
Math3033 (Fall 2013-2014) Tutorial Note 4

Basic Concept and Properties of Limit Inferior and Limit Superior

Key Definitions and Results

Definition 1. Given a sequence {an} of real numbers, we denote

L =

{
` ∈ [−∞,∞] : ` = lim

k→∞
ank for some subsequence {ank } of {an}

}
the collection of subsequential limits of {an}.

Definition 2. Let a1,a2,· · · ∈ R and L the set of its subsequential limits, we denote

lim
n→∞

an = infL and lim
n→∞

an = supL

the limit inferior (or lower limit) and limit superior (or upper limit) respec-
tively.

Theorem 3 (Mk & mk). For a1,a2,· · · ∈ R we have

lim
n→∞

an = lim
k→∞

Mk = lim
k→∞

sup{ak ,ak+1,. . . }

and
lim
n→∞

ak = lim
k→∞

mk = lim
k→∞

inf{ak ,ak+1,. . . }.

Theorem 4. Let a1,a2,· · · ∈ R and L the set of its subsequentialy limits, we have:

(i) lim an ,lim an ∈ L.

(ii) {an} converges ⇐⇒ lim an = lim an <∞.

(iii) lim(−an) = − lim an (so lim(−an) = − lim an).

(iv) If c > 0, lim(can) = c lim an and lim(can) = c lim an .

(v) If c ∈ R, lim(c+ an) = c+ lim an and lim(c+ an) = c+ lim an .

Theorem 5. If xn ≤ yn for all n, then

lim xn ≤ lim yn and lim xn ≤ lim yn .

Theorem 6. Let a1,a2,· · · ∈ R, and r ∈ R.

(i) If lim an < r , then an < r for all but finitely many n.

(ii) If r < lim an , then r < an for all but finitely many n.

Example 1. Find lim and lim of {xn}∞n=1 defined by

xn = sin
nπ
3
.

Solution. We observe that

{xn} =

{√
3

2
,

√
3

2
,0,−
√

3
2
,−

√
3

2
,0,
√

3
2
,

√
3

2
,. . .

}
.

Therefore it is easy to see that all subsequential limits are

L =

{
−

√
3

2
,0,
√

3
2

}
,

and therefore lim xn =
√

3
2 and lim xn = −

√
3

2 .



Example 2. Find lim and lim of the sequence {an}
∞
n=1 defined by

an =
n2

1+ n2 cos
2nπ

3
.

Solution. We first study how an’s oscillate:

cos
2nπ

3
=

{
−

1
2
,−

1
2
,1,−

1
2
,−

1
2
,1,. . .

}
.

Therefore it is natural to divide the sequences {an} into groups of 3. Indeed, we have

{an} = {−,−,+,−,−,+,−,−,+,. . . }

Thus it is easy to see that by cancelling countably many negative terms,

M3n = sup{a3n ,a3n+3,. . . } = sup
{

(3n)2

1+ (3n)2

}
= lim

n→∞

(3n)2

1+ (3n)2 = 1.

Since {Mn} is decreasing, we have

lim an = lim
n→∞

Mn = lim
n→∞

M3n = lim
n→∞

1 = 1.

Next we focus on negative terms to compute lim. By cancelling countably many positive
terms we have

m3n+1 = inf{a3n+1,a3n+2, a3n+4,a3n+5, . . . }.

We compare

a3n+1 =
(3n+1)2

1+ (3n+1)2

(
−

1
2

)
and a3n+2 =

(3n+2)2

1+ (3n+2)2

(
−

1
2

)
,

as the larger the magnitude, the smaller the value, thus we discard a3n+1 in each group
to conclude

m3n+1 = inf{a3n+2,a3n+5,a3n+8,. . . } = lim
n→∞

(3n+2)2

1+ (3n+2)2

(
−

1
2

)
= −

1
2
.

Since {mn} is increasing,

lim an = lim
n→∞

mn = lim
n→∞

m3n+1 = −
1
2
.

Example 3. Prove Theorem 5:

If xn ≤ yn for all n, then

lim xn ≤ lim yn and lim xn ≤ lim yn .

by using Theorem 6.

