
Math3033 (Fall 2013-2014) Tutorial Note 5

Sequence and Series of Functions; Uniform and Nonuniform Convergence

Key Definitions and Results

Definition 1. A sequence of functions fn : E → R is said to converges pointwise
on EEE to a function fff ::: EEE→→→ R if for every x ∈ E,

lim
n→∞

fn(x) = f (x).

Definition 2. A sequence of functions fn : E→ R is said to converges uniformly
on EEE to a function fff ::: EEE→→→ R if

lim
n→∞
‖ fn − f ‖E := lim

n→∞

(
sup{| fn(x)− f (x)| : x ∈ E}

)
= 0.

In this case we denote fffnnn ⇒⇒⇒ fff on EEE, for short.

Equivalently, we say that fffnnn ⇒⇒⇒ fff on EEE if for every ε > 0, there is an N
such that

n > N Ô⇒ | fn(x)− f (x)| < ε for all x ∈ E.

Theorem 3. Consider the power series
ř∞

n=0 an(x− c)n , the number

R :=
1

limn→∞
n
√
|an |

is called the radius of convergence of
ř

aaannn(((xxx−−− ccc)))nnn . Define 1
0 =∞,

1
∞
= 0.

(i) If R = 0, the series converges at x = c and diverges elsewhere.

(ii) If 0 < R <∞, the series converges absolutely when |x−c| < R and diverges
when |x− c| > R.

(iii) If R =∞, the series converges absolutely on R.

Theorem 4 (M-test). Let gn : E→ R be a sequence of functions on E. Suppose:

(i) For each n there is an Mn ∈ R such that |gn(x)| ≤ Mn on E.

(ii)
ř∞

n=1 Mn converges.

Then
ř∞

n=1 gn(x) converges uniformly on E.

Theorem 5 (Uniform Cauchy Criterion). Let f1, f2,· · · : E → R be a sequence
of functions, then the following are equivalent:

(i) { fn} converges uniformly on E.

(ii) { fn} is uniformly Cauchy: For every ε > 0, there is an N such that

m,n > N Ô⇒ ‖ fm − fn‖E < ε.

Example 1. Let a0,a1,a2,· · · ∈ R.

(a) If
∞
ÿ

n=0

an xn converges at x0 6= 0, then it converges absolutely when |x| < |x0|.

(b) If
∞
ÿ

n=0

an xn diverges at x0 6= 0, then it diverges when |x| > |x0|.

Solution. (a) If
ř

an xn0 converges, then an xn0 is bounded. Let |an xn0 | ≤ M for all n, then
for every x s.t. |x| < |x0| we have

|an xn | =
∣∣∣∣an xn0

(
x
x0

)n∣∣∣∣ ≤ M
∣∣∣∣ x

x0

∣∣∣∣n ,
therefore since

ř

| xx0
|n converges,

ř

an xn converges by comparison test and absolute
convergence test.

(b) Let |x| > |x0|, if
ř

an xn converges, so does
ř

an xn0 by part (a), this is a contra-
diction.

Remark. In part (a) the series
ř

an xn converges uniformly on any [−r,r], r < |x0|, by M-
test. In fact for any 0 < r < |x0| it converges uniformly on [−r,|x0|] by Abel’s Limit
Theorem in the next tutorial.



Example 2. Find the radius of convergence R of the power series

∞
ÿ

n=0

n!
nn

xn .

Can the power series converge at x = ±R?

Solution. To find the radius of convergence we need to compute

lim n

√
n!
nn
.

Actually the limit exists, so lim = lim. To see this, recall that

lim
∣∣∣∣ an+1

an

∣∣∣∣ ≤ lim n
√
|an | ≤ lim n

√
|an | ≤ lim

∣∣∣∣ an+1

an

∣∣∣∣ ,
hence if the limit of the nth root of an is difficult to compute, let’s first try to compute the
limit of its ratio. If lim aaan+1///aaannn exists, then by the above inequality, so does lim n

√
an ,

moreover, lim n
√

an === lim aaan+1///aaannn .
Bearing this in mind, we have

lim
n→∞

(n+1)!
(n+1)n+1

/
n!
nn
= lim

n→∞

1
(1+ 1

n )n
=

1
e
Ô⇒ lim

n→∞

n

√
n!
nn
=

1
e
,

and thus the radius of convergence is R = e.
At the point x = ±R = ±e, note that |n!(±e)n/nn | = n!en/nn . By Stirling formula,

n! ∼
√

2πn
(n

e

)n
Ô⇒

n!en

nn
∼
√

2πn→∞,

therefore the power series diverges at x = ±e by term test.

Exercise 1. Find the radius of convergence for the following power series:

(a)
∞
ÿ

n=1

(−1)n
3n

n
xn ; (b)

∞
ÿ

n=1

xn

2n2 ; (c)
∞
ÿ

n=1

nn xn ; (d)
∞
ÿ

n=1

2n + (−1)n

n2 (x − 3)n ;

(e)
∞
ÿ

n=1

an

n+1
x2n ; (f)

∞
ÿ

n=1

(−1)n
(

n+1
n

)n2

xn
2
.

Exercise 2. Let {an} be a sequence of positive numbers such that
ř∞

n=0 an diverges.
Suppose also that

lim
n→∞

an

a0+ a1+ a2+ · · ·+ an
= 0,

show that the power series
ř∞

n=0 an xn has radius of convergence 1.

Example 3. Study the uniform convergence of

fn(x) =
nx

1+ n2x2

for n ≥ 1, on the interval (0,1) and (1,∞) respectively.

