Key Definitions and Results

Definition 1. We say that $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is C^{1} at $a \in \mathbb{R}^{\boldsymbol{n}}$ if:
(i) Near a all first order partial derivatives exists.
(ii) All partial derivatives of F are continuous at a.

Definition 2. Let $F: U \rightarrow \mathbb{R}^{m}$ be defined on some $U \subseteq \mathbb{R}^{n}$, we say that F is \boldsymbol{C}^{1} on a subset $\boldsymbol{E} \subseteq \boldsymbol{U}$ if F is C^{1} at each $a \in E$.

Definition 3. Let $x=\left(x_{i_{1}}, \ldots, x_{i_{h}}\right), F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $p \in \mathbb{R}^{n}$. If $F^{\prime}(p)$ exists, we define

$$
F_{x_{i_{1}}, \ldots, x_{i_{h}}}(p):=F_{x}(p):=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{i_{1}}} & \cdots & \frac{\partial f_{1}}{\partial x_{i_{h}}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{i_{1}}} & \cdots & \frac{\partial f_{m}}{\partial x_{i_{h}}}
\end{array}\right](p) .
$$

Theorem 4 (Inverse Function). Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a function such that:
(i) F is C^{1} near $p \in \mathbb{R}^{n}$.
(ii) $\operatorname{det}\left(F^{\prime}(p)\right) \neq 0$.

Then there is an $r>0$ such that $\left.F\right|_{B(p, r)}$ has a C^{1} inverse $G: F(B(p, r)) \rightarrow \mathbb{R}^{n}$, and by the chain rule we have

$$
G^{\prime}(F(x))=\left(F^{\prime}(x)\right)^{-1} \quad \text { for all } x \in B(p, r) .
$$

Theorem 5 (Implicit Function). Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}(n>m)$ be a function such that:
(i) F is C^{1} near $p=\left(p_{1}, \ldots, p_{n}\right)$.
(ii) $F(p)=0$.
(iii) The right block matrix indicated below is invertible:

$$
\left[\begin{array}{ccc|ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n-m}} & \frac{\partial f_{1}}{\partial x_{n-m+1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n-m}} & \frac{\partial f_{m}}{\partial x_{n-m+1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right] \text { (p) }
$$

- Then near p the variables $\left(x_{n-m+1}, \ldots, x_{n}\right)$ can be solved implicitly from the equation $F\left(x_{1}, \ldots, x_{n}\right)=0$ and expressed as a C^{1} function $G\left(x_{1}, \ldots, x_{n-m}\right)$.
- More precisely, there is an open ball $B(p, r) \subseteq \mathbb{R}^{n}$ and a C^{1} function G defined on the "open set"

$$
U:=\left\{\left(x_{1}, \ldots, x_{n-m}\right):\left(x_{1}, \ldots, x_{n}\right) \in B(p, r)\right\}
$$

such that

$$
\begin{align*}
& B(p, r) \cap F^{-1}(\{0\}) \\
= & \text { image of } U \text { under }(\mathrm{id}, G) \tag{*}\\
= & \left\{\left(x_{1}, \ldots, x_{n-m}, G\left(x_{1}, \ldots, x_{n-m}\right)\right):\left(x_{1}, \ldots, x_{n-m}\right) \in U\right\} .
\end{align*}
$$

- Furthermore, by Example 1 of this tutorial note we have
$G^{\prime}\left(p_{1}, \ldots, p_{n-m}\right)=-\left(\left[\begin{array}{c}\text { invertible } \\ \text { part of } \boldsymbol{F}^{\prime}(\boldsymbol{p})\end{array}\right]\right)^{-1} \times\left[\begin{array}{c}\text { remaining } \\ \text { part of } \boldsymbol{F}^{\prime}(\boldsymbol{p})\end{array}\right]$.

Example 1. Consider Implicit Function Theorem 5, explain the geometrical meaning of the set equality $(*)$ when $n=3$ and $m=1$.

Solution. (*) says that the surface

$$
F^{-1}(\{0\})=\left\{(x, y, z) \in \mathbb{R}^{3}: F(x, y, z)=0\right\}
$$

near p can be parametrized as the graph of a C^{1} function G defined near $\left(p_{1}, p_{2}\right)$.

