Math3033 (Fall 2013-2014)

Tutorial Note 4.5

More Examples of Limit Superior and Limit Inferior

- Key Definitions and Results

Theorem 1. Let $a_1, a_2, \dots \in \mathbb{R}$, and $r \in \mathbb{R}$, then:

- (i) If $\overline{\lim} a_n < r$, then $a_n < r$ for all but finitely many *n*.
- (ii) If $r < \underline{\lim} a_n$, then $r < a_n$ for all but finitely many *n*.

Example 1. Let $a_1 \ge a_2 \ge a_3 \ge \dots > 0$. Show that $\sum_{n=1}^{\infty} a_n \text{ converges} \implies \lim_{n \to \infty} na_n = 0.$

Solution. Since $\sum a_k$ converges, by Cauchy criterion for any $\epsilon > 0$ there is an *N* such that

$$n > m > N \implies \sum_{k=m+1}^n a_k < \epsilon.$$

Since $\{a_k\}$ is decreasing, we have

$$m,n > N \implies \frac{n-m}{n} \cdot na_n = (n-m)a_n < \epsilon.$$

By taking $\overline{\lim}_{n\to\infty}$ on both sides, we have

$$\overline{\lim_{n\to\infty}} na_n = \left(\lim_{n\to\infty} \frac{n-m}{n}\right) \cdot \left(\overline{\lim_{n\to\infty}} na_n\right) = \overline{\lim_{n\to\infty}} \left(\frac{n-m}{n} \cdot na_n\right) \le \epsilon.$$

Therefore we have $0 \le \overline{\lim} na_n \le \epsilon$ for every $\epsilon > 0$. By taking $\epsilon \to 0^+$ we have

$$\overline{\lim} na_n = 0$$

this says that $\lim_{n\to\infty} na_n = 0$ since $na_n \ge 0$.

Exercise 1. Let $0 < a_1 < a_2 < \cdots$ be unbounded and set $s = \overline{\lim} \frac{\ln n}{\ln a_n}$. Let t > 0, show that the series $\sum_{n=1}^{\infty} a_n^{-t}$ converges for t > s and diverges for t < s.

Example 2. Let $b_1, b_2, \dots \ge 0$ be such that $\lim_{n \to \infty} b_n = 0$. Let $\lambda \in (0, 1)$, define $a_1 \ge 0$ and for $n \ge 1$ define

 $a_{n+1} = b_n + \lambda a_n.$

(a) Explain why the following argument is wrong:

We take lim on both sides to get

 $\overline{\lim} a_n = \overline{\lim} (b_n + \lambda a_n) = \lim b_n + \overline{\lim} \lambda a_n = \lambda \overline{\lim} a_n.$

It follows that $(1 - \lambda)\overline{\lim} a_n = 0$ and thus $\overline{\lim} a_n = 0$. Since $a_n \ge 0$, we conclude $\lim_{n \to \infty} a_n = 0$.

- (b) Prove that indeed $\lim_{n\to\infty} a_n = 0$.
- **Solution.** (a) We don't have $(1 \lambda)\overline{\lim} a_n = 0$ since $\overline{\lim} a_n$ is possibly ∞ , in this case we cannot subtract $\overline{\lim} a_n$ on both sides of $\overline{\lim} a_n = \lambda \overline{\lim} a_n$.

(b) Since $b_n \ge 0$, by induction $a_n \ge 0$ for each *n*. For every $\epsilon > 0$, there is an *N* such that

$$k \ge N \implies a_{k+1} < \epsilon + \lambda a_k.$$

By dividing λ^{k+1} on both sides, we have

$$\frac{a_{k+1}}{\lambda^{k+1}} < \frac{\epsilon}{\lambda^{k+1}} + \frac{a_k}{\lambda^k},$$

by taking $\sum_{k=N}^{n-1}$ on both sides we have

$$\frac{a_n}{\lambda^n} - \frac{a_N}{\lambda^N} < \epsilon \sum_{k=N}^{n-1} \frac{1}{\lambda^{k+1}} = \frac{1}{\lambda^n} + \frac{1}{\lambda^{n-1}} + \dots + \frac{1}{\lambda^{N+1}},$$

therefore

$$a_n < \lambda^{n-N} a_N + \epsilon (1 + \lambda + \dots + \lambda^{n-N-1}) < \lambda^{n-N} a_N + \frac{\epsilon}{1 - \lambda}.$$

By taking $\overline{\lim}$ on both sides we have

$$\overline{\lim} a_n \le \frac{\epsilon}{1-\lambda}.$$

Since $\epsilon > 0$ is arbitrary, $\overline{\lim} a_n = 0$, and thus $\lim_{n \to \infty} a_n = 0$.

