Math3033 (Fall 2013-2014)

More Examples of Limit Superior and Limit Inferior

Key Definitions and Results

Theorem 1. Let $a_{1}, a_{2}, \cdots \in \mathbb{R}$, and $r \in \mathbb{R}$, then:
(i) If $\overline{\lim } a_{n}<r$, then $a_{n}<r$ for all but finitely many n.
(ii) If $r<\underline{\lim } a_{n}$, then $r<a_{n}$ for all but finitely many n.

Example 1. Let $a_{1} \geq a_{2} \geq a_{3} \geq \cdots>0$. Show that

$$
\sum_{n=1}^{\infty} a_{n} \text { converges } \Longrightarrow \lim _{n \rightarrow \infty} n a_{n}=0
$$

Solution. Since $\sum a_{k}$ converges, by Cauchy criterion for any $\epsilon>0$ there is an N such that

$$
n>m>N \Longrightarrow \sum_{k=m+1}^{n} a_{k}<\epsilon .
$$

Since $\left\{a_{k}\right\}$ is decreasing, we have

$$
m, n>N \Longrightarrow \frac{n-m}{n} \cdot n a_{n}=(n-m) a_{n}<\epsilon .
$$

By taking $\overline{\lim }_{n \rightarrow \infty}$ on both sides, we have

$$
\overline{\lim }_{n \rightarrow \infty} n a_{n}=\left(\lim _{n \rightarrow \infty} \frac{n-m}{n}\right) \cdot\left(\overline{\lim }_{n \rightarrow \infty} n a_{n}\right)=\overline{\lim }_{n \rightarrow \infty}\left(\frac{n-m}{n} \cdot n a_{n}\right) \leq \epsilon .
$$

Therefore we have $0 \leq \overline{\lim } n a_{n} \leq \epsilon$ for every $\epsilon>0$. By taking $\epsilon \rightarrow 0^{+}$we have

$$
\overline{\lim } n a_{n}=0
$$

this says that $\lim _{n \rightarrow \infty} n a_{n}=0$ since $n a_{n} \geq 0$.

Exercise 1. Let $0<a_{1}<a_{2}<\cdots$ be unbounded and set $s=\varlimsup \frac{\ln n}{\ln a_{n}}$. Let $t>0$,
show that the series $\sum_{n=1}^{\infty} a_{n}^{-t}$ converges for $t>s$ and diverges for $t<s$.

Example 2. Let $b_{1}, b_{2}, \cdots \geq 0$ be such that $\lim _{n \rightarrow \infty} b_{n}=0$. Let $\lambda \in(0,1)$, define $a_{1} \geq 0$ and for $n \geq 1$ define

$$
a_{n+1}=b_{n}+\lambda a_{n}
$$

(a) Explain why the following argument is wrong:

We take lim on both sides to get

$$
\overline{\lim } a_{n}=\varlimsup \text { 童 }\left(b_{n}+\lambda a_{n}\right)=\lim b_{n}+\overline{\lim } \lambda a_{n}=\lambda \overline{\lim } a_{n} .
$$

It follows that $(1-\lambda) \overline{\lim } a_{n}=0$ and thus $\overline{\lim } a_{n}=0$. Since $a_{n} \geq 0$, we conclude $\lim _{n \rightarrow \infty} a_{n}=0$.
(b) Prove that indeed $\lim _{n \rightarrow \infty} a_{n}=0$.

Solution. (a) We don't have $(1-\lambda) \overline{\lim } a_{n}=0$ since $\overline{\lim } a_{n}$ is possibly ∞, in this case we

(b) Since $b_{n} \geq 0$, by induction $a_{n} \geq 0$ for each n. For every $\epsilon>0$, there is an N such that

$$
k \geq N \Longrightarrow a_{k+1}<\epsilon+\lambda a_{k}
$$

By dividing λ^{k+1} on both sides, we have

$$
\frac{a_{k+1}}{\lambda^{k+1}}<\frac{\epsilon}{\lambda^{k+1}}+\frac{a_{k}}{\lambda^{k}}
$$

by taking $\sum_{k=N}^{n-1}$ on both sides we have

$$
\frac{a_{n}}{\lambda^{n}}-\frac{a_{N}}{\lambda^{N}}<\epsilon \sum_{k=N}^{n-1} \frac{1}{\lambda^{k+1}}=\frac{1}{\lambda^{n}}+\frac{1}{\lambda^{n-1}}+\cdots+\frac{1}{\lambda^{N+1}}
$$

therefore

$$
a_{n}<\lambda^{n-N} a_{N}+\epsilon\left(1+\lambda+\cdots+\lambda^{n-N-1}\right)<\lambda^{n-N} a_{N}+\frac{\epsilon}{1-\lambda}
$$

By taking $\overline{\text { lim }}$ on both sides we have

$$
\overline{\lim } a_{n} \leq \frac{\epsilon}{1-\lambda}
$$

Since $\epsilon>0$ is arbitrary, $\overline{\lim } a_{n}=0$, and thus $\lim _{n \rightarrow \infty} a_{n}=0$.

