for
every x ∈ [0,1]. Prove that f (x) = g(x) must have a solution.