Example 3. Let $\{a_n\}$ and $\{b_n\}$ be sequences of positive numbers such that $\sum_{n=1}^{\infty} b_n = \infty$, show that

$$\overline{\lim_{n\to\infty}} \frac{a_1+a_2+\cdots+a_n}{b_1+b_2+\cdots+b_n} \le \overline{\lim_{n\to\infty}} \frac{a_n}{b_n}.$$

Solution. For any $\epsilon > 0$, we have

$$\overline{\lim} \frac{a_n}{b_n} < \underbrace{\overline{\lim} \frac{a_n}{b_n}}_{:=\alpha} + \epsilon = \alpha + \epsilon,$$

thus by Theorem 1 there is an N such that

$$k > N \implies \frac{a_k}{b_k} < \alpha + \epsilon$$

Thus we have $a_k < (\alpha + \epsilon)b_k$ and

$$\frac{a_1 + \dots + a_n}{b_1 + \dots + b_n} = \frac{a_1 + \dots + a_N + a_{N+1} + \dots + a_n}{b_1 + \dots + b_n}$$
$$< \frac{a_1 + \dots + a_N}{b_1 + \dots + b_n} + \frac{(\alpha + \epsilon)(b_{N+1} + \dots + b_n)}{b_1 + \dots + b_n}$$

By taking $\overline{\lim}$ on the ends of the above inequality we have

$$\overline{\lim} \frac{a_1 + \dots + a_n}{b_1 + \dots + b_n} \le 0 + (\alpha + \epsilon) \cdot 1 = \alpha + \epsilon$$

Since $\epsilon > 0$ is arbitrary, we taking $\epsilon \to 0^+$ to get

$$\overline{\lim} \frac{a_1 + \dots + a_n}{b_1 + \dots + b_n} \le \alpha = \overline{\lim} \frac{a_n}{b_n}.$$

Exercise 2. Let $x_1, x_2, \dots \in \mathbb{R}$, show that

$$\lim_{n \to \infty} x_n \le \lim_{n \to \infty} \ln\left(\frac{e^{x_1} + e^{x_2} + \dots + e^{x_n}}{n}\right)$$

Exercise 3 (2003 Midterm (L1)). Let $\{a_n\}$ be a sequence of real numbers. show that

$$\limsup_{n \to \infty} \frac{a_n}{n^2} \le \limsup_{n \to \infty} \frac{a_{n+1} - a_n}{2n+1}.$$

Example 4 (2006 Midterm). Let $\{x_n\}$ be a bounded sequence of real numbers such that

$$\lim_{n \to \infty} (x_{n+1} - x_n) = 0, \quad \liminf_{n \to \infty} x_n = a \quad \text{and} \quad \limsup_{n \to \infty} x_n = b.$$

Show for every $c \in [a,b]$, there is a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ with $\lim_{i \to \infty} x_{n_i} = c$.

Solution. Let $c \in [a,b]$. We further assume $c \neq a,b$ as otherwise we are done. Now we need to show that in every **small** neighborhood (c - r, c + r) of $c^{(*)}$, we can always find an element in $\{x_1, x_2, \ldots\}$.

To do this, let's for the sake of contradiction suppose there is a small neighborhood (c-r,c+r) of c which contains **none** of x_n 's. Then by the condition $\lim_{n\to\infty}(x_{n+1}-x_n) = 0$, there is an $N \in \mathbb{N}$,

$$n > N \implies |x_{n+1} - x_n| < r.$$

Now the sequence $\{x_n\}_{n>N}$ cannot jump too far away from x_n to x_{n+1} .

Case 1 $(x_{N+1} \in [a, c - r])$. In this case,

 $\begin{aligned} x_{N+1} \in [a,c-r] & \Longrightarrow \ x_{N+2} \in [a,c-r] \\ & \Longrightarrow \ x_{N+3} \in [a,c-r] & \Longrightarrow \ \cdots \implies x_n \in [a,c-r] \end{aligned}$

for every $n \ge N + 1$, so $\overline{\lim} x_n \le c - r < b$, a contradiction.

Case 2 ($x_{N+1} \in [c+r,b]$). In this case the argument in case 1 carries over, and we arrive to the contradiction that $\lim_{n \to \infty} x_n \ge c+r > a$.

In conclusion, every small neighborhood of *c* contains one of x_n 's. Let $K \in \mathbb{N}$ be such that

$$i > K \implies \left(c - \frac{1}{i}, c + \frac{1}{i}\right) \subseteq [a, b],$$

then there is an $x_{n_i} \in (c - \frac{1}{i}, c + \frac{1}{i})$. Now $\lim_{i \to \infty} x_{n_i} = c$.

Exercise 4. Let $a_1, a_2, a_3, \dots > 0$.

(a) Prove that
$$\overline{\lim_{n \to \infty}} \left(\frac{a_1 + a_{n+1}}{a_n} \right)^n \ge e$$
. Recall that $e^{-1} = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n$.

(b) Show that the bound *e* in the above estimate is optimal.

Exercise 5. Prove the following generalization of Exercise 4: For a positive integer p and a positive sequence $\{a_n\}_{n=1}^{\infty}$, prove that $\overline{\lim_{n\to\infty}} \left(\frac{a_1+a_{n+p}}{a_n}\right)^n \ge e^p$. **Hint:** The proof is more or less the same as the previous exercise.

^(*) Let's define, by small, to mean $(c-r, c+r) \subseteq [a, b]$.