Math3033 (Fall 2013-2014)

Tutorial Note 3

Inverse and Implicit Function Theorem

- Key Definitions and Results -

- **Definition 1.** We say that $F : \mathbb{R}^n \to \mathbb{R}^m$ is C^1 at $a \in \mathbb{R}^n$ if:
 - (i) Near *a* all first order partial derivatives exists.
 - (ii) All partial derivatives of F are continuous at a.
- **Definition 2.** Let $F : U \to \mathbb{R}^m$ be defined on some $U \subseteq \mathbb{R}^n$, we say that F is C^1 on a subset $E \subseteq U$ if F is C^1 at each $a \in E$.
- **Definition 3.** Let $x = (x_{i_1}, \dots, x_{i_h})$, $F : \mathbb{R}^n \to \mathbb{R}^m$ and $p \in \mathbb{R}^n$. If F'(p) exists, we define

$$F_{x_{i_1},\ldots,x_{i_h}}(p) := F_x(p) := \begin{bmatrix} \frac{\partial f_1}{\partial x_{i_1}} & \cdots & \frac{\partial f_1}{\partial x_{i_h}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_{i_1}} & \cdots & \frac{\partial f_m}{\partial x_{i_h}} \end{bmatrix} (p).$$

Theorem 4 (Inverse Function). Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a function such that:

(i) *F* is C^1 near $p \in \mathbb{R}^n$.

(ii) $\det(F'(p)) \neq 0$.

Then there is an r > 0 such that $F|_{B(p,r)}$ has a C^1 inverse $G : F(B(p,r)) \to \mathbb{R}^n$, and by the chain rule we have

 $G'(F(x)) = (F'(x))^{-1}$ for all $x \in B(p,r)$.

- **Theorem 5 (Implicit Function).** Let $F : \mathbb{R}^n \to \mathbb{R}^m$ (n > m) be a function such that:
 - (i) *F* is C^1 near $p = (p_1, ..., p_n)$.

(ii) F(p) = 0.

(iii) The right block matrix indicated below is invertible:

$\left[\frac{\partial f_1}{\partial x_1}\right]$		$\frac{\partial f_1}{\partial x_{n-m}}$	$\frac{\partial f_1}{\partial x_{n-m+1}}$		$\frac{\partial f_1}{\partial x_n}$	
1 :	·	:	÷	·	÷	(<i>p</i>)
$\left\lfloor \frac{\partial f_m}{\partial x_1} \right\rfloor$		$\frac{\partial f_m}{\partial x_{n-m}}$	$\frac{\partial f_m}{\partial x_{n-m+1}}$		$\frac{\partial f_m}{\partial x_n}$	

- Then near *p* the variables $(x_{n-m+1},...,x_n)$ can be *solved implicitly* from the equation $F(x_1,...,x_n) = 0$ and expressed as a C^1 function $G(x_1,...,x_{n-m})$.
- More precisely, there is an open ball $B(p,r) \subseteq \mathbb{R}^n$ and a C^1 function *G* defined on the "open set"

$$U := \{ (x_1, \dots, x_{n-m}) : (x_1, \dots, x_n) \in B(p, r) \}$$

such that

$$B(p,r) \cap F^{-1}(\{0\})$$

= image of U under (id,G)
= $\{(x_1, \dots, x_{n-m}, G(x_1, \dots, x_{n-m})) : (x_1, \dots, x_{n-m}) \in U\}.$ (*)

• Furthermore, by Example 1 of this tutorial note we have

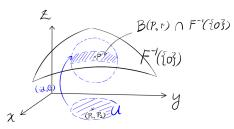
$$G'(p_1,\ldots,p_{n-m}) = -\left(\begin{bmatrix} \text{invertible} \\ \text{part of } F'(p) \end{bmatrix} \right)^{-1} \times \begin{bmatrix} \text{remaining} \\ \text{part of } F'(p) \end{bmatrix}. \quad (\Box$$

Example 1. Consider Implicit Function Theorem 5, explain the geometrical meaning of the set equality (*) when n = 3 and m = 1.

Solution. (*) says that the surface

$$F^{-1}(\{0\}) = \{(x, y, z) \in \mathbb{R}^3 : F(x, y, z) = 0\}$$

near p can be parametrized as the graph of a C^1 function G defined near (p_1, p_2) .



Thus generally Implicit Function Theorem is nothing but parametrization of "abstract surfaces" near some point, in such general cases G will be vector-valued and cannot be easily visualized, unless we are god :).

Example 2. Let

u = x + y, $v = \sin x + \cos y.$

Show that when (x,y) is near (0,1), x and y can be expressed as a differentiable function in (u,v). Compute x_u, x_v, y_u, y_v at $(1, \cos 1)$.

Solution. Define

(u,v) = F(x,y).

To express *x*, *y* as a differentiable function of (u,v) is to find differentiable F^{-1} such that $(x,y) = F^{-1}(u,v)$. For this, we use Inverse Function Theorem.

Step 1: We need to show that F is C^1 near (0,1).

Procedure: The standard way to do this is to find an r > 0 such that all partial derivatives of *F* exist and are continuous on B((0,1),r). In many cases it is easy to choose suitable *r*.

Now

 $u_x = 1, \quad u_y = 1$

and

 $v_x = \cos x, \quad v_y = -\sin y.$

As they exist and are continuous on \mathbb{R}^2 , they exist and are continuous on B((0,1),1), so *F* is C^1 near (0,1).