Thus generally Implicit Function Theorem is nothing but parametrization of "abstract surfaces" near some point, in such general cases G will be vector-valued and cannot be easily visualized, unless we are god :).

Example 2. Let

$$
\begin{aligned}
u & =x+y \\
v & =\sin x+\cos y
\end{aligned}
$$

Show that when (x, y) is near $(0,1), x$ and y can be expressed as a differentiable function in (u, v). Compute $x_{u}, x_{v}, y_{u}, y_{v}$ at $(1, \cos 1)$.

Solution. Define

$$
(u, v)=F(x, y) .
$$

To express x, y as a differentiable function of (u, v) is to find differentiable F^{-1} such that $(x, y)=F^{-1}(u, v)$. For this, we use Inverse Function Theorem.

Step 1: We need to show that \boldsymbol{F} is \boldsymbol{C}^{1} near $(0,1)$.

Procedure: The standard way to do this is to find an $r>0$ such that all partial derivatives of F exist and are continuous on $\boldsymbol{B}(\mathbf{(0 , 1)}, \boldsymbol{r})$. In many cases it is easy to choose suitable r.
Now

$$
u_{x}=1, \quad u_{y}=1
$$

and

$$
v_{x}=\cos x, \quad v_{y}=-\sin y .
$$

As they exist and are continuous on \mathbb{R}^{2}, they exist and are continuous on $B((0,1), 1)$, so F is C^{1} near $(0,1)$.

Step 2: We need to show that $F^{\prime}(0,1)$ is invertible. This is a routine calculation:

$$
\operatorname{det} F^{\prime}(0,1)=\left[\begin{array}{cc}
1 & 1 \\
1 & -\sin 1
\end{array}\right]=-\sin 1-1 \neq 0 .
$$

Step 3: Make conclusion (=.=). By Inverse Function Theorem near $(0,1) F$ has a C^{1} inverse F^{-1}, thus

$$
(x, y)=(x(u, v), y(u, v))=F^{-1}(u, v): \text { near } F(0,1) \rightarrow \text { near }(0,1)
$$

is now a differentiable function of (u, v). Moreover,

$$
\begin{aligned}
{\left[\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right](1, \cos 1) } & =\left(F^{-1}\right)^{\prime}(F(0,1)) \\
& =\left(F^{\prime}(0,1)\right)^{-1} \\
& =\left[\begin{array}{cc}
1 & 1 \\
1 & -\sin 1
\end{array}\right]^{-1} \\
& =\frac{1}{1+\sin 1}\left[\begin{array}{cc}
\sin 1 & 1 \\
1 & -1
\end{array}\right] .
\end{aligned}
$$

Example 3. Consider the following equations

$$
\begin{array}{r}
x^{2}+2 y^{2}+u^{2}+v=6, \\
2 x^{3}+4 y^{2}+u+v^{2}=9 . \tag{2}
\end{array}
$$

(a) Show that near $p=(1,-1,-1,2),(u, v)$ can be expressed as a differentiable function of (x, y).
(b) Compute u_{x} and v_{x} at $(1,-1)$

Solution. (a) We define

$$
F(x, y, u, v)=(f, g)=\left[\begin{array}{c}
x^{2}+2 y+2+u^{2}+v-6 \\
2 x^{3}+4 y^{2}+u+v^{2}-9
\end{array}\right]
$$

To "solve" (u, v) out from the equations $F=0$ for (x, y, u, v) near p, we try to prove $F_{u, v}(p)$ is an invertible matrix plus some extra conditions.

Step 1: Show that \boldsymbol{F} is $\boldsymbol{C}^{\mathbf{1}}$ near \boldsymbol{p}. It is similar to Example 2, indeed,

$$
F^{\prime}(x, y, u, v)=\left[\begin{array}{llll}
f_{x} & f_{y} & f_{u} & f_{v} \\
g_{x} & g_{y} & g_{u} & g_{v}
\end{array}\right]=\left[\begin{array}{cccc}
2 x & 4 y & 2 u & 1 \\
6 x^{2} & 8 y & 1 & 2 v
\end{array}\right]
$$

clearly all partial derivatives exist and are continuous on $B(p, 1)$, so F is C^{1} near p.
Step 2: Show that $\boldsymbol{F}(\boldsymbol{p})=\mathbf{0}$. This can be done by direct calculation, make sure that you finish this step in your midterm/final exams.