Example 3. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of positive numbers such that $\sum_{n=1}^{\infty} b_{n}=\infty$, show that

$$
\varlimsup_{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}}{b_{1}+b_{2}+\cdots+b_{n}} \leq \varlimsup_{n \rightarrow \infty} \frac{a_{n}}{b_{n}}
$$

Solution. For any $\epsilon>0$, we have

$$
\varlimsup \frac{a_{n}}{b_{n}}<\underbrace{\varlimsup}_{:=\alpha} \varlimsup^{\lim \frac{a_{n}}{b_{n}}}+\epsilon=\alpha+\epsilon
$$

thus by Theorem 1 there is an N such that

$$
k>N \Longrightarrow \frac{a_{k}}{b_{k}}<\alpha+\epsilon
$$

Thus we have $a_{k}<(\alpha+\epsilon) b_{k}$ and

$$
\begin{aligned}
\frac{a_{1}+\cdots+a_{n}}{b_{1}+\cdots+b_{n}} & =\frac{a_{1}+\cdots+a_{N}+a_{N+1}+\cdots+a_{n}}{b_{1}+\cdots+b_{n}} \\
& <\frac{a_{1}+\cdots+a_{N}}{b_{1}+\cdots+b_{n}}+\frac{(\alpha+\epsilon)\left(b_{N+1}+\cdots+b_{n}\right)}{b_{1}+\cdots+b_{n}} .
\end{aligned}
$$

By taking $\overline{\lim }$ on the ends of the above inequality we have

$$
\varlimsup \frac{a_{1}+\cdots+a_{n}}{b_{1}+\cdots+b_{n}} \leq 0+(\alpha+\epsilon) \cdot 1=\alpha+\epsilon
$$

Since $\epsilon>0$ is arbitrary, we taking $\epsilon \rightarrow 0^{+}$to get

$$
\varlimsup \frac{a_{1}+\cdots+a_{n}}{b_{1}+\cdots+b_{n}} \leq \alpha=\varlimsup \frac{a_{n}}{b_{n}}
$$

Exercise 2. Let $x_{1}, x_{2}, \cdots \in \mathbb{R}$, show that

$$
\varliminf_{n \rightarrow \infty} x_{n} \leq \varliminf_{n \rightarrow \infty} \ln \left(\frac{e^{x_{1}}+e^{x_{2}}+\cdots+e^{x_{n}}}{n}\right)
$$

Exercise 3 (2003 Midterm (L1)). Let $\left\{a_{n}\right\}$ be a sequence of real numbers. show that

$$
\limsup _{n \rightarrow \infty} \frac{a_{n}}{n^{2}} \leq \limsup _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{2 n+1}
$$

Example 4 (2006 Midterm). Let $\left\{x_{n}\right\}$ be a bounded sequence of real numbers such that

$$
\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=0, \quad \liminf _{n \rightarrow \infty} x_{n}=a \quad \text { and } \quad \limsup _{n \rightarrow \infty} x_{n}=b
$$

Show for every $c \in[a, b]$, there is a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ with $\lim _{i \rightarrow \infty} x_{n_{i}}=c$.

Solution. Let $c \in[a, b]$. We further assume $c \neq a, b$ as otherwise we are done. Now we need to show that in every small neighborhood $(c-r, c+r)$ of $c^{(*)}$, we can always find an element in $\left\{x_{1}, x_{2}, \ldots\right\}$.

To do this, let's for the sake of contradiction suppose there is a small neighborhood $(c-r, c+r)$ of c which contains none of x_{n} 's. Then by the condition $\lim _{n \rightarrow \infty}\left(x_{n+1}-\right.$ $\left.x_{n}\right)=0$, there is an $N \in \mathbb{N}$,

$$
n>N \Longrightarrow\left|x_{n+1}-x_{n}\right|<r
$$

Now the sequence $\left\{x_{n}\right\}_{n>N}$ cannot jump too far away from x_{n} to x_{n+1}.
Case $1\left(x_{N+1} \in[a, c-r]\right)$. In this case,

$$
\begin{aligned}
x_{N+1} \in[a, c-r] & \Longrightarrow x_{N+2} \in[a, c-r] \\
& \Longrightarrow x_{N+3} \in[a, c-r] \Longrightarrow \cdots \Longrightarrow x_{n} \in[a, c-r]
\end{aligned}
$$

for every $n \geq N+1$, so $\overline{\lim } x_{n} \leq c-r<b$, a contradiction.
Case $2\left(\boldsymbol{x}_{N+1} \in[\boldsymbol{c}+\boldsymbol{r}, \boldsymbol{b}]\right)$. In this case the argument in case 1 carries over, and we arrive to the contradiction that $\underline{\lim } x_{n} \geq c+r>a$.

In conclusion, every small neighborhood of c contains one of x_{n} 's. Let $K \in \mathbb{N}$ be such that

$$
i>K \Longrightarrow\left(c-\frac{1}{i}, c+\frac{1}{i}\right) \subseteq[a, b],
$$

then there is an $x_{n_{i}} \in\left(c-\frac{1}{i}, c+\frac{1}{i}\right)$. Now $\lim _{i \rightarrow \infty} x_{n_{i}}=c$.

Exercise 4. Let $a_{1}, a_{2}, a_{3}, \cdots>0$.
(a) Prove that $\varlimsup_{n \rightarrow \infty}\left(\frac{a_{1}+a_{n+1}}{a_{n}}\right)^{n} \geq e$. Recall that $e^{-1}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}$.
(b) Show that the bound e in the above estimate is optimal.

Exercise 5. Prove the following generalization of Exercise 4: For a positive integer p and a positive sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$, prove that $\varlimsup_{n \rightarrow \infty}\left(\frac{a_{1}+a_{n+p}}{a_{n}}\right)^{n} \geq e^{p}$.
Hint: The proof is more or less the same as the previous exercise.

[^0]
[^0]: (*) Let's define, by small, to mean $(c-r, c+r) \subseteq[a, b]$

