Math3033 (Fall 2013-2014)

Tutorial Note 4

Basic Concept and Properties of Limit Inferior and Limit Superior

- Key Definitions and Results -

Definition 1. Given a sequence $\{a_n\}$ of real numbers, we denote

$$\mathcal{L} = \left\{ \ell \in [-\infty,\infty] : \ell = \lim_{k \to \infty} a_{n_k} \text{ for some subsequence } \{a_{n_k}\} \text{ of } \{a_n\} \right\}$$

the collection of **subsequential limits** of $\{a_n\}$.

Definition 2. Let $a_1, a_2, \dots \in \mathbb{R}$ and \mathcal{L} the set of its subsequential limits, we denote

$$\lim_{n \to \infty} a_n = \inf \mathcal{L} \quad \text{and} \quad \overline{\lim_{n \to \infty}} a_n = \sup \mathcal{L}$$

the **limit inferior (or lower limit)** and **limit superior (or upper limit)** respectively.

Theorem 3 (M_k & m_k). For $a_1, a_2, \dots \in \mathbb{R}$ we have

$$\overline{\lim_{n \to \infty}} a_n = \lim_{k \to \infty} M_k = \lim_{k \to \infty} \sup\{a_k, a_{k+1}, \dots\}$$

and

 $\underbrace{\lim_{n\to\infty}}_{n\to\infty}a_k=\lim_{k\to\infty}m_k=\liminf_{k\to\infty}\{a_k,a_{k+1},\ldots\}.$

Theorem 4. Let $a_1, a_2, \dots \in \mathbb{R}$ and \mathcal{L} the set of its subsequentialy limits, we have:

(i) $\overline{\lim} a_n, \underline{\lim} a_n \in \mathcal{L}.$

- (ii) $\{a_n\}$ converges $\iff \overline{\lim} a_n = \underline{\lim} a_n < \infty$.
- (iii) $\overline{\lim}(-a_n) = -\underline{\lim} a_n$ (so $\underline{\lim}(-a_n) = -\overline{\lim} a_n$).
- (iv) If c > 0, $\overline{\lim}(ca_n) = c \overline{\lim} a_n$ and $\underline{\lim}(ca_n) = c \underline{\lim} a_n$.
- (v) If $c \in \mathbb{R}$, $\overline{\lim}(c + a_n) = c + \overline{\lim} a_n$ and $\underline{\lim}(c + a_n) = c + \underline{\lim} a_n$.
- **Theorem 5.** If $x_n \leq y_n$ for all *n*, then

 $\overline{\lim} x_n \le \overline{\lim} y_n$ and $\underline{\lim} x_n \le \underline{\lim} y_n$.

Theorem 6. Let $a_1, a_2, \dots \in \mathbb{R}$, and $r \in \mathbb{R}$.

- (i) If $\overline{\lim} a_n < r$, then $a_n < r$ for all but finitely many *n*.
- (ii) If $r < \underline{\lim} a_n$, then $r < a_n$ for all but finitely many *n*.

Example 1. Find $\overline{\lim}$ and $\underline{\lim}$ of $\{x_n\}_{n=1}^{\infty}$ defined by

$$x_n = \sin \frac{n\pi}{3}.$$

Solution. We observe that

$$\{x_n\} = \left\{\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, 0, -\frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2}, 0, \frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, \dots\right\}$$

Therefore it is easy to see that all subsequential limits are

$$\mathcal{L} = \left\{ -\frac{\sqrt{3}}{2}, 0, \frac{\sqrt{3}}{2} \right\},\,$$

and therefore
$$\overline{\lim} x_n = \frac{\sqrt{3}}{2}$$
 and $\underline{\lim} x_n = -\frac{\sqrt{3}}{2}$

Example 2. Find $\overline{\lim}$ and $\underline{\lim}$ of the sequence $\{a_n\}_{n=1}^{\infty}$ defined by

$$a_n = \frac{n^2}{1+n^2} \cos\frac{2n\pi}{3}$$

Solution. We first study how a_n 's oscillate:

$$\cos\frac{2n\pi}{3} = \left\{-\frac{1}{2}, -\frac{1}{2}, 1, -\frac{1}{2}, -\frac{1}{2}, 1, \dots\right\}$$

