Math3033 (Fall 2013-2014) Tutorial Note 3

Inverse and Implicit Function Theorem

Key Definitions and Results

Definition 1. We say that F : R” — R™ is C! at a € R" if:
(1) Near a all first order partial derivatives exists.

(i1) All partial derivatives of F are continuous at a.

Definition 2. Let F : U — R™ be defined on some U C R", we say that F is C! on
asubset ECU if Fis C' ateacha € E.

Definition 3. Let x = (x;,,...,x;;,), F : R" = R™ and p € R". If F'(p) exists, we

define
of  Oh
6)(?,'] 6x,-h
Frifoooxi, (0) = Fx(p) = | PR N2
Ofm Ofm
6x1-1 Bxih

Theorem 4 (Inverse Function). Let F : R” — R” be a function such that:
(i) Fis C' near p e R".

(i) det(F’(p)) #0.

Then there is an r > 0 such that F|p(,, ) has a C! inverse G : F(B(p,r)) —» R",
and by the chain rule we have

|G'(Fo) = (F'(x)™' | forall x € B(p,r).

Theorem 5 (Implicit Function). Let F : R" — R™ (n > m) be a function such
that:

(i) Fis C' near p = (p1,....pn).

(i) F(p)=0.
(iii) The right block matrix indicated below is invertible:
on o on | e on
Ox1 0Xpn-m | OXp_m+1 O0xy,
: - : : . 02
Ofn  Ofw | w0
Ox1 0Xp—m | OXp—m+1 O0xy,

e Then near p the variables (x;—;+1,. - -,Xn) can be solved implicitly from the
equation F(xy,...,x,) = 0 and expressed as a C! function G(x1,...,Xn—m)-

e More precisely, there is an open ball B(p,r) CR" and a C! function G defined
on the “open set”

U = {(xlv' --,xn—m) : (xlv' ~-axn) € B(p9r)}
such that

B(p.)NF~'({0})
= image of U under (id,G) (%)

= {(x1,~--,Xn—maG(xl’u-axn—m)) : (xl,--wxn—m) € U}

e Furthermore, by Example 1 of this tutorial note we have

-1
, _ invertible remaining
G PrseesPom) = = <[ part of F’'(p) }) { part of F’(p) } ©

Example 1. Consider Implicit Function Theorem 5, explain the geometrical
meaning of the set equality (x) when n =3 and m = 1.

Solution. (*) says that the surface
FL{0D) = {(x,y,2) e R? : F(x,y,2) = 0}

near p can be parametrized as the graph of a C ! function G defined near (p;,p2).
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Thus generally Implicit Function Theorem is nothing but parametrization of “abstract
surfaces” near some point, in such general cases G will be vector-valued and cannot be

easily visualized, unless we are god :).



Example 2. Let

u=x+y,

v =sinx+cosy.

Show that when (x,y) is near (0,1), x and y can be expressed as a differentiable
function in (u,v). Compute x,,,x,, Yy, Yy at (1,cos1).

Solution. Define
(u,0) = F(x,y).
To express x,y as a differentiable function of (u,v) is to find differentiable F~! such that
(x,y) = F~(u,v). For this, we use Inverse Function Theorem.

Step 1: We need to show that F is C 1 pear (0,1).

Procedure: The standard way to do this is to find an » > 0 such that all partial
derivatives of F exist and are continuous on B((0,1),r). In many cases it is
easy to choose suitable r.

Now
uy =1, uy=1
and
Uy =COSX, Uy =—siny.
As they exist and are continuous on RZ, they exist and are continuous on B((0,1),1), so
F is C! near (0,1).
Step 2: We need to show that F’(0,1) is invertible. This is a routine calculation:

1 1

det F'(0,1) = L Canl

}:—sinl—l;ﬁO.

Step 3: Make conclusion (=.=). By Inverse Function Theorem near (0,1) F has a
C! inverse F~!, thus

(x,y) = (x(u,0),y(u,0)) = F~ ' (u,v) : near F(0,1) — near (0,1)
is now a differentiable function of (u,v). Moreover,

|:xu Xy

" yv} (1,cos 1) = (F~1Y(F(0,1))

=(F'(0,1)”"
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Example 3. Consider the following equations

x2+2y2+u2+v=6, €))]
23 +4y* +u+0* =9. )

(a) Show that near p = (1,—1,—-1,2), (4,v) can be expressed as a differentiable
function of (x,y).

(b) Compute u, and vy at (1,—-1).

Solution. (a) We define

X242y +2+ut+v-6
233 +4y? +u+0* -9 "

F(x,y,u,0) = (f,8) = {

To “solve” (u,v) out from the equations F = 0 for (x,y,u,v) near p, we try to prove Fy ,(p)
is an invertible matrix plus some extra conditions.
Step 1: Show that F is C ! hear p. It is similar to Example 2, indeed,

fx fy fu fU:|:|:2X 4y 2u 1]

F'(x,y,u,v) =
Re |:gx 8 8u v 6 8y 1 2o

clearly all partial derivatives exist and are continuous on B(p,1), so F is C! near p.
Step 2: Show that F(p) = 0. This can be done by direct calculation, make sure
that you finish this step in your midterm/final exams.
Step 3: Show that F, ,(p) is invertible. We have
2 -4 -2 1
’ _ 1 _ —
F'(p)=F'(1,-1,-1,2) {6 8 1 4}.

