- the usual strategy to show typical sequences converge;
- how to apply the rigorous definition of limit of sequences.
Key definitions and results

Definition 1 (Convergence of Seqeucne). We say that $\left\{\boldsymbol{a}_{\boldsymbol{n}}\right\}$ (or $\boldsymbol{a}_{\boldsymbol{n}}$) converges to \boldsymbol{a}, denoted by $\lim _{n \rightarrow \infty} a_{n}=a$ or $a_{n} \rightarrow a$, if

$$
\forall \epsilon>0, \exists N \in \mathbb{N} \quad \text { s.t. } \quad n>N \Longrightarrow\left|a_{n}-a\right|<\epsilon .
$$

Remark. In Definition 1 we don't treat $a=\infty$ as a limit of sequence.

Definition 2 (Divergence to $\pm \infty$).

- $\left\{a_{n}\right\}$ diverges to $+\infty$, denoted by $\lim _{n \rightarrow \infty} a_{n}=+\infty$, if

$$
\forall b>0, \exists N \in \mathbb{N} \quad \text { s.t. } \quad n>N \Longrightarrow a_{n}>b
$$

- $\left\{a_{n}\right\}$ diverges to $-\infty$, denoted by $\lim _{n \rightarrow \infty} a_{n}=-\infty$, if

$$
\forall b<0, \exists N \in \mathbb{N} \quad \text { s.t. } \quad n>N \Longrightarrow a_{n}<b .
$$

Definition 3 (Bounded Sequence). A sequence $\left\{a_{n}\right\}$ is bounded if there is an $M>$ 0 such that $\left|a_{n}\right| \leq M$ for each n.

Definition 4 (Cauchy Sequence). A sequence $\left\{a_{n}\right\}$ is a Cauchy sequence if

$$
\forall \epsilon>0, \exists N \in \mathbb{N} \quad \text { s.t. } \quad m, n>N \Longrightarrow\left|x_{m}-x_{n}\right|<\epsilon .
$$

Theorem 5 (Sandwich). If for each $n, x_{n} \leq z_{n} \leq y_{n}$, then

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=z \Longrightarrow \lim _{n \rightarrow \infty} z_{n}=z
$$

Theorem 6 (Bolzano-Weierstrass). If $\left\{x_{n}\right\}$ is bounded, then it has a convergent subsequence, denoted by $\left\{x_{n_{k}}\right\}$.

Remark. We treat n_{k} as a strictly increasing function from $\mathbb{N} \rightarrow \mathbb{N}$ in k, say $n_{k}=2 k$.

Theorem 7 (Cauchy). $\left\{x_{n}\right\}$ converges if and only if it is a Cauchy sequence.

Example 1 (2009 Fall). Let $x_{1}=1$ and for $n=1,2, \ldots$ let

$$
\begin{equation*}
x_{n+1}=\frac{x_{n}^{3}+x_{n}}{5} \tag{*}
\end{equation*}
$$

Prove that the sequence $\left\{x_{n}\right\}$ converges and find its limit.

Sol - We show that $\left\{x_{n}\right\}$ is decreasing by MI.
When $N=1$,

$$
x_{2}=\frac{1+1}{5}<x_{1}=1
$$

Assume $x_{n}<x_{n-1}$, then

$$
x_{n+1}=\frac{x_{n}^{3}+x_{n}}{5}<\frac{x_{n-1}^{3}+x_{n-1}}{5}=x_{n},
$$

therefore by MI, $\left\{x_{n}\right\}$ is decreasing.

- Since x_{n} is bounded below by $0, x_{n} \rightarrow a$ for some $a \in \mathbb{R}$.
- By taking $\lim _{n \rightarrow \infty}$ on both sides of $(*)$,

$$
a=\frac{a^{3}+a}{5} \Longleftrightarrow a(a+2)(a-2)=0
$$

iff $a=0,-2$ or $a=2$, and the choice 2 and -2 are rejected since $0 \leq x_{n} \leq x_{1}=1$ for every $n \geq 1$, therefore

$$
\lim _{n \rightarrow \infty} x_{n}=0
$$

Remark. Sequences of the form $x_{n+1}=P\left(x_{n}\right)$ with $P(x)$ being obviously increasing can be likely tackled in the same way.

