Math3033 (Fall 2013-2014)

Sequence and Series of Functions; Uniform and Nonuniform Convergence

Key Definitions and Results

Definition 1. A sequence of functions $f_{n}: E \rightarrow \mathbb{R}$ is said to converges pointwise on E to a function $f: E \rightarrow \mathbb{R}$ if for every $x \in E$,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x) .
$$

Definition 2. A sequence of functions $f_{n}: E \rightarrow \mathbb{R}$ is said to converges uniformly on E to a function $f: E \rightarrow \mathbb{R}$ if

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{E}:=\lim _{n \rightarrow \infty}\left(\sup \left\{\left|f_{n}(x)-f(x)\right|: x \in E\right\}\right)=0
$$

In this case we denote $f_{\boldsymbol{n}} \rightrightarrows \boldsymbol{f}$ on \boldsymbol{E}, for short.
Equivalently, we say that $\boldsymbol{f}_{\boldsymbol{n}} \rightrightarrows \boldsymbol{f}$ on \boldsymbol{E} if for every $\epsilon>0$, there is an N such that

$$
n>N \Longrightarrow\left|f_{n}(x)-f(x)\right|<\epsilon \quad \text { for all } x \in E .
$$

Theorem 3. Consider the power series $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$, the number

$$
R:=\frac{1}{\overline{\lim }_{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}}
$$

is called the radius of convergence of $\sum \boldsymbol{a}_{\boldsymbol{n}}(\boldsymbol{x}-\boldsymbol{c})^{\boldsymbol{n}}$. Define $\frac{1}{0}=\infty, \frac{1}{\infty}=0$.
(i) If $R=0$, the series converges at $x=c$ and diverges elsewhere.
(ii) If $0<R<\infty$, the series converges absolutely when $|x-c|<R$ and diverges when $|x-c|>R$.
(iii) If $R=\infty$, the series converges absolutely on \mathbb{R}.

Theorem 4 (M-test). Let $g_{n}: E \rightarrow \mathbb{R}$ be a sequence of functions on E. Suppose:
(i) For each n there is an $M_{n} \in \mathbb{R}$ such that $\left|g_{n}(x)\right| \leq M_{n}$ on E.
(ii) $\sum_{n=1}^{\infty} M_{n}$ converges.

Then $\sum_{n=1}^{\infty} g_{n}(x)$ converges uniformly on E.

Theorem 5 (Uniform Cauchy Criterion). Let $f_{1}, f_{2}, \cdots: E \rightarrow \mathbb{R}$ be a sequence of functions, then the following are equivalent:
(i) $\left\{f_{n}\right\}$ converges uniformly on E.
(ii) $\left\{f_{n}\right\}$ is uniformly Cauchy: For every $\epsilon>0$, there is an N such that

$$
m, n>N \Longrightarrow\left\|f_{m}-f_{n}\right\|_{E}<\epsilon
$$

Example 1. Let $a_{0}, a_{1}, a_{2}, \cdots \in \mathbb{R}$.
(a) If $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges at $x_{0} \neq 0$, then it converges absolutely when $|x|<\left|x_{0}\right|$.
(b) If $\sum_{n=0}^{\infty} a_{n} x^{n}$ diverges at $x_{0} \neq 0$, then it diverges when $|x|>\left|x_{0}\right|$.

Solution. (a) If $\sum a_{n} x_{0}^{n}$ converges, then $a_{n} x_{0}^{n}$ is bounded. Let $\left|a_{n} x_{0}^{n}\right| \leq M$ for all n, then for every x s.t. $|x|<\left|x_{0}\right|$ we have

$$
\left|a_{n} x^{n}\right|=\left|a_{n} x_{0}^{n}\left(\frac{x}{x_{0}}\right)^{n}\right| \leq M\left|\frac{x}{x_{0}}\right|^{n},
$$

therefore since $\sum\left|\frac{x}{x_{0}}\right|^{n}$ converges, $\sum a_{n} x^{n}$ converges by comparison test and absolute convergence test.
(b) Let $|x|>\left|x_{0}\right|$, if $\sum a_{n} x^{n}$ converges, so does $\sum a_{n} x_{0}^{n}$ by part (a), this is a contradiction.

