Math2033 Mathematical Analysis (Spring 2013-2014) Tutorial Note 4 Sequences

— We need to know –

- the usual strategy to show typical sequences converge;
- how to apply the rigorous definition of limit of sequences.

Key definitions and results

Definition 1 (Convergence of Sequence). We say that $\{a_n\}$ (or a_n) converges to a, denoted by $\lim_{n \to \infty} a_n = a$ or $a_n \to a$, if

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \quad \text{s.t.} \quad n > N \implies |a_n - a| < \epsilon.$

Remark. In Definition 1 we don't treat $a = \infty$ as a limit of sequence.

Definition 2 (Divergence to $\pm \infty$).

- { a_n } diverges to $+\infty$, denoted by $\lim_{n \to \infty} a_n = +\infty$, if $\forall b > 0, \exists N \in \mathbb{N}$ s.t. $n > N \implies a_n > b$.
- { a_n } diverges to $-\infty$, denoted by $\lim_{n \to \infty} a_n = -\infty$, if $\forall b < 0, \exists N \in \mathbb{N} \quad \text{s.t.} \quad n > N \implies a_n < b.$
- **Definition 3 (Bounded Sequence).** A sequence $\{a_n\}$ is **bounded** if there is an M > 0 such that $|a_n| \le M$ for each n.

Definition 4 (Cauchy Sequence). A sequence $\{a_n\}$ is a **Cauchy sequence** if

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \quad \text{s.t.} \quad m, n > N \implies |x_m - x_n| < \epsilon.$$

Theorem 5 (Sandwich). If for each $n, x_n \le z_n \le y_n$, then

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = z \implies \lim_{n \to \infty} z_n = z.$$

Theorem 6 (Bolzano-Weierstrass). If $\{x_n\}$ is bounded, then it has a convergent subsequence, denoted by $\{x_{n_k}\}$.

Remark. We treat n_k as a strictly increasing function from $\mathbb{N} \to \mathbb{N}$ in k, say $n_k = 2k$.

Theorem 7 (Cauchy). $\{x_n\}$ converges if and only if it is a Cauchy sequence.

Example 1 (2009 Fall). Let $x_1 = 1$ and for n = 1, 2, ... let

$$x_{n+1} = \frac{x_n^3 + x_n}{5}.$$
 (*)

Prove that the sequence $\{x_n\}$ converges and find its limit.

Sol • We show that $\{x_n\}$ is decreasing by MI. When N = 1,

$$x_2 = \frac{1+1}{5} < x_1 = 1.$$

Assume $x_n < x_{n-1}$, then

$$x_{n+1} = \frac{x_n^3 + x_n}{5} < \frac{x_{n-1}^3 + x_{n-1}}{5} = x_n,$$

therefore by MI, $\{x_n\}$ is decreasing.

- Since x_n is bounded below by $0, x_n \to a$ for some $a \in \mathbb{R}$.
- By taking $\lim_{n\to\infty}$ on both sides of (*),

$$a = \frac{a^3 + a}{5} \iff a(a+2)(a-2) = 0$$

iff a = 0, -2 or a = 2, and the choice 2 and -2 are rejected since $0 \le x_n \le x_1 = 1$ for every $n \ge 1$, therefore

$$\lim_{n \to \infty} x_n = 0.$$

Remark. Sequences of the form $x_{n+1} = P(x_n)$ with P(x) being **obviously increasing** can be likely tackled in the same way.

Example 2 (2009 Fall). Let $x_1 = 2$ and for n = 1, 2, ..., let

$$x_{n+1} = \frac{22}{3} + \frac{16}{3x_n}$$

(a) Prove that the sequence $\{x_n\}$ converges and find its limit.

(b) Prove that the series
$$\sum_{n=1}^{\infty} (x_n - x_{n+1})$$
 converges and determine its sum.

 \underline{Sol} (a) The numerical experiment shows us

$$0 < x_{2n-1} < x_{2n+1} < x_{2n+2} < x_{2n}.$$

Having formulated this statement, we can prove this by induction on n. This is standard and has been done in Tutorial Note 0.

The *even sequence* $\{x_{2n}\}$ is shown to be decreasing. The induction shows that $x_{2n} > 0$ for every *n*, hence it is bounded below, and thus convergent.

The *odd sequence* $\{x_{2n-1}\}$ is increasing. By

$$x_{2n-1} \le x_{2n+2} < x_{2n} < x_{2n-2} < \dots < x_2$$

for every *n*, so $\{x_{2n-1}\}$ is bounded above, and hence convergent.

Thus it makes sense to define

$$a = \lim_{n \to \infty} x_{2n-1}$$
 and $b = \lim_{n \to \infty} x_{2n}$.

