Basic Concept and Properties of Limit Inferior and Limit Superior

Key Definitions and Results

Definition 1. Given a sequence $\left\{a_{n}\right\}$ of real numbers, we denote

$$
\mathcal{L}=\left\{\ell \in[-\infty, \infty]: \ell=\lim _{k \rightarrow \infty} a_{n_{k}} \text { for some subsequence }\left\{a_{n_{k}}\right\} \text { of }\left\{a_{n}\right\}\right\}
$$

the collection of subsequential limits of $\left\{a_{n}\right\}$.
Definition 2. Let $a_{1}, a_{2}, \cdots \in \mathbb{R}$ and \mathcal{L} the set of its subsequential limits, we denote

$$
\underline{\lim }_{n \rightarrow \infty} a_{n}=\inf \mathcal{L} \quad \text { and } \quad \varlimsup_{n \rightarrow \infty} a_{n}=\sup \mathcal{L}
$$

the limit inferior (or lower limit) and limit superior (or upper limit) respectively.

Theorem 3 ($M_{k} \& m_{k}$). For $a_{1}, a_{2}, \cdots \in \mathbb{R}$ we have

$$
\varlimsup_{n \rightarrow \infty} a_{n}=\lim _{k \rightarrow \infty} M_{k}=\lim _{k \rightarrow \infty} \sup \left\{a_{k}, a_{k+1}, \ldots\right\}
$$

and

$$
\underline{\lim }_{n \rightarrow \infty} a_{k}=\lim _{k \rightarrow \infty} m_{k}=\lim _{k \rightarrow \infty} \inf \left\{a_{k}, a_{k+1}, \ldots\right\} .
$$

Theorem 4. Let $a_{1}, a_{2}, \cdots \in \mathbb{R}$ and \mathcal{L} the set of its subsequentialy limits, we have:
(i) $\overline{\lim } a_{n}, \lim a_{n} \in \mathcal{L}$
(ii) $\left\{a_{n}\right\}$ converges $\Longleftrightarrow \overline{\lim } a_{n}=\underline{\lim } a_{n}<\infty$.
(iii) $\overline{\lim }\left(-a_{n}\right)=-\underline{\lim } a_{n}\left(\right.$ so $\left.\underline{\lim }\left(-a_{n}\right)=-\overline{\lim } a_{n}\right)$.
(iv) If $c>0, \overline{\lim }\left(c a_{n}\right)=c \overline{\lim } a_{n}$ and $\underline{\lim }\left(c a_{n}\right)=c \underline{\lim } a_{n}$.
(v) If $c \in \mathbb{R}, \overline{\lim }\left(c+a_{n}\right)=c+\overline{\lim } a_{n}$ and $\underline{\lim }\left(c+a_{n}\right)=c+\underline{\lim } a_{n}$.

Theorem 5. If $x_{n} \leq y_{n}$ for all n, then

$$
\overline{\lim } x_{n} \leq \overline{\lim } y_{n} \quad \text { and } \quad \underline{\lim } x_{n} \leq \underline{\lim } y_{n} .
$$

Theorem 6. Let $a_{1}, a_{2}, \cdots \in \mathbb{R}$, and $r \in \mathbb{R}$.
(i) If $\overline{\lim } a_{n}<r$, then $a_{n}<r$ for all but finitely many n.
(ii) If $r<\underline{\lim } a_{n}$, then $r<a_{n}$ for all but finitely many n.

Example 1. Find $\overline{\lim }$ and $\underline{\lim }$ of $\left\{x_{n}\right\}_{n=1}^{\infty}$ defined by

$$
x_{n}=\sin \frac{n \pi}{3}
$$

Solution. We observe that

$$
\left\{x_{n}\right\}=\left\{\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, 0,-\frac{\sqrt{3}}{2},-\frac{\sqrt{3}}{2}, 0, \frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, \ldots\right\} .
$$

Therefore it is easy to see that all subsequential limits are

$$
\mathcal{L}=\left\{-\frac{\sqrt{3}}{2}, 0, \frac{\sqrt{3}}{2}\right\},
$$

and therefore $\overline{\lim } x_{n}=\frac{\sqrt{3}}{2}$ and $\underline{\lim } x_{n}=-\frac{\sqrt{3}}{2}$.