Example 2 (2009 Fall). Let $x_{1}=2$ and for $n=1,2, \ldots$, let

$$
x_{n+1}=\frac{22}{3}+\frac{16}{3 x_{n}} .
$$

(a) Prove that the sequence $\left\{x_{n}\right\}$ converges and find its limit.
(b) Prove that the series $\sum_{n=1}^{\infty}\left(x_{n}-x_{n+1}\right)$ converges and determine its sum.

Sol (a) The numerical experiment shows us

$$
0<x_{2 n-1}<x_{2 n+1}<x_{2 n+2}<x_{2 n}
$$

Having formulated this statement, we can prove this by induction on n. This is standard and has been done in Tutorial Note 0 .
The even sequence $\left\{x_{2 n}\right\}$ is shown to be decreasing. The induction shows that $x_{2 n}>0$ for every n, hence it is bounded below, and thus convergent.

The odd sequence $\left\{x_{2 n-1}\right\}$ is increasing. By

$$
x_{2 n-1} \leq x_{2 n+2}<x_{2 n}<x_{2 n-2}<\cdots<x_{2}
$$

for every n, so $\left\{x_{2 n-1}\right\}$ is bounded above, and hence convergent.
Thus it makes sense to define

$$
a=\lim _{n \rightarrow \infty} x_{2 n-1} \quad \text { and } \quad b=\lim _{n \rightarrow \infty} x_{2 n}
$$

To show $\left\{x_{n}\right\}$ converges, we need to show $a=b$. By taking $n=2 k$ and $n=2 k-1$ respectively in the definition of recursive relation, we have

$$
x_{2 k+1}=\frac{22}{3}+\frac{16}{3 x_{2 k}} \quad \text { and } \quad x_{2 k}=\frac{22}{3}+\frac{16}{3 x_{2 k-1}}
$$

By taking $k \rightarrow \infty$, we have

$$
a=\frac{22}{3}+\frac{16}{3 b} \quad \text { and } \quad b=\frac{22}{3}+\frac{16}{3 a}
$$

The former equation gives $3 a b=22 b+16$. The latter one gives $3 a b=22 a+16$, equating them we have $a=b$, therefore $\left\{x_{n}\right\}$ converges.
As $a=b$, we have $a=\frac{22}{3}+\frac{16}{3 a}$, we solve it to get $a=-2 / 3$ (rej.) or $a=8$, we conclude $\lim _{n \rightarrow \infty} x_{n}=a=8$.
(b) The series is called a telescoping series since its partial sum can be computed explicitly as follows: $\sum_{n=1}^{N}\left(x_{n}-x_{n+1}\right)=x_{1}-x_{N+1}=2-x_{N+1}$. By taking $N \rightarrow \infty$, we have

$$
\sum_{n=1}^{\infty}\left(x_{n}-x_{n+1}\right)=2-8=-6
$$

Example 3. Show that the sequence

$$
a_{n}=\sum_{k=1}^{n} \frac{1}{k}-\ln n=1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n
$$

converges by showing it is a Cauchy sequence.

Remark. The limit $\gamma:=\lim _{n \rightarrow \infty} a_{n}=0.5772156649$ is called the Euler constant.

Sol By definition we have

$$
\begin{aligned}
& a_{k+1}-a_{k} \\
= & \left(1+\frac{1}{2}+\cdots+\frac{1}{k+1}-\ln (k+1)\right)-\left(1+\frac{1}{2}+\cdots+\frac{1}{k}-\ln k\right) \\
= & \frac{1}{k+1}+\ln \frac{k}{k+1} \\
= & \frac{1}{k+1}+\ln \left(1-\frac{1}{k+1}\right) .
\end{aligned}
$$

To proceed we try to approximate $\ln (1+x)$ for small x. By Taylor expansion we have for small x,