To show $\{x_n\}$ converges, we need to show a = b. By taking n = 2k and n = 2k - 1 respectively in the definition of recursive relation, we have

$$x_{2k+1} = \frac{22}{3} + \frac{16}{3x_{2k}}$$
 and $x_{2k} = \frac{22}{3} + \frac{16}{3x_{2k-1}}$.

By taking $k \to \infty$, we have

$$a = \frac{22}{3} + \frac{16}{3b}$$
 and $b = \frac{22}{3} + \frac{16}{3a}$.

The former equation gives 3ab = 22b + 16. The latter one gives 3ab = 22a + 16, equating them we have a = b, therefore $\{x_n\}$ converges.

As a = b, we have $a = \frac{22}{3} + \frac{16}{3a}$, we solve it to get a = -2/3 (rej.) or a = 8, we conclude $\lim_{n \to \infty} x_n = a = 8$.

(b) The series is called a telescoping series since its partial sum can be computed explicitly as follows: $\sum_{n=1}^{N} (x_n - x_{n+1}) = x_1 - x_{N+1} = 2 - x_{N+1}$. By taking $N \to \infty$, we have

$$\sum_{n=1}^{\infty} (x_n - x_{n+1}) = 2 - 8 = -6.$$

Example 3. Show that the sequence

$$a_n = \sum_{k=1}^n \frac{1}{k} - \ln n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n$$

converges by showing it is a Cauchy sequence.

Remark. The limit $\gamma := \lim_{n \to \infty} a_n = 0.5772156649$ is called the **Euler constant**.

Sol By definition we have

$$a_{k+1} - a_k$$

$$= \left(1 + \frac{1}{2} + \dots + \frac{1}{k+1} - \ln(k+1)\right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{k} - \ln k\right)$$

$$= \frac{1}{k+1} + \ln \frac{k}{k+1}$$

$$= \frac{1}{k+1} + \ln \left(1 - \frac{1}{k+1}\right).$$

To proceed we try to approximate ln(1 + x) for small x. By Taylor expansion we have for small x,

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = x - \frac{x^2}{2} \left(1 + \underbrace{(-\frac{2}{3}x + \dots)}_{\text{call this } g(x)} \right) = x - \frac{x^2}{2} (1 + g(x)),$$

where $g(x) \to 0$ as $x \to 0$. The expression on the RHS is obtained by factoring out the term $\frac{x^2}{2}$ for each of higher order terms.

If we replace x by $-\frac{1}{k+1}$, we have

$$a_{k+1} - a_k = \frac{1}{k+1} + \ln\left(1 - \frac{1}{k+1}\right) = -\frac{1}{2}\frac{1}{(k+1)^2}\left(1 + g\left(-\frac{1}{k+1}\right)\right).$$

Since $1 + g(-\frac{1}{k+1}) \to 1$ as $k \to \infty$, the sequence $\{1 + g(-\frac{1}{k+1})\}$ is bounded, thus there is C > 0,

$$|a_{k+1} - a_k| = \left|\frac{1}{k+1} + \ln\left(1 - \frac{1}{k+1}\right)\right| \le C\frac{1}{(k+1)^2}$$

for every $k \ge 1$.

Now for every m > n, we have

$$|a_m - a_n| = \left| \sum_{k=1}^m (a_{k+1} - a_k) \right| \le \sum_{k=n}^{m-1} |a_{k+1} - a_k| \le C \sum_{k=n}^{m-1} \frac{1}{(k+1)^2}.$$

The first inequality comes from triangle inequality, and the first equality comes from telescoping series property.

Since the series
$$\sum \frac{1}{(k+1)^2}$$
 converges, $\{\sum_{k=1}^n \frac{1}{(k+1)^2}\}$ is a Cauchy sequence.

Therefore for every $\epsilon > 0$, there is an N such that

$$m > n > N \implies \sum_{k=n}^{m-1} \frac{1}{(k+1)^2} < \frac{\epsilon}{C},$$

thus

$$m>n>N \implies |a_m-a_n|\leq C\sum_{k=n}^m \frac{1}{(k+1)^2}<\epsilon.$$

Therefore $\{a_n\}$ is a Cauchy sequence.