Therefore F, ,(p) = _12 with detF,, ,(p) = -9, thus F,, ,(p) is invertible. By Im-

4
plicit Fucntion Theorem u,v can be expressed as a function G(x,y) defined near (1,—-1)
(such that F(x,y,G(x,y)) =0 for (x,y) near (1,-1)).

(b) Method 1. We use the equation on the first page of tutorial note 3 (or the exact
version in Example 4) directly to get

caco=-[7 [ 2] -[30 we)
Method 2. We can try to create a system of linear equations and then solve for uy
and vy. Indeed, we differentiate (1) and (2) w.r.t. x to obtain
2x+2uuy +v, =0 and 6x> +uy + 200, =0.
Now we put (x,y) = (1,—1) and use the fact that u(1,—1) = —1 and v(1,—1) = 2, then
2uy —vp =2 and uy +4v, = -6,

we solve them to get u,(1,—1) =2/9 and vy (1,-1) = —14/9.



*Example 1. In this example we consider n = 4 and m = 2 of Implicit Function
Theorem, for simplicity. Let F : R* — R? and pgy = (x0, Yo,uo,v0) € R*. Suppose:

(i) Fis C' near py.
(i) F(po) =0.
(iii) Fy,,(po) is invertible.

Show that near py, u,v can be solved from the equation F(x,y,u,v) = 0 and ex-
pressed as a C ! function G(x, y) near (xg,yp). Not only that, we have for (x,y)
near (x9,Y0),

[“" ‘;ﬂ (1.3) = G'(.3) = ~[Fuo (x.7.GO)T™ Fry (2.3,G (). (@)

Ux

Solution. (i), (ii) and (iii) are just the conditions in Implicit Function Theorem, thus near
po, (u,v) can be expressed as a C! function G(x,y) such that F(x,y,G(x,y)) = 0 for (x,y)
near (xg,yo). Now we differentiate both sides (taking Jacobian matrix) to get

1 0
0=F'(x,,G(x,y))-| 0 1 = Fx,y (0,9,G(x,)) + Fyu o(x,y,G(x,y))G’ (x, ),
G'(x,y)

here last equality follows from block matrix multiplication, note that G’(x,y) is a 2x2
matrix, now we solve from the above equation to get

G’ (x,) = =Fu,o(x,y,G(x,9) " Fy y (x,9,G(x,)).
When (x,y) = (x0,0), then

G’ (x0,30) = =Fu,o(P0) " Fx,y (o),

this is the version we use in Example 3.

Exercise 1 (Application of Im.F.T.). Let f(xy,...,xx) be a homogeneous poly-
nomial of degree d > 1™, e,

fltxy,...txx) = tdf(xl,...,xk) for every r e R.

Show that if ¢ # 0, then the surface f~'({c}) = {x € R¥ : f(x1,...,xx) = ¢} can be
locally parametrized as the graph of a smooth (i.e., has partial derivatives of any
order) function. You may try to plot out x> +y*—=z> =1 and x* +y>-z>=0 on
WOLFRAMALPHA fo see their difference.

) For example, x3+ x2y + y3 and x* — xy3 are homogeneous polynomial of degree 3 and 4 respec-
tively.

*Example 2 (HKU, Analysis Il, Spring 2009). Let F : R” — R” be con-
tinuously differentiable. Suppose that there is a number ¢ > 0 such that

IF(x)—FWIl =cllx=yll, forallx,yeR".

Show that F is one-one and DF(x) # O for all x € R".

Solution. We note that the map from R” to R defined by
x = |IF ol

is continuous since F is continuously differentiable (i.e., C 1y, Therefore if F’(xg) =0,
for some x(, then for every € > 0 there is a § > 0 such that

llx = xoll <6 = [IF'(0)ll <e.
Therefore by Exercise 4 of tutorial note 2 we have for every x,y € B(xq,0),
IF ) = FO)l < ellx = yll.
By hypothesis of this example we have
cllx = xoll < €llx — xoll,
therefore if we take x € B(xg,0) \ {xo}, then
c<E€.

But € > 0 is arbitrary, we have 0 < ¢ < 0 by taking € — 0", a contradiction.

The following exercise is for those who knows:
1) The definition of openness, closedness, connectedness of subsets in R”.

2) The “local version” of inverse function theorem instead of the weaker one
stated in this course. Namely, we need the following version:

Theorem. If F = (f1,...,fn) is defined near a € R", C! near a and
det f'(a) 0, then f is a local C'-diffeomorphism at a.

Exercise 2 (Application of In.F.T.). Let F : R —» R? be C! on R?. Suppose
that:

e det F’(x) = 0 for at most finitely many x € R2.
e For every M > 0 the set {x € R? : |[F(x)| < M} is bounded?;
Prove that F maps R? onto R>.

Hint: Prove by contradiction.

() Such a continuous map is said to be proper.