Remark. In part (a) the series $\sum a_{n} x^{n}$ converges uniformly on any $[-r, r], r<\left|x_{0}\right|$, by M test. In fact for any $0<r<\left|x_{0}\right|$ it converges uniformly on $\left[-r,\left|x_{0}\right|\right]$ by Abel's Limit Theorem in the next tutorial.

Example 2. Find the radius of convergence R of the power series

$$
\sum_{n=0}^{\infty} \frac{n!}{n^{n}} x^{n} .
$$

Can the power series converge at $x= \pm R$?

Solution. To find the radius of convergence we need to compute

$$
\overline{\lim } \sqrt[n]{\frac{n!}{n^{n}}}
$$

Actually the limit exists, so lim $=\lim$. To see this, recall that

$$
\underline{\lim }\left|\frac{a_{n+1}}{a_{n}}\right| \leq \underline{\lim } \sqrt[n]{\left|a_{n}\right|} \leq \overline{\lim } \sqrt[n]{\left|a_{n}\right|} \leq \overline{\lim }\left|\frac{a_{n+1}}{a_{n}}\right|,
$$

hence if the limit of the nth root of a_{n} is difficult to compute, let's first try to compute the limit of its ratio. If $\lim \boldsymbol{a}_{n+1} / a_{n}$ exists, then by the above inequality, so does $\lim \sqrt[n]{a_{n}}$, moreover, $\lim \sqrt[n]{a_{n}}=\lim a_{n+1} / a_{n}$

Bearing this in mind, we have

$$
\lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+1)^{n+1}} / \frac{n!}{n^{n}}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}}=\frac{1}{e} \Longrightarrow \lim _{n \rightarrow \infty} \sqrt[n]{\frac{n!}{n^{n}}}=\frac{1}{e},
$$

and thus the radius of convergence is $R=e$.
At the point $x= \pm R= \pm e$, note that $\left|n!(\pm e)^{n} / n^{n}\right|=n!e^{n} / n^{n}$. By Stirling formula,

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \Longrightarrow \frac{n!e^{n}}{n^{n}} \sim \sqrt{2 \pi n} \rightarrow \infty,
$$

therefore the power series diverges at $x= \pm e$ by term test.

Exercise 1. Find the radius of convergence for the following power series:
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{3^{n}}{n} x^{n}$;
(b) $\sum_{n=1}^{\infty} \frac{x^{n}}{2^{n^{2}}}$;
(c) $\sum_{n=1}^{\infty} n^{n} x^{n}$;
(d) $\sum_{n=1}^{\infty} \frac{2^{n}+(-1)^{n}}{n^{2}}(x-3)^{n}$;
(e) $\sum_{n=1}^{\infty} \frac{a^{n}}{n+1} x^{2 n}$;
(f) $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{n+1}{n}\right)^{n^{2}} x^{n^{2}}$.

Exercise 2. Let $\left\{a_{n}\right\}$ be a sequence of positive numbers such that $\sum_{n=0}^{\infty} a_{n}$ diverges. Suppose also that

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{0}+a_{1}+a_{2}+\cdots+a_{n}}=0
$$

show that the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ has radius of convergence 1 .

Example 3. Study the uniform convergence of

$$
f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}
$$

for $n \geq 1$, on the interval $(0,1)$ and $(1, \infty)$ respectively.