Therefore it is natural to divide the sequences $\{a_n\}$ into groups of 3. Indeed, we have

$$\{a_n\} = \{-, -, +, -, -, +, -, -, +, \dots\}$$

Thus it is easy to see that by cancelling countably many negative terms,

$$M_{3n} = \sup\{a_{3n}, a_{3n+3}, \dots\} = \sup\left\{\frac{(3n)^2}{1+(3n)^2}\right\} = \lim_{n \to \infty} \frac{(3n)^2}{1+(3n)^2} = 1.$$

Since $\{M_n\}$ is decreasing, we have

$$\overline{\lim} a_n = \lim_{n \to \infty} M_n = \lim_{n \to \infty} M_{3n} = \lim_{n \to \infty} 1 = 1$$

Next we focus on negative terms to compute <u>lim</u>. By cancelling countably many positive terms we have

$$m_{3n+1} = \inf\{a_{3n+1}, a_{3n+2}, a_{3n+4}, a_{3n+5}, \ldots\}.$$

We compare

$$a_{3n+1} = \frac{(3n+1)^2}{1+(3n+1)^2} \left(-\frac{1}{2}\right)$$
 and $a_{3n+2} = \frac{(3n+2)^2}{1+(3n+2)^2} \left(-\frac{1}{2}\right)$,

as the larger the magnitude, the smaller the value, thus we discard a_{3n+1} in each group to conclude

$$m_{3n+1} = \inf\{a_{3n+2}, a_{3n+5}, a_{3n+8}, \dots\} = \lim_{n \to \infty} \frac{(3n+2)^2}{1+(3n+2)^2} \left(-\frac{1}{2}\right) = -\frac{1}{2}.$$

Since $\{m_n\}$ is increasing,

$$\underline{\lim} a_n = \lim_{n \to \infty} m_n = \lim_{n \to \infty} m_{3n+1} = -\frac{1}{2}.$$

Example 3. Prove Theorem 5:

If $x_n \leq y_n$ for all *n*, then

$$\overline{\lim} x_n \le \overline{\lim} y_n$$
 and $\underline{\lim} x_n \le \underline{\lim} y_n$

by using Theorem 6.

Solution. We first prove the inequality $\overline{\lim} x_n \le \overline{\lim} y_n$. If $\overline{\lim} y_n = \infty$, then we are done. Suppose now $\overline{\lim} y_n < \infty$. If we fix an $\epsilon > 0$, then

$$\overline{\lim} y_n < \overline{\lim} y_n + \epsilon,$$

hence by Theorem 6 there is an $N \in \mathbb{N}$ such that

$$n > N \implies y_n < \overline{\lim} y_n + \epsilon \implies x_n < \overline{\lim} y_n + \epsilon.$$

Recall that $\overline{\lim x_n}$ is a subsequential limit, there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\lim_{k\to\infty} x_{n_k} = \overline{\lim x_n}$. Now

$$k \text{ big } \Longrightarrow x_{n_k} < \overline{\lim} y_n + \epsilon.$$

By taking $k \to \infty$,

 $\overline{\lim} x_n \leq \overline{\lim} y_n + \epsilon.$

Since this is true for each $\epsilon > 0$, by letting $\epsilon \to 0^+$, we have $\overline{\lim} x_n \le \overline{\lim} y_n$.

ī

Of course the second inequality can be proved directly using the technique in the first paragraph, what we will do is: deduce the second inequality involving $\underline{\lim}$ from what we have proved. Since $-x_n \ge -y_n$, by taking $\overline{\lim}$ on both sides, we have

$$\overline{\operatorname{im}}(-x_n) \ge \overline{\operatorname{lim}}(-y_n).$$

By (iii) of Theorem 4 we have

$$-\underline{\lim}\,x_n \ge -\underline{\lim}\,y_n,$$

therefore we have $\underline{\lim} x_n \leq \underline{\lim} y_n$.

