
Math2033 Mathematical Analysis (Spring 2013-2014) Tutorial Note 4

Sequences

We need to know

• the usual strategy to show typical sequences converge;

• how to apply the rigorous definition of limit of sequences.

Key definitions and results

Definition 1 (Convergence of Seqeucne). We say that {aaannn} (or aaannn) converges to
aaa, denoted by lim

n→∞
an = a or an → a, if

∀ε > 0,∃N ∈ N s.t. n > N Ô⇒ |an − a| < ε .

Remark. In Definition 1 we don’t treat a = ∞ as a limit of sequence.

Definition 2 (Divergence to ±∞).

• {an} diverges to +++∞∞∞, denoted by lim
n→∞

an = +∞, if

∀b > 0,∃N ∈ N s.t. n > N Ô⇒ an > b.

• {an} diverges to −−−∞∞∞, denoted by lim
n→∞

an = −∞, if

∀b < 0,∃N ∈ N s.t. n > N Ô⇒ an < b.

Definition 3 (Bounded Sequence). A sequence {an} is bounded if there is an M >
0 such that |an | ≤ M for each n.

Definition 4 (Cauchy Sequence). A sequence {an} is a Cauchy sequence if

∀ε > 0,∃N ∈ N s.t. m, n > N Ô⇒ |xm − xn | < ε .

Theorem 5 (Sandwich). If for each n, xn ≤ zn ≤ yn , then

lim
n→∞

xn = lim
n→∞

yn = z Ô⇒ lim
n→∞

zn = z.

Theorem 6 (Bolzano-Weierstrass). If {xn} is bounded, then it has a convergent
subsequence, denoted by {xnk }.

Remark. We treat nk as a strictly increasing function from N→ N in k, say nk = 2k.

Theorem 7 (Cauchy). {xn} converges if and only if it is a Cauchy sequence.

Example 1 (2009 Fall). Let x1 = 1 and for n = 1,2, . . . let

xn+1 =
x3
n + xn

5
. (∗)

Prove that the sequence {xn} converges and find its limit.

Sol •We show that {xn} is decreasing by MI.
When N = 1,

x2 =
1+1

5
< x1 = 1.

Assume xn < xn−1, then

xn+1 =
x3
n + xn

5
<

x3
n−1 + xn−1

5
= xn ,

therefore by MI, {xn} is decreasing.

• Since xn is bounded below by 0, xn → a for some a ∈ R.

• By taking limn→∞ on both sides of (∗),

a =
a3 + a

5
⇐⇒ a(a+2)(a−2) = 0

iff a = 0,−2 or a = 2, and the choice 2 and −2 are rejected since 0 ≤ xn ≤ x1 = 1 for every
n ≥ 1, therefore

lim
n→∞

xn = 0.

Remark. Sequences of the form xn+1 = P(xn) with P(x) being obviously increasing can
be likely tackled in the same way.



Example 2 (2009 Fall). Let x1 = 2 and for n = 1,2, . . . , let

xn+1 =
22
3
+

16
3xn

.

(a) Prove that the sequence {xn} converges and find its limit.

(b) Prove that the series
∞
ÿ

n=1

(xn − xn+1) converges and determine its sum.

Sol (a) The numerical experiment shows us

0 < x2n−1 < x2n+1 < x2n+2 < x2n .

Having formulated this statement, we can prove this by induction on n. This is standard
and has been done in Tutorial Note 0.

The even sequence {x2n} is shown to be decreasing. The induction shows that x2n > 0 for
every n, hence it is bounded below, and thus convergent.

The odd sequence {x2n−1} is increasing. By

x2n−1 ≤ x2n+2 < x2n < x2n−2 < · · · < x2

for every n, so {x2n−1} is bounded above, and hence convergent.

Thus it makes sense to define

a = lim
n→∞

x2n−1 and b = lim
n→∞

x2n .

To show {xn} converges, we need to show a = b. By taking n = 2k and n = 2k −1 respec-
tively in the definition of recursive relation, we have

x2k+1 =
22
3
+

16
3x2k

and x2k =
22
3
+

16
3x2k−1

.

By taking k →∞, we have

a =
22
3
+

16
3b

and b =
22
3
+

16
3a

.

The former equation gives 3ab = 22b+ 16. The latter one gives 3ab = 22a+ 16, equating
them we have a = b, therefore {xn} converges.

As a = b, we have a = 22
3 +

16
3a , we solve it to get a = −2/3 (rej.) or a = 8, we conclude

limn→∞ xn = a = 8.

(b) The series is called a telescoping series since its partial sum can be computed explicitly
as follows:

řN
n=1(xn − xn+1) = x1 − xN+1 = 2− xN+1. By taking N →∞, we have

∞
ÿ

n=1

(xn − xn+1) = 2−8 = −6.

Example 3. Show that the sequence

an =

n
ÿ

k=1

1
k
− ln n = 1+

1
2
+ · · ·+

1
n
− ln n

converges by showing it is a Cauchy sequence.

Remark. The limit γ := limn→∞ an = 0.5772156649 is called the Euler constant.

Sol By definition we have

= ak+1 − ak

=

(
1+

1
2
+ · · ·+

1
k +1

− ln(k +1)
)
−

(
1+

1
2
+ · · ·+

1
k
− ln k

)
=

1
k +1

+ ln
k

k +1

=
1

k +1
+ ln
(

1−
1

k +1

)
.

To proceed we try to approximate ln(1+ x) for small x. By Taylor expansion we have for
small x,

ln(1+ x) = x−
x2

2
+

x3

3
− · · · = x−

x2

2

(
1+ (−

2
3

x+ · · · )︸ ︷︷ ︸
call this g(x)

)
= x−

x2

2
(1+g(x)),

where g(x)→ 0 as x→ 0. The expression on the RHS is obtained by factoring out the term
x2

2 for each of higher order terms.