Solution. We first prove the inequality lim xn ≤ lim yn . If lim yn = ∞, then we are done.
Suppose now lim yn <∞. If we fix an ε > 0, then

lim yn < lim yn + ε,

hence by Theorem 6 there is an N ∈ N such that

n > N Ô⇒ yn < lim yn + ε Ô⇒ xn < lim yn + ε .

Recall that lim xn is a subsequential limit, there is a subsequence {xnk } of {xn} such that
limk→∞ xnk = lim xn . Now

k big Ô⇒ xnk < lim yn + ε .

By taking k →∞,
lim xn ≤ lim yn + ε .

Since this is true for each ε > 0, by letting ε → 0+, we have lim xn ≤ lim yn .
Of course the second inequality can be proved directly using the technique in the

first paragraph, what we will do is: deduce the second inequality involving lim from what
we have proved. Since −xn ≥ −yn , by taking lim on both sides, we have

lim(−xn) ≥ lim(−yn).

By (iii) of Theorem 4 we have

− lim xn ≥ − lim yn ,

therefore we have lim xn ≤ lim yn .



Example 4 (2004 Midterm (L1)). Let ak ≥ 0 for k ≥ 1 and
ř∞

k=1 ak con-
verges, prove that

lim kak = 0.

Give an example to show in the above situation, it is possible that lim kak = 1.

Solution. There are two ways to show lim kak = 0.

Method 1. We prove by contradiction. Suppose lim kak > 0, then there is α > 0
such that lim kak > α > 0. By Theorem 6 there is a K ∈ N such that

k > K Ô⇒ kak > α,

and this implies ak > α
k , so if we sum both sides from K +1 to∞,

∞
ÿ

k=K+1

ak ≥ α
∞
ÿ

k=K+1

1
k
,

this implies
ř∞

k=1 ak diverges, a contradiction to the hypothesis.

Method 2. Let’s fix a k and let

mk = inf{kak ,(k +1)ak+1,. . . },

then for each n ≥ k, mk ≤ nan Ô⇒ mk
n ≤ an , by summing from n = k to n =∞,

mk

∞
ÿ

n=k

1
n
≤

∞
ÿ

n=k

an ,

since
ř∞

n=1 an is finite and
ř∞

n=1
1
n diverges, necessarily mk = 0. As this holds for each

k,
lim kak = lim mk = 0.

Finally, we need to raise an example that:

1) lim kak = 0: For this, we introduce infinitely many 0 to ak ’s since ak ≥ 0.

2) lim kak = 1: For this, we introduce infinitely many 1 to kak and keep kak ≤ 1. For
instance, we let infinitely many k be s.t. ak = 1/k, and set ak = 0 otherwise, then
the L set can only be {0,1}.

3)
ř

ak <∞: For this, our k’s s.t. ak = 1/k should be far enough from each other.

One possible choice to fulfil 2) and 3) is to let

ak =

{
1/k, k = n2 for some n ≥ 1,
0, otherwise.

Of course then 1) is also satisfied.

Exercise 1. Let an ≥ 0 for n ≥ 1, show that lim
n→∞

n
√

an ≤ 1 if and only if lim
n→∞

an

`n
= 0

for every ` > 1.

Exercise 2 ( ∗
∞

form of Stolz-Cesàro Theorem). In this exercise we prove a re-
fined version of Stolz Theorem that we have leant in Math2031:

Show that if {an} and {bn} are two real sequences, bn ↗∞, then

lim
n→∞

an+1− an

bn+1− bn
≤ lim

n→∞

an

bn
≤ lim

n→∞

an

bn
≤ lim

n→∞

an+1− an

bn+1− bn
.

Exercise 3. The following are applications of Stolz Theorem.

(a) Let α > 1, prove that

lim
n→∞

n
(

1α +2α + · · ·+ nα

nα+1 −
1

α+1

)
=

1
2
.

(b) Let a1,a2,· · · ∈ R be such that lim
n→∞

an

n
ÿ

i=1

a2
i = 1, prove that

lim
n→∞

3√3nan = 1.

(c) Prove that

lim
n→∞

1
n2

n
ÿ

k=0

ln
(

n
k

)
=

1
2
.