Solution. Easy to see that $f_{n} \rightarrow 0$ pointwise on $(0, \infty)$.
On $(0,1)$, since

$$
\left\|f_{n}-0\right\|_{(0,1)} \geq\left|f_{n}\left(\frac{1}{n}\right)\right|=\frac{1}{1+1}=\frac{1}{2}
$$

thus $\left\|f_{n}\right\|_{(0,1)} \nRightarrow 0$.
On $(1, \infty)$, since for every $x \in(1, \infty)$,

$$
\left|f_{n}(x)-0\right| \leq \frac{n x}{n^{2} x^{2}}=\frac{1}{n x} \leq \frac{1}{n},
$$

thus $\left\|f_{n}-0\right\|_{(1, \infty)} \leq \frac{1}{n}$, hence $f_{n} \rightrightarrows 0$ on $(1, \infty)$.

Exercise 3 (HKU, Analysis I Final, Fall 2004). Consider the sequence of functions

$$
f_{n}(x)=\frac{1}{n} e^{-n^{2} x^{2}}, \quad x \in \mathbb{R}, n \geq 1
$$

(a) Show that f_{n} converges uniformly to some differentiable function f on \mathbb{R}.
(b) Show that f_{n}^{\prime} converges to f^{\prime} pointwise on \mathbb{R}.
(c) Determine if the convergence f_{n}^{\prime} is uniform on any bounded interval $[a, b] \subset \mathbb{R}$. Justify your assertion.

Exercise 4. Let $k \geq 0$ be an integer and define a sequence of functions as

$$
f_{n}(x)=\frac{x^{k}}{x^{2}+n}, \quad x \in \mathbb{R}, n \geq 1
$$

For which values of k does the sequence converge uniformly on \mathbb{R} ? On every bounded subset of \mathbb{R} ?

Exercise 5 (2010 Midterm, Q3(b)). Define $f_{1}, f_{2}, \cdots:(0,1) \rightarrow \mathbb{R}$ by

$$
f_{n}(x)=\frac{e^{x}}{x \sqrt{n}+\sin ^{2}(n x-25)}
$$

Prove that f_{n} converges pointwise on $(0,1)$. Determine with proof if f_{n} converges uniformly on (0,1).

Example 4. Show that

$$
\sum_{n=1}^{\infty} x^{n}(1-x)^{2}
$$

converges uniformly on $[0,1]$.

Solution. Let $g_{n}(x)=x^{n}(1-x)^{2}$. There are two ways to find a sharp enough upper bound of $\left|g_{n}(x)\right|$.

Method 1. We consider the derivative

$$
g_{n}^{\prime}(x)=(1-x) x^{n-1}(n-(n+2) x)
$$

If $g_{n}^{\prime}(x)=0$, then $x=0,1$ or $n /(n+2)(<1)$. Since $g_{n}(0)=g_{n}(1)=0$, and since $g_{n}(n /(n+$ $2))>0$ is the only local extreme value of g on $(0,1)$, it must be a global maximum. So for any $x \in[0,1]$,

$$
\left|g_{n}(x)\right|=g_{n}(x) \leq g_{n}\left(\frac{n}{n+2}\right)=4\left(\frac{n}{n+2}\right)^{n} \frac{1}{(n+2)^{2}} \leq \frac{4}{(n+2)^{2}}
$$

Method 2. We may use AM-GM inequality. For $x \in[0,1]$,

$$
\begin{aligned}
& \left|g_{n}(x)\right|=x^{n}(1-x)^{2} \\
& =4 n^{n}\left(\frac{x}{n}\right)^{n}\left(\frac{1}{2}-\frac{x}{2}\right)^{2} \\
& \leq 4 n^{n}(\frac{\overbrace{\frac{x}{n}+\cdots+\frac{x}{n}}^{n \text { terms }}+\left(\frac{1}{2}-\frac{x}{2}\right)+\left(\frac{1}{2}-\frac{x}{2}\right)}{n+2})^{n+2} \\
& =\frac{4 n^{n}}{(n+2)^{n+2}} \\
& \leq \frac{4}{(n+2)^{2}} \text {. }
\end{aligned}
$$

Therefore, as $\sum_{n=1}^{\infty} 4 /(n+2)^{2}$ converges, by M-test $\sum_{n=1}^{\infty} g_{n}(x)$ converges uniformly on $[0,1]$.