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots=x-\frac{x^{2}}{2}(1+\underbrace{\left(-\frac{2}{3} x+\cdots\right)}_{\text {call this } g(x)})=x-\frac{x^{2}}{2}(1+g(x))
$$

where $g(x) \rightarrow 0$ as $x \rightarrow 0$. The expression on the RHS is obtained by factoring out the term $\frac{x^{2}}{2}$ for each of higher order terms.
If we replace x by $-\frac{1}{k+1}$, we have

$$
a_{k+1}-a_{k}=\frac{1}{k+1}+\ln \left(1-\frac{1}{k+1}\right)=-\frac{1}{2} \frac{1}{(k+1)^{2}}\left(1+g\left(-\frac{1}{k+1}\right)\right)
$$

Since $1+g\left(-\frac{1}{k+1}\right) \rightarrow 1$ as $k \rightarrow \infty$, the sequence $\left\{1+g\left(-\frac{1}{k+1}\right)\right\}$ is bounded, thus there is $C>0$,

$$
\left|a_{k+1}-a_{k}\right|=\left|\frac{1}{k+1}+\ln \left(1-\frac{1}{k+1}\right)\right| \leq C \frac{1}{(k+1)^{2}}
$$

for every $k \geq 1$.
Now for every $m>n$, we have

$$
\left|a_{m}-a_{n}\right|=\left|\sum_{k=1}^{m}\left(a_{k+1}-a_{k}\right)\right| \leq \sum_{k=n}^{m-1}\left|a_{k+1}-a_{k}\right| \leq C \sum_{k=n}^{m-1} \frac{1}{(k+1)^{2}}
$$

The first inequality comes from triangle inequality, and the first equality comes from telescoping series property.
Since the series $\sum \frac{1}{(k+1)^{2}}$ converges, $\left\{\sum_{k=1}^{n} \frac{1}{(k+1)^{2}}\right\}$ is a Cauchy sequence.
Therefore for every $\epsilon>0$, there is an N such that

$$
m>n>N \Longrightarrow \sum_{k=n}^{m-1} \frac{1}{(k+1)^{2}}<\frac{\epsilon}{C}
$$

thus

$$
m>n>N \Longrightarrow\left|a_{m}-a_{n}\right| \leq C \sum_{k=n}^{m} \frac{1}{(k+1)^{2}}<\epsilon
$$

Therefore $\left\{a_{n}\right\}$ is a Cauchy sequence.
Alternative Method Without Cauchy Criterion. We also have a high-school argument in showing the convergence of $a_{k}:=\sum_{i=1}^{k} \frac{1}{k}-\ln k$. By direct comparison we have

$$
\sum_{k=2}^{n} \frac{1}{k} \leq \underbrace{\sum_{k=2}^{n} \int_{k-1}^{k} \frac{1}{x} d x}_{=\ln n} \leq \sum_{k=2}^{n} \frac{1}{k-1}
$$

by separating the left and right inequalities, we have

$$
\frac{1}{n} \leq \sum_{k=1}^{n} \frac{1}{k}-\ln n \leq 1
$$

therefore $a_{n}:=\sum_{k=1}^{n} \frac{1}{k}-\ln n$ is both bounded above and below.
Next,

$$
a_{n+1}-a_{n}=\frac{1}{n+1}+\ln \left(1-\frac{1}{n+1}\right)
$$

and actually RHS is ≤ 0. To see this, recall the convexity-like inequality: For every $x>-1$,

$$
1+x \leq e^{x} \Longrightarrow \ln (1+x) \leq x
$$

This inequality is easily observed since $f(x)=e^{x}$ is convex and $1+x$ is the tangent to $y=e^{x}$ at $x=0$:

Therefore $a_{n+1}-a_{n}=\frac{1}{n+1}+\ln \left(1-\frac{1}{n+1}\right) \leq \frac{1}{n+1}+\left(-\frac{1}{n+1}\right)=0$.

Exercises

We just list a few sequences of standard form here, more exercises of this type can be found in Dr Li's presentation problems assigned for students.

