Math3033 (Fall 2013-2014) Tutorial Note 4

Basic Concept and Properties of Limit Inferior and Limit Superior

Key Definitions and Results
Definition 1. Given a sequence {a,} of real numbers, we denote
L= {{’ € [—00,00]: € = klim an, for some subsequence {a,, } of {an}}
the collection of subsequential limits of {a,, }.

Definition 2. Let aj,a;,--- € R and L the set of its subsequential limits, we denote

lim a, =inf£ and lim a, =supL

n—oo n—oo

the limit inferior (or lower limit) and limit superior (or upper limit) respec-
tively.

Theorem 3 (M & my). For aj,az, - € R we have

lim a,, = lim My = lim sup{ag,ai+1,...}
n—o0 k—o0 k—o0

and
lim a; = lim my = lim inf{ag,ar41,. ..}
n—oo k—o0 k—o0

Theorem 4. Let aj,as,--- € R and £ the set of its subsequentialy limits, we have:
() limay,,lima, € L.
(i1) {an}converges <— lima, =lima,, < co.
(iii) lim(-a,) = -lima, (so lim(-a,) = ~lima,).
(iv) If ¢ > 0, lim(cay,) = clima, and lim(ca,) = clima,,.

(v) If c e R, lim(c + a,) = ¢ +lima, and lim(c + a,,) = ¢ +lima,.
Theorem 5. If x,, <y, for all n, then
limx, <limy, and limx, <limy,.

Theorem 6. Let aj,az,---€ R, and r € R.
(i) Iflima, < r, then a, < r for all but finitely many 7.

(i) Ifr <lima,, then r < a, for all but finitely many n.

Example 1. Find lim and lim of {xn}5, defined by

. nm
Xp =sin —.
3

Solution. We observe that

V33 V3 V3 V33
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rn) = { S0 0

Therefore it is easy to see that all subsequential limits are

and therefore limx,, = ? and limx, = _g,

} |




Example 2. Find lim and lim of the sequence {a,},_; defined by

n? 2nm

cos —.
1+n? 3

an =

Solution. We first study how a;,’s oscillate:

cos T L Ly 11
Tl 2 27 2 2

Therefore it is natural to divide the sequences {a;} into groups of 3. Indeed, we have
lan} ={-—+,——+—— ...}
Thus it is easy to see that by cancelling countably many negative terms,

(3n)? }_ i G _

M3, = sup{az,,azn+3,...} = sup { 1+Gn2 [~ A T4 Gn)?

Since {M,} is decreasing, we have
lima, = lim M, = lim M3, = lim 1=1.
n—00 n—00 n—0oo

Next we focus on negative terms to compute lim. By cancelling countably many positive
terms we have

m3p+1 = inf{as,+1,a3n42,  a3n+4,a3n45, .-}
We compare
_ Bn+1)y? o _ (3n+2? 1
Bl = T Grr 12 2 B2 = Gne22 " 2)

as the larger the magnitude, the smaller the value, thus we discard a3, in each group
to conclude

, . (3n+2)7? 1 1
Mm3p+1 = inf{as,+2,03045,a3n+48,-- -} = nh_)n;o m ) = 3

Since {m,, } is increasing,
1

lima, = lim m, = lim m3,+1 = —=.
n—00 n—00

2

Example 3. Prove Theorem 5:

If x, <y, for all n, then

limx, <limy, and limx, <limy,.

by using Theorem 6.

Solution. We first prove the inequality limx, <limy,. If limy, = co, then we are done.
Suppose now limy, < co. If we fix an € > 0, then

hence by Theorem 6 there is an N € N such that
n>N = y, <limy, +e = x, <limy, +e.

Recall that lim x,, is a subsequential limit, there is a subsequence {xn, } of {x,} such that
limg 00 X, =limx,. Now

kbig = xp, <myn+e.

By taking k — oo,
mxn < Hy,, +e€E.

Since this is true for each € > 0, by letting € — 07, we have limx,, <limy,,.

Of course the second inequality can be proved directly using the technique in the
first paragraph, what we will do is: deduce the second inequality involving lim from what
we have proved. Since —x,, > —y,, by taking lim on both sides, we have

lim(=x,) > lim(=yj).
By (iii) of Theorem 4 we have
—=limx, > -limy,,

therefore we have limx, <limy,.



Example 4 (2004 Midterm (L1)). Let ax >0 for k > 1 and }}_, ax con-
verges, prove that
limkag = 0.

Give an example to show in the above situation, it is possible that limkay = 1.

Solution. There are two ways to show lim kay = 0.

Method 1. We prove by contradiction. Suppose lim ka; > 0, then there is a > 0
such that limkay > @ > 0. By Theorem 6 there is a K € N such that

k>K = kay > a,

and this implies a; > ¢, so if we sum both sides from K + 1 to oo,
i [ i l,
k

k=K+1 k=K+1

this implies > 7. ax diverges, a contradiction to the hypothesis.
Method 2. Let’s fix a k and let
my = inf{kak,(k +Dags1,...},

then for each n > k, my < na,, — % < ay, by summing from n = k to n = oo,
(o] 1 (o)
5 IEF
n=k n n=k

since Y, ap is finite and >, % diverges, necessarily my = 0. As this holds for each
k,
limkay =limmy =0.
Finally, we need to raise an example that:
1) limka = 0: For this, we introduce infinitely many 0 to ay’s since ay > 0.

2) limkay = 1: For this, we introduce infinitely many 1 to kay and keep kay < 1. For
instance, we let infinitely many & be s.t. a; = 1/k, and set a; = 0 otherwise, then
the L set can only be {0,1}.

3) > ay < co: For this, our k’s s.t. ax = 1/k should be far enough from each other.
One possible choice to fulfil 2) and 3) is to let

1/k, k = n? for some n > 1,
ag = .
0, otherwise.

Of course then 1) is also satisfied.

Exercise 1. Let a, >0 for n > 1, show that lim %/a, < 1if and only if lim ;—Z =0
n—o0

n—oo

for every € > 1.

Exercise 2 (= form of Stolz-Cesaro Theorem). In this exercise we prove a re-
fined version of Stolz Theorem that we have leant in Math2031:

Show that if {a,,} and {b,} are two real sequences, b, " oo, then

Aap+1 —Aan . an —— dn — dn+1 —dn
——— < lim — < lim — < lim ———

lim .
1o n—0oo Py n—oo bn+l - bn

n—oo bn+l - bn n—oo Un

Exercise 3. The following are applications of Stolz Theorem.

(a) Let @ > 1, prove that

, (1"+2"+~~~+n“ 1 )
lim n =

n—oo natl Ca+l

1
5

n
(b) Let aj,as, -+ € R be such that lim a,, Ea% = 1, prove that

n—oo :
i=1

lim V3na, = 1.

n—o0
(c) Prove that

mniznjln”—l
) k)2

k=0