Example 5.

(a) Show that $\sum_{k=0}^{\infty} x^{k} \nRightarrow \frac{1}{1-x}$ on $(-1,1)$.
(b) Define $f_{n}(x)=x^{n}$ for $x \in[0,1]$ and $n \geq 1$. Show that $f_{n} \nRightarrow 0$ on $[0,1)$.

Solution. (a) On ($-1,1$) we have

$$
\left|\sum_{k=0}^{n} x^{k}-\frac{1}{1-x}\right|=\left|\sum_{k=n+1}^{\infty} x^{k}\right|=\left|\frac{x^{n+1}}{1-x}\right| .
$$

Can this quantity be uniformly small for sufficiently large n ? No! Observe that for each integer n,

$$
\left|\frac{x^{n+1}}{1-x}\right| \rightarrow \infty \quad \text { as } x \rightarrow 1^{-}
$$

In particular, for each n, there is an $x_{n} \in(-1,1)$, close enough to 1 , such that $\left|\frac{x_{n}^{n+1}}{1-x_{n}}\right| \geq 1$, thus for each n,

$$
\left\|\sum_{k=0}^{n} x^{k}-\frac{1}{1-x}\right\|_{(-1,1)} \geq\left|\frac{x_{n}^{n+1}}{1-x_{n}}\right| \geq 1
$$

which cannot converges to 0 .
(b) The pointwise limit of f_{n} on $[0,1)$ is 0 . But the quantity

$$
\left|f_{n}(x)\right|=x^{n}
$$

cannot be uniformly small for sufficiently large n because $\lim _{x \rightarrow 1^{-}} x^{n}=1$. Specifically, for each n there is $x_{n} \in[0,1)$ such that $x_{n}^{n}>1 / 2$, so

$$
\left\|x^{n}-0\right\|_{[0,1)} \geq x_{n}^{n}>1 / 2 \Longrightarrow x^{n} \nRightarrow 0 .
$$

Example 6 (Lecture Notes p. 85, Slightly Modified). Show that the series

$$
f(x)=\sum_{n=0}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{n}}
$$

does not converge uniformly on $(0,1)$ by showing the uniform Cauchy criterion fails.

Solution. Let $f_{n}=\sum_{k=0}^{n} x^{2} /\left(1+x^{2}\right)^{k}$, we consider the difference

$$
\begin{aligned}
\left|f_{2 n}(x)-f_{n}(x)\right| & =\sum_{k=n+1}^{2 n} \frac{x^{2}}{\left(1+x^{2}\right)^{k}} \\
& \geq \sum_{k=n+1}^{2 n} \frac{x^{2}}{\left(1+x^{2}\right)^{2 n}} \\
& =\frac{n x^{2}}{\left(1+x^{2}\right)^{2 n}}
\end{aligned}
$$

For each $n>1$ we let $x=x_{n}=1 / \sqrt{n} \in(0,1)$ such that

$$
\left\|f_{2 n}-f_{n}\right\|_{(0,1)} \geq\left|f_{2 n}\left(x_{n}\right)-f_{n}\left(x_{n}\right)\right|=\frac{1}{\left(1+\frac{1}{n}\right)^{2 n}} \rightarrow \frac{1}{e^{2}}
$$

which shows $\left\{f_{n}\right\}$ cannot be uniformly Cauchy on $(0,1)$.

Exercise 6. Study the uniform convergence of

$$
\sum_{k=1}^{\infty} \frac{k x}{(1+x)(1+2 x) \cdots(1+k x)}
$$

on $[0, \lambda]$ and $[\lambda, \infty)$ respectively, where $\lambda>0$.
Hint. On one interval the series converges uniformly. On another interval the convergence cannot be uniform, which can be shown by imitating the proof in the solution of the above example.