Step 3: Show that $F_{u, v}(p)$ is invertible. We have

$$
F^{\prime}(p)=F^{\prime}(1,-1,-1,2)=\left[\begin{array}{cccc}
2 & -4 & -2 & 1 \\
6 & -8 & 1 & 4
\end{array}\right] .
$$

Therefore $F_{u, v}(p)=\left[\begin{array}{cc}-2 & 1 \\ 1 & 4\end{array}\right]$ with $\operatorname{det} F_{u, v}(p)=-9$, thus $F_{u, v}(p)$ is invertible. By Implicit Fucntion Theorem u, v can be expressed as a function $G(x, y)$ defined near ($1,-1$) (such that $F(x, y, G(x, y))=0$ for (x, y) near $(1,-1)$).
(b) Method 1. We use the equation on the first page of tutorial note 3 (or the exact version in Example 4) directly to get

$$
G^{\prime}(1,-1)=-\left[\begin{array}{cc}
-2 & 1 \\
1 & 4
\end{array}\right]^{-1}\left[\begin{array}{ll}
2 & -4 \\
6 & -8
\end{array}\right]=\left[\begin{array}{cc}
2 / 9 & -8 / 9 \\
-14 / 9 & 12 / 9
\end{array}\right] .
$$

Method 2. We can try to create a system of linear equations and then solve for u_{x} and v_{x}. Indeed, we differentiate (1) and (2) w.r.t. x to obtain

$$
2 x+2 u u_{x}+v_{x}=0 \quad \text { and } \quad 6 x^{2}+u_{x}+2 v v_{x}=0
$$

Now we put $(x, y)=(1,-1)$ and use the fact that $u(1,-1)=-1$ and $v(1,-1)=2$, then

$$
2 u_{x}-v_{2}=2 \text { and } u_{x}+4 v_{x}=-6,
$$

we solve them to get $u_{x}(1,-1)=2 / 9$ and $v_{x}(1,-1)=-14 / 9$.
*Example 1. In this example we consider $n=4$ and $m=2$ of Implicit Function Theorem, for simplicity. Let $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ and $p_{0}=\left(x_{0}, y_{0}, u_{0}, v_{0}\right) \in \mathbb{R}^{4}$. Suppose:
(i) F is C^{1} near p_{0}.
(ii) $F\left(p_{0}\right)=0$.
(iii) $F_{u, v}\left(p_{0}\right)$ is invertible.

Show that near p_{0}, u, v can be solved from the equation $F(x, y, u, v)=0$ and expressed as a C^{1} function $G(x, y)$ near $\left(x_{0}, y_{0}\right)$. Not only that, we have for (x, y) near $\left(x_{0}, y_{0}\right)$,

$$
\left[\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right](x, y)=G^{\prime}(x, y)=-\left[F_{u, v}(x, y, G(x, y))\right]^{-1} F_{x, y}(x, y, G(x, y)) .
$$

Solution. (i), (ii) and (iii) are just the conditions in Implicit Function Theorem, thus near $p_{0},(u, v)$ can be expressed as a C^{1} function $G(x, y)$ such that $F(x, y, G(x, y))=0$ for (x, y) near (x_{0}, y_{0}). Now we differentiate both sides (taking Jacobian matrix) to get

$$
0=F^{\prime}(x, y, G(x, y)) \cdot\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
G^{\prime}(x, y)
\end{array}\right]=F_{x, y}(x, y, G(x, y))+F_{u, v}(x, y, G(x, y)) G^{\prime}(x, y),
$$

here last equality follows from block matrix multiplication, note that $G^{\prime}(x, y)$ is a 2×2 matrix, now we solve from the above equation to get

$$
G^{\prime}(x, y)=-F_{u, v}(x, y, G(x, y))^{-1} F_{x, y}(x, y, G(x, y)) .
$$

When $(x, y)=\left(x_{0}, y_{0}\right)$, then

$$
G^{\prime}\left(x_{0}, y_{0}\right)=-F_{u, v}\left(p_{0}\right)^{-1} F_{x, y}\left(p_{0}\right),
$$

this is the version we use in Example 3.