Solution. Easy to see that fn → 0 pointwise on (0,∞).
On (0,1), since

‖ fn −0‖(0,1) ≥

∣∣∣∣ fn(1
n

)∣∣∣∣ = 1
1+1

=
1
2
,

thus ‖ fn‖(0,1) 6⇒ 0.
On (1,∞), since for every x ∈ (1,∞),

| fn(x)−0| ≤
nx

n2x2 =
1

nx
≤

1
n
,

thus ‖ fn −0‖(1,∞) ≤
1
n , hence fn ⇒ 0 on (1,∞).

Exercise 3 (HKU, Analysis I Final, Fall 2004). Consider the sequence of func-
tions

fn(x) =
1
n

e−n
2x2
, x ∈ R,n ≥ 1.

(a) Show that fn converges uniformly to some differentiable function f on R.

(b) Show that f ′n converges to f ′ pointwise on R.

(c) Determine if the convergence f ′n is uniform on any bounded interval [a,b] ⊂ R.
Justify your assertion.

Exercise 4. Let k ≥ 0 be an integer and define a sequence of functions as

fn(x) =
xk

x2+ n
, x ∈ R,n ≥ 1.

For which values of k does the sequence converge uniformly on R? On every
bounded subset of R?

Exercise 5 (2010 Midterm, Q3(b)). Define f1, f2,· · · : (0,1)→ R by

fn(x) =
ex

x
√

n+ sin2(nx−25)
.

Prove that fn converges pointwise on (0,1). Determine with proof if fn converges
uniformly on (0,1).



Example 4. Show that
∞
ÿ

n=1

xn(1− x)2

converges uniformly on [0,1].

Solution. Let gn(x) = xn(1− x)2. There are two ways to find a sharp enough upper bound
of |gn(x)|.

Method 1. We consider the derivative

g′n(x) = (1− x)xn−1(n− (n+2)x).

If g′n(x) = 0, then x = 0,1 or n/(n+2) (< 1). Since gn(0) = gn(1) = 0, and since gn(n/(n+
2)) > 0 is the only local extreme value of g on (0,1), it must be a global maximum. So
for any x ∈ [0,1],

|gn(x)| = gn(x) ≤ gn
( n

n+2

)
= 4
( n

n+2

)n 1
(n+2)2 ≤

4
(n+2)2 .

Method 2. We may use AM-GM inequality. For x ∈ [0,1],

|gn(x)| = xn(1− x)2

= 4nn
( x

n

)n(1
2
−

x
2

)2

≤ 4nn
( n terms︷ ︸︸ ︷

x
n
+ · · ·+

x
n
+( 1

2 −
x
2 )+ ( 1

2 −
x
2 )

n+2

)n+2

=
4nn

(n+2)n+2

≤
4

(n+2)2 .

Therefore, as
ř∞

n=1 4/(n + 2)2 converges, by M-test
ř∞

n=1 gn(x) converges uni-
formly on [0,1].

Example 5.

(a) Show that
∞
ÿ

k=0

xk 6⇒
1

1− x
on (−1,1).

(b) Define fn(x) = xn for x ∈ [0,1] and n ≥ 1. Show that fn 6⇒ 0 on [0,1).

Solution. (a) On (−1,1) we have∣∣∣∣∣ n
ÿ

k=0

xk −
1

1− x

∣∣∣∣∣ =
∣∣∣∣∣ ∞

ÿ

k=n+1

xk
∣∣∣∣∣ =
∣∣∣∣ xn+1

1− x

∣∣∣∣ .
Can this quantity be uniformly small for sufficiently large n? No! Observe that for each
integer n, ∣∣∣∣ xn+1

1− x

∣∣∣∣→∞ as x→ 1−.

In particular, for each n, there is an xn ∈ (−1,1), close enough to 1, such that
∣∣∣ xn+1

n
1−xn

∣∣∣ ≥ 1,
thus for each n, ∥∥∥∥∥ n

ÿ

k=0

xk −
1

1− x

∥∥∥∥∥
(−1,1)

≥

∣∣∣∣ xn+1
n

1− xn

∣∣∣∣ ≥ 1,

which cannot converges to 0.
(b) The pointwise limit of fn on [0,1) is 0. But the quantity

| fn(x)| = xn

cannot be uniformly small for sufficiently large n because limx→1− xn = 1. Specifically,
for each n there is xn ∈ [0,1) such that xnn > 1/2, so

‖xn −0‖[0,1) ≥ xnn > 1/2 Ô⇒ xn 6⇒ 0.



Example 6 (Lecture Notes p. 85, Slightly Modified). Show that the se-
ries

f (x) =
∞
ÿ

n=0

x2

(1+ x2)n

does not converge uniformly on (0,1) by showing the uniform Cauchy criterion
fails.

Solution. Let fn =
řn

k=0 x2/(1+ x2)k , we consider the difference

| f2n(x)− fn(x)| =
2n
ÿ

k=n+1

x2

(1+ x2)k

≥

2n
ÿ

k=n+1

x2

(1+ x2)2n

=
nx2

(1+ x2)2n .

For each n > 1 we let x = xn = 1/
√

n ∈ (0,1) such that

‖ f2n − fn‖(0,1) ≥ | f2n(xn)− fn(xn)| =
1

(1+ 1
n )2n

→
1
e2 ,

which shows { fn} cannot be uniformly Cauchy on (0,1).

Exercise 6. Study the uniform convergence of

∞
ÿ

k=1

k x
(1+ x)(1+2x) · · · (1+ k x)

on [0,λ] and [λ,∞) respectively, where λ > 0.

Hint. On one interval the series converges uniformly. On another interval the conver-
gence cannot be uniform, which can be shown by imitating the proof in the solution
of the above example.