Example 4 (2004 Midterm (L1)). Let $a_k \ge 0$ for $k \ge 1$ and $\sum_{k=1}^{\infty} a_k$ converges, prove that

 $\underline{\lim} ka_k = 0.$

Give an example to show in the above situation, it is possible that $\overline{\lim ka_k} = 1$.

Solution. There are two ways to show $\underline{\lim} ka_k = 0$.

Method 1. We prove by contradiction. Suppose $\underline{\lim} ka_k > 0$, then there is $\alpha > 0$ such that $\underline{\lim} ka_k > \alpha > 0$. By Theorem 6 there is a $K \in \mathbb{N}$ such that

$$k > K \implies ka_k > \alpha$$
,

and this implies $a_k > \frac{\alpha}{k}$, so if we sum both sides from K + 1 to ∞ ,

$$\sum_{k=K+1}^{\infty} a_k \ge \alpha \sum_{k=K+1}^{\infty} \frac{1}{k},$$

this implies $\sum_{k=1}^{\infty} a_k$ diverges, a contradiction to the hypothesis.

Method 2. Let's fix a k and let

$$m_k = \inf\{ka_k, (k+1)a_{k+1}, \dots\},\$$

then for each $n \ge k$, $m_k \le na_n \implies \frac{m_k}{n} \le a_n$, by summing from n = k to $n = \infty$,

$$m_k \sum_{n=k}^{\infty} \frac{1}{n} \le \sum_{n=k}^{\infty} a_n$$

since $\sum_{n=1}^{\infty} a_n$ is finite and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, necessarily $m_k = 0$. As this holds for each k,

 $\underline{\lim} ka_k = \lim m_k = 0.$

Finally, we need to raise an example that:

1) $\lim ka_k = 0$: For this, we introduce infinitely many 0 to a_k 's since $a_k \ge 0$.

2) $\overline{\lim ka_k} = 1$: For this, we introduce infinitely many 1 to ka_k and keep $ka_k \le 1$. For instance, we let infinitely many k be s.t. $a_k = 1/k$, and set $a_k = 0$ otherwise, then the \mathcal{L} set can only be {0,1}.

3) $\sum a_k < \infty$: For this, our *k*'s s.t. $a_k = 1/k$ should be far enough from each other. One possible choice to fulfil 2) and 3) is to let

$$a_k = \begin{cases} 1/k, & k = n^2 \text{ for some } n \ge 1, \\ 0, & \text{otherwise.} \end{cases}$$

Of course then 1) is also satisfied.

Exercise 1. Let $a_n \ge 0$ for $n \ge 1$, show that $\overline{\lim_{n \to \infty}} \sqrt[n]{a_n} \le 1$ if and only if $\lim_{n \to \infty} \frac{a_n}{\ell^n} = 0$ for every $\ell > 1$.

Exercise 2 ($\frac{*}{\infty}$ form of Stolz-Cesàro Theorem). In this exercise we prove a refined version of Stolz Theorem that we have leant in Math2031:

Show that if $\{a_n\}$ and $\{b_n\}$ are two real sequences, $b_n \nearrow \infty$, then

$$\underbrace{\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} \le \underbrace{\lim_{n \to \infty} \frac{a_n}{b_n} \le \underbrace{\lim_{n \to \infty} \frac{a_n}{b_n} \le \underbrace{\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n}}}_{n \to \infty}$$

Exercise 3. The following are applications of Stolz Theorem.

(a) Let $\alpha > 1$, prove that

$$\lim_{n \to \infty} n \left(\frac{1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}}{n^{\alpha+1}} - \frac{1}{\alpha+1} \right) = \frac{1}{2}$$

(b) Let
$$a_1, a_2, \dots \in \mathbb{R}$$
 be such that $\lim_{n \to \infty} a_n \sum_{i=1}^n a_i^2 = 1$, prove that $\lim_{n \to \infty} \sqrt[3]{3n} a_n = 1$.

(c) Prove that

$$\lim_{n\to\infty}\frac{1}{n^2}\sum_{k=0}^n\ln\binom{n}{k}=\frac{1}{2}.$$