
Math3033 (Fall 2013-2014) Tutorial Note 4.5

More Examples of Limit Superior and Limit Inferior

Key Definitions and Results

Theorem 1. Let a1,a2,· · · ∈ R, and r ∈ R, then:

(i) If lim an < r , then an < r for all but finitely many n.

(ii) If r < lim an , then r < an for all but finitely many n.

Example 1. Let a1 ≥ a2 ≥ a3 ≥ · · · > 0. Show that

∞
ÿ

n=1

an converges Ô⇒ lim
n→∞

nan = 0.

Solution. Since
ř

ak converges, by Cauchy criterion for any ε > 0 there is an N such that

n > m > N Ô⇒

n
ÿ

k=m+1

ak < ε.

Since {ak } is decreasing, we have

m,n > N Ô⇒
n−m

n
· nan = (n−m)an < ε.

By taking limn→∞ on both sides, we have

lim
n→∞

nan =
(

lim
n→∞

n−m
n

)
·

(
lim
n→∞

nan
)
= lim

n→∞

(n−m
n
· nan

)
≤ ε .

Therefore we have 0 ≤ lim nan ≤ ε for every ε > 0. By taking ε → 0+ we have

lim nan = 0,

this says that limn→∞ nan = 0 since nan ≥ 0.

Exercise 1. Let 0 < a1 < a2 < · · · be unbounded and set s = lim
ln n

ln an
. Let t > 0,

show that the series
∞
ÿ

n=1

a−tn converges for t > s and diverges for t < s.

Example 2. Let b1,b2,· · · ≥ 0 be such that limn→∞ bn = 0. Let λ ∈ (0,1), define
a1 ≥ 0 and for n ≥ 1 define

an+1 = bn + λan .

(a) Explain why the following argument is wrong:

We take lim on both sides to get

lim an = lim(bn + λan) = lim bn + limλan = λ lim an .

It follows that (1− λ) lim an = 0 and thus lim an = 0. Since an ≥ 0, we
conclude limn→∞ an = 0.

(b) Prove that indeed limn→∞ an = 0.

Solution. (a) We don’t have (1− λ) lim an = 0 since lim an is possibly ∞, in this case we
cannot subtract lim an on both sides of lim an = λ lim an .

(b) Since bn ≥ 0, by induction an ≥ 0 for each n. For every ε > 0, there is an N
such that

k ≥ N Ô⇒ ak+1 < ε + λak .

By dividing λk+1 on both sides, we have

ak+1

λk+1 <
ε

λk+1 +
ak
λk

,

by taking
řn−1

k=N on both sides we have

an
λn
−

aN

λN
< ε

n−1
ÿ

k=N

1
λk+1 =

1
λn
+

1
λn−1 + · · ·+

1
λN+1 ,

therefore

an < λn−N aN + ε(1+ λ + · · ·+ λn−N−1) < λn−N aN +
ε

1− λ
.

By taking lim on both sides we have

lim an ≤
ε

1− λ
.

Since ε > 0 is arbitrary, lim an = 0, and thus limn→∞ an = 0.



Example 3. Let {an} and {bn} be sequences of positive numbers such that
ř∞

n=1 bn =∞, show that

lim
n→∞

a1+ a2+ · · ·+ an

b1+ b2+ · · ·+ bn
≤ lim

n→∞

an

bn
.

Solution. For any ε > 0, we have

lim
an
bn

< lim
an
bn︸ ︷︷ ︸

:=α

+ε = α+ ε,

thus by Theorem 1 there is an N such that

k > N Ô⇒
ak
bk

< α+ ε .

Thus we have ak < (α+ ε)bk and

a1 + · · ·+ an
b1 + · · ·+ bn

=
a1 + · · ·+ aN + aN+1 + · · ·+ an

b1 + · · ·+ bn

<
a1 + · · ·+ aN

b1 + · · ·+ bn
+

(α+ ε)(bN+1 + · · ·+ bn)
b1 + · · ·+ bn

.

By taking lim on the ends of the above inequality we have

lim
a1 + · · ·+ an
b1 + · · ·+ bn

≤ 0+ (α+ ε) ·1 = α+ ε .

Since ε > 0 is arbitrary, we taking ε → 0+ to get

lim
a1 + · · ·+ an
b1 + · · ·+ bn

≤ α = lim
an
bn
.

Exercise 2. Let x1,x2,· · · ∈ R, show that

lim
n→∞

xn ≤ lim
n→∞

ln
(

ex1 + ex2 + · · ·+ exn

n

)
.

Exercise 3 (2003 Midterm (L1)). Let {an} be a sequence of real numbers. show
that

limsup
n→∞

an

n2 ≤ limsup
n→∞

an+1− an

2n+1
.

Example 4 (2006 Midterm). Let {xn} be a bounded sequence of real num-
bers such that

lim
n→∞

(xn+1− xn) = 0, liminf
n→∞

xn = a and limsup
n→∞

xn = b.

Show for every c ∈ [a,b], there is a subsequence {xni } of {xn} with lim
i→∞

xni = c.

Solution. Let c ∈ [a,b]. We further assume c 6= a,b as otherwise we are done. Now we need
to show that in every small neighborhood (c − r,c + r) of c(∗), we can always find an
element in {x1,x2,. . . }.

To do this, let’s for the sake of contradiction suppose there is a small neighborhood
(c− r,c+ r) of c which contains none of xn’s. Then by the condition limn→∞(xn+1 −

xn) = 0, there is an N ∈ N,

n > N Ô⇒ |xn+1 − xn | < r.

Now the sequence {xn}n>N cannot jump too far away from xn to xn+1.

Case 1 (xxxN+1 ∈∈∈ [[[aaa,,,ccc−−− rrr]]]). In this case,

xN+1 ∈ [a,c− r] Ô⇒ xN+2 ∈ [a,c− r]

Ô⇒ xN+3 ∈ [a,c− r] Ô⇒ · · · Ô⇒ xn ∈ [a,c− r]

for every n ≥ N +1, so lim xn ≤ c− r < b, a contradiction.

Case 2 (xxxN+1 ∈∈∈ [[[ccc+++rrr ,,,bbb]]]). In this case the argument in case 1 carries over, and we
arrive to the contradiction that lim xn ≥ c+ r > a.

In conclusion, every small neighborhood of c contains one of xn’s. Let K ∈ N be
such that

i > K Ô⇒

(
c−

1
i
,c+

1
i

)
⊆ [a,b],

then there is an xni ∈ (c− 1
i ,c+

1
i ). Now limi→∞ xni = c.

Exercise 4. Let a1,a2,a3,· · · > 0.

(a) Prove that lim
n→∞

(
a1+ an+1

an

)n

≥ e. Recall that e−1 = limn→∞

(
1− 1

n

)n
.

(b) Show that the bound e in the above estimate is optimal.

Exercise 5. Prove the following generalization of Exercise 4: For a positive integer

p and a positive sequence {an}
∞
n=1, prove that lim

n→∞

(
a1+ an+p

an

)n

≥ ep .

Hint: The proof is more or less the same as the previous exercise.

(∗) Let’s define, by small, to mean (c − r, c + r ) ⊆ [a, b].