Exercise 1 (Application of Im. F.T.). Let $f\left(x_{1}, \ldots, x_{k}\right)$ be a homogeneous polynomial of degree $d \geq 1^{(*)}$, i.e.,

$$
f\left(t x_{1}, \ldots t x_{k}\right)=t^{d} f\left(x_{1}, \ldots, x_{k}\right) \quad \text { for every } t \in \mathbb{R}
$$

Show that if $\boldsymbol{c} \neq \mathbf{0}$, then the surface $f^{-1}(\{c\})=\left\{x \in \mathbb{R}^{k}: f\left(x_{1}, \ldots, x_{k}\right)=c\right\}$ can be locally parametrized as the graph of a smooth (i.e., has partial derivatives of any order) function. You may try to plot out $x^{2}+y^{2}-z^{2}=1$ and $x^{2}+y^{2}-z^{2}=0$ on Wolframalpha to see their difference.

[^0]*Example 2 (HKU, Analysis II, Spring 2009). Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable. Suppose that there is a number $c>0$ such that
$$
\|F(x)-F(y)\| \geq c\|x-y\|, \quad \text { for all } x, y \in \mathbb{R}^{n}
$$

Show that F is one-one and $D F(x) \neq 0$ for all $x \in \mathbb{R}^{n}$.

Solution. We note that the map from \mathbb{R}^{n} to \mathbb{R} defined by

$$
x \mapsto\left\|F^{\prime}(x)\right\|
$$

is continuous since F is continuously differentiable (i.e., C^{1}). Therefore if $F^{\prime}\left(x_{0}\right)=0$, for some x_{0}, then for every $\epsilon>0$ there is a $\delta>0$ such that

$$
\left\|x-x_{0}\right\|<\delta \Longrightarrow\left\|F^{\prime}(x)\right\|<\epsilon
$$

Therefore by Exercise 4 of tutorial note 2 we have for every $x, y \in B\left(x_{0}, \delta\right)$,

$$
\|F(x)-F(y)\| \leq \epsilon\|x-y\| .
$$

By hypothesis of this example we have

$$
c\left\|x-x_{0}\right\| \leq \epsilon\left\|x-x_{0}\right\|
$$

therefore if we take $x \in B\left(x_{0}, \delta\right) \backslash\left\{x_{0}\right\}$, then

$$
c \leq \epsilon
$$

But $\epsilon>0$ is arbitrary, we have $0<c \leq 0$ by taking $\epsilon \rightarrow 0^{+}$, a contradiction.

The following exercise is for those who knows:

1) The definition of openness, closedness, connectedness of subsets in \mathbb{R}^{n}.
2) The "local version" of inverse function theorem instead of the weaker one stated in this course. Namely, we need the following version:

Theorem. If $F=\left(f_{1}, \ldots, f_{n}\right)$ is defined near $a \in \mathbb{R}^{n}, \underline{C^{1}}$ near a and $\operatorname{det} f^{\prime}(a) \neq 0$, then f is a local C^{1}-diffeomorphism at a.

Exercise 2 (Application of In.F.T.). Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be C^{1} on \mathbb{R}^{2}. Suppose that:

- $\operatorname{det} F^{\prime}(x)=0$ for at most finitely many $x \in \mathbb{R}^{2}$.
- For every $M>0$ the set $\left\{x \in \mathbb{R}^{2}:|F(x)| \leq M\right\}$ is bounded ${ }^{(\dagger)}$;

Prove that F maps \mathbb{R}^{2} onto \mathbb{R}^{2}.
Hint: Prove by contradiction.

[^1]
[^0]: (*) For example, $x^{3}+x^{2} y+y^{3}$ and $x^{4}-x y^{3}$ are homogeneous polynomial of degree 3 and 4 respectively.

[^1]: (\dagger Such a continuous map is said to be proper.