Example 2. Find $\overline{\lim }$ and $\underline{\lim }$ of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ defined by

$$
a_{n}=\frac{n^{2}}{1+n^{2}} \cos \frac{2 n \pi}{3}
$$

Solution. We first study how a_{n} 's oscillate:

$$
\cos \frac{2 n \pi}{3}=\left\{-\frac{1}{2},-\frac{1}{2}, 1,-\frac{1}{2},-\frac{1}{2}, 1, \ldots\right\} .
$$

Therefore it is natural to divide the sequences $\left\{a_{n}\right\}$ into groups of 3 . Indeed, we have

$$
\left\{a_{n}\right\}=\{-,-,+,-,-,+,-,-,+, \ldots\}
$$

Thus it is easy to see that by cancelling countably many negative terms,

$$
M_{3 n}=\sup \left\{a_{3 n}, a_{3 n+3}, \ldots\right\}=\sup \left\{\frac{(3 n)^{2}}{1+(3 n)^{2}}\right\}=\lim _{n \rightarrow \infty} \frac{(3 n)^{2}}{1+(3 n)^{2}}=1
$$

Since $\left\{M_{n}\right\}$ is decreasing, we have

$$
\overline{\lim } a_{n}=\lim _{n \rightarrow \infty} M_{n}=\lim _{n \rightarrow \infty} M_{3 n}=\lim _{n \rightarrow \infty} 1=1
$$

Next we focus on negative terms to compute lim. By cancelling countably many positive terms we have

$$
m_{3 n+1}=\inf \left\{a_{3 n+1}, a_{3 n+2}, \quad a_{3 n+4}, a_{3 n+5}, \quad \ldots\right\}
$$

We compare

$$
a_{3 n+1}=\frac{(3 n+1)^{2}}{1+(3 n+1)^{2}}\left(-\frac{1}{2}\right) \quad \text { and } \quad a_{3 n+2}=\frac{(3 n+2)^{2}}{1+(3 n+2)^{2}}\left(-\frac{1}{2}\right)
$$

as the larger the magnitude, the smaller the value, thus we discard $a_{3 n+1}$ in each group to conclude

$$
m_{3 n+1}=\inf \left\{a_{3 n+2}, a_{3 n+5}, a_{3 n+8}, \ldots\right\}=\lim _{n \rightarrow \infty} \frac{(3 n+2)^{2}}{1+(3 n+2)^{2}}\left(-\frac{1}{2}\right)=-\frac{1}{2}
$$

Since $\left\{m_{n}\right\}$ is increasing,

$$
\underline{\varliminf} a_{n}=\lim _{n \rightarrow \infty} m_{n}=\lim _{n \rightarrow \infty} m_{3 n+1}=-\frac{1}{2} .
$$

Example 3. Prove Theorem 5:

If $x_{n} \leq y_{n}$ for all n, then

$$
\overline{\lim } x_{n} \leq \varlimsup y_{n} \quad \text { and } \quad \underline{\lim } x_{n} \leq \underline{\lim } y_{n} .
$$

by using Theorem 6.

Solution. We first prove the inequality $\overline{\lim } x_{n} \leq \overline{\lim } y_{n}$. If $\overline{\lim } y_{n}=\infty$, then we are done Suppose now $\overline{\lim } y_{n}<\infty$. If we fix an $\epsilon>0$, then

$$
\overline{\lim } y_{n}<\varlimsup \overline{\lim } y_{n}+\epsilon,
$$

hence by Theorem 6 there is an $N \in \mathbb{N}$ such that

$$
n>N \Longrightarrow y_{n}<\overline{\lim } y_{n}+\epsilon \Longrightarrow x_{n}<\overline{\lim } y_{n}+\epsilon
$$

Recall that $\overline{\lim } x_{n}$ is a subsequential limit, there is a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=\overline{\lim } x_{n}$. Now

$$
k \text { big } \Longrightarrow x_{n_{k}}<\overline{\lim } y_{n}+\epsilon
$$

By taking $k \rightarrow \infty$,

$$
\overline{\lim } x_{n} \leq \varlimsup \overline{\lim } y_{n}+\epsilon
$$

Since this is true for each $\epsilon>0$, by letting $\epsilon \rightarrow 0^{+}$, we have $\overline{\lim } x_{n} \leq \varlimsup y_{n}$.
Of course the second inequality can be proved directly using the technique in the first paragraph, what we will do is: deduce the second inequality involving $\underline{\lim }$ from what we have proved. Since $-x_{n} \geq-y_{n}$, by taking $\overline{\lim }$ on both sides, we have

$$
\overline{\lim }\left(-x_{n}\right) \geq \overline{\lim }\left(-y_{n}\right)
$$

By (iii) of Theorem 4 we have

$$
-\underline{\lim } x_{n} \geq-\underline{\lim } y_{n},
$$

therefore we have $\underline{\lim } x_{n} \leq \underline{\lim } y_{n}$.