If we replace x by − 1
k+1 , we have

ak+1 − ak =
1

k +1
+ ln
(

1−
1

k +1

)
= −

1
2

1
(k +1)2

(
1+g

(
−

1
k +1

))
.

Since 1+ g(− 1
k+1 )→ 1 as k → ∞, the sequence {1+ g(− 1

k+1 )} is bounded, thus there is
C > 0,

|ak+1 − ak | =
∣∣∣ 1

k +1
+ ln
(

1−
1

k +1

)∣∣∣ ≤ C
1

(k +1)2

for every k ≥ 1.

Now for every m > n, we have

|am − an | =

∣∣∣∣∣ m
ÿ

k=1

(ak+1 − ak )

∣∣∣∣∣ ≤ m−1
ÿ

k=n

|ak+1 − ak | ≤ C
m−1
ÿ

k=n

1
(k +1)2 .



The first inequality comes from triangle inequality, and the first equality comes from tele-
scoping series property.

Since the series
ř 1

(k+1)2 converges, {
řn

k=1
1

(k+1)2 } is a Cauchy sequence.

Therefore for every ε > 0, there is an N such that

m > n > N Ô⇒

m−1
ÿ

k=n

1
(k +1)2 <

ε

C
,

thus

m > n > N Ô⇒ |am − an | ≤ C
m
ÿ

k=n

1
(k +1)2 < ε .

Therefore {an} is a Cauchy sequence.

Alternative Method Without Cauchy Criterion. We also have a high-school argument
in showing the convergence of ak :=

řk
i=1

1
k − ln k. By direct comparison we have

n
ÿ

k=2

1
k
≤

n
ÿ

k=2

∫ k

k−1

1
x

dx︸ ︷︷ ︸
=lnn

≤

n
ÿ

k=2

1
k −1

,

by separating the left and right inequalities, we have

1
n
≤

n
ÿ

k=1

1
k
− ln n ≤ 1,

therefore an :=
řn

k=1
1
k − ln n is both bounded above and below.

Next,

an+1 − an =
1

n+1
+ ln
(

1−
1

n+1

)
,

and actually RHS is ≤ 0. To see this, recall the convexity-like inequality: For every x > −1,

1+ x ≤ ex Ô⇒ ln(1+ x) ≤ x.

This inequality is easily observed since f (x) = ex is convex and 1+ x is the tangent to
y = ex at x = 0:

x

y

y = 1+ x

y = ex

Therefore an+1 − an =
1

n+1
+ ln(1−

1
n+1

) ≤
1

n+1
+ (−

1
n+1

) = 0.

Exercises

We just list a few sequences of standard form here, more exercises of this type can be
found in Dr Li’s presentation problems assigned for students.

1. (2008 Fall) Let x1 = 1 and for n ≥ 1 define

xn+1 =
4
√

xn + xn
3

.

Show that {xn} converges and find its limit.

2. (Rudin, p.81) Let a > 0 and x0 > 0, Let xn ≥ 1 be defined by

xn+1 =
1
2

(
xn +

a
xn

)
.

Show that {xn} converges to
√

a.

3. (Rudin, p.81) Fix α > 1, take x1 >
√
α and for n ≥ 1 define

xn+1 =
α+ xn
1+ xn

.

Show that {xn} converge and find its limit.

Hint: Note that 1+xn+1 = 2+ α−1
1+xn

, if we let un = 1+xn, then un = 2+ α−1
un

, which
is very very similar to Example 2. You may now imitate the solution there.

4. Let a1 = 1. If an+1 = an +
1

an
for n ≥ 1, prove that lim

n→∞
an =∞.

5. Let {xn} converge and define yn = n(xn − xn−1) for n ≥ 2. Is {yn} necessarily
convergent? If {yn} converges, show that yn → 0.

6. Let a1 ≥ a2 ≥ · · · > 0, sn = a1+ a2+ · · ·+ an and bn =
1

an+1
−

1
an

. Prove that if the

sequence {sn} converges, then the sequence {bn} is unbounded.

In the following the rigorous definition of convergence may/must be involved.

7. Suppose x1, x2, · · · ≥ 0 and lim
n→∞

(−1)n xn exists, show that lim
n→∞

xn also exists.

8. Show that if both {an} and {bn} are bounded, then there is a sequence of integers
n1 < n2 < n3 < · · · such that {ank } and {bnk } are both convergent.

Hint: Use Theorem 6 twice!

Remark. Therefore from this we can conclude that any bounded sequence in R222

has a convergent subsequence. This is because any sequence in R2 is of the form
{x̃n} = {(an,bn)}, and that {x̃n} is bounded in R2 means {an},{bn} are bounded.



9. Let p > 0 and lim
n→∞

npan = A, including the case A = ±∞. Show that if p > 1 and

A is finite, then
∞
ř

n=1
an converges; if p ≤ 1 and A 6= 0, then

∞
ř

n=1
an diverges.

The next two exercises will be technical.

10. (2007 Fall) Let a1, a2, · · · > 0. Prove that if lim
n→∞

an

an+1+ an+2
= 0, then {an} is

unbounded.

11. (2009 Fall) Let a1, a2, · · · > 0 and for n = 1,2, . . . , let

Pn(x) = (x+1)(x+2) · · · (x+ n)
and

Qn(x) = (x+ a1)(x+ a2) · · · (x+ an).

(a) For every x ∈ R, determine whether
∞
ÿ

n=1

Pn(x)
n!

xn converges or not.

(b) Prove that lim
n→∞

an

Qn(1)
= 0.