1. (2008 Fall) Let $x_{1}=1$ and for $n \geq 1$ define

$$
x_{n+1}=\frac{4 \sqrt{x_{n}}+x_{n}}{3}
$$

Show that $\left\{x_{n}\right\}$ converges and find its limit.
2. (Rudin, p.81) Let $a>0$ and $x_{0}>0$, Let $x_{n} \geq 1$ be defined by

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right) .
$$

Show that $\left\{x_{n}\right\}$ converges to \sqrt{a}.
3. (Rudin, p.81) Fix $\alpha>1$, take $x_{1}>\sqrt{\alpha}$ and for $n \geq 1$ define

$$
x_{n+1}=\frac{\alpha+x_{n}}{1+x_{n}}
$$

Show that $\left\{x_{n}\right\}$ converge and find its limit.
Hint: Note that $1+x_{n+1}=2+\frac{\alpha-1}{1+x_{n}}$, if we let $u_{n}=1+x_{n}$, then $u_{n}=2+\frac{\alpha-1}{u_{n}}$, which is very very similar to Example 2. You may now imitate the solution there.
4. Let $a_{1}=1$. If $a_{n+1}=a_{n}+\frac{1}{a_{n}}$ for $n \geq 1$, prove that $\lim _{n \rightarrow \infty} a_{n}=\infty$.
5. Let $\left\{x_{n}\right\}$ converge and define $y_{n}=n\left(x_{n}-x_{n-1}\right)$ for $n \geq 2$. Is $\left\{y_{n}\right\}$ necessarily convergent? If $\left\{y_{n}\right\}$ converges, show that $y_{n} \rightarrow 0$.
6. Let $a_{1} \geq a_{2} \geq \cdots>0, s_{n}=a_{1}+a_{2}+\cdots+a_{n}$ and $b_{n}=\frac{1}{a_{n+1}}-\frac{1}{a_{n}}$. Prove that if the sequence $\left\{s_{n}\right\}$ converges, then the sequence $\left\{b_{n}\right\}$ is unbounded.

In the following the rigorous definition of convergence may/must be involved.
7. Suppose $x_{1}, x_{2}, \cdots \geq 0$ and $\lim _{n \rightarrow \infty}(-1)^{n} x_{n}$ exists, show that $\lim _{n \rightarrow \infty} x_{n}$ also exists.
8. Show that if both $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are bounded, then there is a sequence of integers $n_{1}<n_{2}<n_{3}<\cdots$ such that $\left\{a_{n_{k}}\right\}$ and $\left\{b_{n_{k}}\right\}$ are both convergent.
Hint: Use Theorem 6 twice!
Remark. Therefore from this we can conclude that any bounded sequence in $\mathbb{R}^{\mathbf{2}}$ has a convergent subsequence. This is because any sequence in \mathbb{R}^{2} is of the form $\left\{\tilde{x}_{n}\right\}=\left\{\left(a_{n}, b_{n}\right)\right\}$, and that $\left\{\tilde{x}_{n}\right\}$ is bounded in \mathbb{R}^{2} means $\left\{a_{n}\right\},\left\{b_{n}\right\}$ are bounded.
9. Let $p>0$ and $\lim _{n \rightarrow \infty} n^{p} a_{n}=A$, including the case $A= \pm \infty$. Show that if $p>1$ and A is finite, then $\sum_{n=1}^{\infty} a_{n}$ converges; if $p \leq 1$ and $A \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

The next two exercises will be technical.
10. (2007 Fall) Let $a_{1}, a_{2}, \cdots>0$. Prove that if $\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}+a_{n+2}}=0$, then $\left\{a_{n}\right\}$ is unbounded.
11. (2009 Fall) Let $a_{1}, a_{2}, \cdots>0$ and for $n=1,2, \ldots$, let

$$
P_{n}(x)=(x+1)(x+2) \cdots(x+n)
$$

and

$$
Q_{n}(x)=\left(x+a_{1}\right)\left(x+a_{2}\right) \cdots\left(x+a_{n}\right)
$$

(a) For every $x \in \mathbb{R}$, determine whether $\sum_{n=1}^{\infty} \frac{P_{n}(x)}{n!} x^{n}$ converges or not.
(b) Prove that $\lim _{n \rightarrow \infty} \frac{a_{n}}{Q_{n}(1)}=0$.