Alternative Method Without Cauchy Criterion. We also have a high-school argument in showing the convergence of $a_k := \sum_{i=1}^k \frac{1}{k} - \ln k$. By direct comparison we have

$$\sum_{k=2}^{n} \frac{1}{k} \le \underbrace{\sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{x} \, dx}_{=\ln n} \le \sum_{k=2}^{n} \frac{1}{k-1},$$

by separating the left and right inequalities, we have

$$\frac{1}{n} \le \sum_{k=1}^{n} \frac{1}{k} - \ln n \le 1$$

therefore $a_n := \sum_{k=1}^n \frac{1}{k} - \ln n$ is both bounded above and below. Next,

$$a_{n+1} - a_n = \frac{1}{n+1} + \ln\left(1 - \frac{1}{n+1}\right),$$

and actually RHS is ≤ 0 . To see this, recall the convexity-like inequality: For every x > -1,

$$1 + x \le e^x \implies \ln(1 + x) \le x.$$

This inequality is easily observed since $f(x) = e^x$ is convex and 1 + x is the tangent to $y = e^x$ at x = 0:

Therefore
$$a_{n+1} - a_n = \frac{1}{n+1} + \ln(1 - \frac{1}{n+1}) \le \frac{1}{n+1} + (-\frac{1}{n+1}) = 0.$$

Exercises

We just list a few sequences of standard form here, more exercises of this type can be found in Dr Li's presentation problems assigned for students.

1. (2008 Fall) Let $x_1 = 1$ and for $n \ge 1$ define

$$x_{n+1} = \frac{4\sqrt{x_n} + x_n}{3}$$

Show that $\{x_n\}$ converges and find its limit.

2. (Rudin, p.81) Let a > 0 and $x_0 > 0$, Let $x_n \ge 1$ be defined by

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

Show that $\{x_n\}$ converges to \sqrt{a} .

3. (Rudin, p.81) Fix $\alpha > 1$, take $x_1 > \sqrt{\alpha}$ and for $n \ge 1$ define

$$x_{n+1} = \frac{\alpha + x_n}{1 + x_n}.$$

Show that $\{x_n\}$ converge and find its limit.

Hint: Note that $1 + x_{n+1} = 2 + \frac{\alpha - 1}{1 + x_n}$, if we let $u_n = 1 + x_n$, then $u_n = 2 + \frac{\alpha - 1}{u_n}$, which is very very similar to Example 2. You may now imitate the solution there.

- **4.** Let $a_1 = 1$. If $a_{n+1} = a_n + \frac{1}{a_n}$ for $n \ge 1$, prove that $\lim_{n \to \infty} a_n = \infty$.
- **5.** Let $\{x_n\}$ converge and define $y_n = n(x_n x_{n-1})$ for $n \ge 2$. Is $\{y_n\}$ necessarily convergent? If $\{y_n\}$ converges, show that $y_n \to 0$.
- **6.** Let $a_1 \ge a_2 \ge \dots > 0$, $s_n = a_1 + a_2 + \dots + a_n$ and $b_n = \frac{1}{a_{n+1}} \frac{1}{a_n}$. Prove that if the sequence $\{s_n\}$ converges, then the sequence $\{b_n\}$ is unbounded.

In the following the rigorous definition of convergence may/must be involved.

- 7. Suppose $x_1, x_2, \dots \ge 0$ and $\lim_{n \to \infty} (-1)^n x_n$ exists, show that $\lim_{n \to \infty} x_n$ also exists.
- **8.** Show that if both $\{a_n\}$ and $\{b_n\}$ are bounded, then there is a sequence of integers $n_1 < n_2 < n_3 < \cdots$ such that $\{a_{n_k}\}$ and $\{b_{n_k}\}$ are both convergent.

Hint: Use Theorem 6 twice!

Remark. Therefore from this we can conclude that any bounded sequence in \mathbb{R}^2 has a convergent subsequence. This is because any sequence in \mathbb{R}^2 is of the form $\{\tilde{x}_n\} = \{(a_n, b_n)\}$, and that $\{\tilde{x}_n\}$ is bounded in \mathbb{R}^2 means $\{a_n\}, \{b_n\}$ are bounded.

9. Let
$$p > 0$$
 and $\lim_{n \to \infty} n^p a_n = A$, including the case $A = \pm \infty$. Show that if $p > 1$ and A is finite, then $\sum_{n=1}^{\infty} a_n$ converges; if $p \le 1$ and $A \ne 0$, then $\sum_{n=1}^{\infty} a_n$ diverges.

The next two exercises will be technical.

- **10.** (2007 Fall) Let $a_1, a_2, \dots > 0$. Prove that if $\lim_{n \to \infty} \frac{a_n}{a_{n+1} + a_{n+2}} = 0$, then $\{a_n\}$ is unbounded.
- **11.** (2009 Fall) Let $a_1, a_2, \dots > 0$ and for $n = 1, 2, \dots$, let

$$P_n(x) = (x+1)(x+2)\cdots(x+n)$$

and

$$Q_n(x) = (x + a_1)(x + a_2) \cdots (x + a_n).$$

(a) For every x ∈ ℝ, determine whether ∑_{n=1}[∞] P_n(x)/n! xⁿ converges or not.
(b) Prove that lim_{n→∞} a_n/Q_n(1) = 0.