Example 4 (2004 Midterm (L1)). Let $a_{k} \geq 0$ for $k \geq 1$ and $\sum_{k=1}^{\infty} a_{k}$ converges, prove that

$$
\underline{\lim k a_{k}}=0
$$

Give an example to show in the above situation, it is possible that $\overline{\lim } k a_{k}=1$.

Solution. There are two ways to show $\underline{\lim k a_{k}}=0$.
Method 1. We prove by contradiction. Suppose $\lim k a_{k}>0$, then there is $\alpha>0$

$$
k>K \Longrightarrow k a_{k}>\alpha
$$

and this implies $a_{k}>\frac{\alpha}{k}$, so if we sum both sides from $K+1$ to ∞,

$$
\sum_{k=K+1}^{\infty} a_{k} \geq \alpha \sum_{k=K+1}^{\infty} \frac{1}{k}
$$

this implies $\sum_{k=1}^{\infty} a_{k}$ diverges, a contradiction to the hypothesis.
Method 2. Let's fix a k and let

$$
m_{k}=\inf \left\{k a_{k},(k+1) a_{k+1}, \ldots\right\},
$$

then for each $n \geq k, m_{k} \leq n a_{n} \Longrightarrow \frac{m_{k}}{n} \leq a_{n}$, by summing from $n=k$ to $n=\infty$,

$$
m_{k} \sum_{n=k}^{\infty} \frac{1}{n} \leq \sum_{n=k}^{\infty} a_{n}
$$

since $\sum_{n=1}^{\infty} a_{n}$ is finite and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, necessarily $m_{k}=0$. As this holds for each k,

$$
\underline{\lim } k a_{k}=\lim m_{k}=0 .
$$

Finally, we need to raise an example that:

1) $\underline{\lim } k a_{k}=0$: For this, we introduce infinitely many 0 to a_{k} 's since $a_{k} \geq 0$.
2) $\overline{\lim } k a_{k}=1$: For this, we introduce infinitely many 1 to $k a_{k}$ and keep $k a_{k} \leq 1$. For instance, we let infinitely many k be s.t. $a_{k}=1 / k$, and set $a_{k}=0$ otherwise, then the \mathcal{L} set can only be $\{0,1\}$.
3) $\sum a_{k}<\infty$: For this, our k 's s.t. $a_{k}=1 / k$ should be far enough from each other. One possible choice to fulfil 2) and 3) is to let

$$
a_{k}= \begin{cases}1 / k, & k=n^{2} \text { for some } n \geq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Of course then 1) is also satisfied.

Exercise 1. Let $a_{n} \geq 0$ for $n \geq 1$, show that $\varlimsup_{n \rightarrow \infty} \sqrt[n]{a_{n}} \leq 1$ if and only if $\lim _{n \rightarrow \infty} \frac{a_{n}}{\ell^{n}}=0$ for every $\ell>1$.

Exercise 2 ($\frac{*}{\infty}$ form of Stolz-Cesàro Theorem). In this exercise we prove a refined version of Stolz Theorem that we have leant in Math2031:

Show that if $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are two real sequences, $b_{n} \nearrow \infty$, then

$$
\varliminf_{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}} \leq \varliminf_{n \rightarrow \infty} \frac{a_{n}}{b_{n}} \leq \varlimsup_{n \rightarrow \infty} \frac{a_{n}}{b_{n}} \leq \varlimsup_{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}} .
$$

Exercise 3. The following are applications of Stolz Theorem.
(a) Let $\alpha>1$, prove that

$$
\lim _{n \rightarrow \infty} n\left(\frac{1^{\alpha}+2^{\alpha}+\cdots+n^{\alpha}}{n^{\alpha+1}}-\frac{1}{\alpha+1}\right)=\frac{1}{2}
$$

(b) Let $a_{1}, a_{2}, \cdots \in \mathbb{R}$ be such that $\lim _{n \rightarrow \infty} a_{n} \sum_{i=1}^{n} a_{i}^{2}=1$, prove that

$$
\lim _{n \rightarrow \infty} \sqrt[3]{3 n} a_{n}=1
$$

(c) Prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{k=0}^{n} \ln \binom{n}{k}=\frac{1}{2}
$$