Step 2: We need to show that F'(0,1) is invertible. This is a routine calculation:

$$\det F'(0,1) = \begin{bmatrix} 1 & 1 \\ 1 & -\sin 1 \end{bmatrix} = -\sin 1 - 1 \neq 0.$$

Step 3: Make conclusion (=.=). By Inverse Function Theorem near (0,1) *F* has a C^1 inverse F^{-1} , thus

$$(x,y) = (x(u,v), y(u,v)) = F^{-1}(u,v)$$
: near $F(0,1) \to$ near $(0,1)$

is now a differentiable function of (u,v). Moreover,

$$\begin{aligned} x_u & x_v \\ y_u & y_v \end{bmatrix} (1, \cos 1) &= (F^{-1})'(F(0, 1)) \\ &= (F'(0, 1))^{-1} \\ &= \begin{bmatrix} 1 & 1 \\ 1 & -\sin 1 \end{bmatrix}^{-1} \\ &= \frac{1}{1 + \sin 1} \begin{bmatrix} \sin 1 & 1 \\ 1 & -1 \end{bmatrix}. \end{aligned}$$

Example 3. Consider the following equations

$$x^2 + 2y^2 + u^2 + v = 6, (1)$$

$$2x^3 + 4y^2 + u + v^2 = 9.$$
 (2)

(a) Show that near p = (1, -1, -1, 2), (u, v) can be expressed as a differentiable function of (x, y).

(b) Compute u_x and v_x at (1,-1).

Solution. (a) We define

$$F(x, y, u, v) = (f, g) = \begin{bmatrix} x^2 + 2y + 2 + u^2 + v - 6\\ 2x^3 + 4y^2 + u + v^2 - 9 \end{bmatrix}$$

To "solve" (u,v) out from the equations F = 0 for (x, y, u, v) near p, we try to prove $F_{u,v}(p)$ is an invertible matrix plus some extra conditions.

Step 1: Show that F is C^1 near p. It is similar to Example 2, indeed,

 $F'(x,y,u,v) = \begin{bmatrix} f_x & f_y & f_u & f_v \\ g_x & g_y & g_u & g_v \end{bmatrix} = \begin{bmatrix} 2x & 4y & 2u & 1 \\ 6x^2 & 8y & 1 & 2v \end{bmatrix},$

clearly all partial derivatives exist and are continuous on B(p, 1), so F is C^1 near p.

Step 2: Show that F(p) = 0. This can be done by direct calculation, make sure that you finish this step in your midterm/final exams.

Step 3: Show that $F_{u,v}(p)$ is invertible. We have

$$F'(p) = F'(1, -1, -1, 2) = \begin{bmatrix} 2 & -4 & -2 & 1 \\ 6 & -8 & 1 & 4 \end{bmatrix}.$$

Therefore $F_{u,v}(p) = \begin{bmatrix} -2 & 1 \\ 1 & 4 \end{bmatrix}$ with det $F_{u,v}(p) = -9$, thus $F_{u,v}(p)$ is invertible. By Implicit Fuction Theorem u, v can be expressed as a function G(x, y) defined near (1, -1) (such that F(x, y, G(x, y)) = 0 for (x, y) near (1, -1)).

(b) **Method 1.** We use the equation on the first page of tutorial note 3 (or the exact version in Example 4) directly to get

$$G'(1,-1) = -\begin{bmatrix} -2 & 1 \\ 1 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 2 & -4 \\ 6 & -8 \end{bmatrix} = \begin{bmatrix} 2/9 & -8/9 \\ -14/9 & 12/9 \end{bmatrix}.$$

Method 2. We can try to create a system of linear equations and then solve for u_x and v_x . Indeed, we differentiate (1) and (2) w.r.t. x to obtain

$$2x + 2uu_x + v_x = 0$$
 and $6x^2 + u_x + 2vv_x = 0$.

Now we put (x, y) = (1, -1) and use the fact that u(1, -1) = -1 and v(1, -1) = 2, then

$$2u_x - v_2 = 2$$
 and $u_x + 4v_x = -6$

we solve them to get $u_x(1,-1) = 2/9$ and $v_x(1,-1) = -14/9$.

***Example 1.** In this example we consider n = 4 and m = 2 of Implicit Function Theorem, *for simplicity*. Let $F : \mathbb{R}^4 \to \mathbb{R}^2$ and $p_0 = (x_0, y_0, u_0, v_0) \in \mathbb{R}^4$. Suppose:

(i) F is C^1 near p_0 .

(ii) $F(p_0) = 0$.

(iii) $F_{u,v}(p_0)$ is invertible.

Show that near p_0 , u,v can be solved from the equation F(x,y,u,v) = 0 and expressed as a C^1 function G(x,y) near (x_0,y_0) . Not only that, we have for (x,y) near (x_0,y_0) ,

$$\begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix} (x, y) = G'(x, y) = -[F_{u,v}(x, y, G(x, y))]^{-1} F_{x, y}(x, y, G(x, y)). \quad (\Box')$$

Solution. (i), (ii) and (iii) are just the conditions in Implicit Function Theorem, thus near p_0 , (u,v) can be expressed as a C^1 function G(x,y) such that F(x,y,G(x,y)) = 0 for (x,y) near (x_0,y_0) . Now we differentiate both sides (taking Jacobian matrix) to get

$$0 = F'(x, y, G(x, y)) \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ G'(x, y) \end{bmatrix} = F_{x, y}(x, y, G(x, y)) + F_{u, v}(x, y, G(x, y))G'(x, y)$$

here last equality follows from block matrix multiplication, note that G'(x,y) is a 2×2 matrix, now we solve from the above equation to get

$$G'(x,y) = -F_{u,v}(x,y,G(x,y))^{-1}F_{x,y}(x,y,G(x,y))$$

When $(x, y) = (x_0, y_0)$, then

$$G'(x_0, y_0) = -F_{u,v}(p_0)^{-1}F_{x,y}(p_0),$$

this is the version we use in Example 3.

Exercise 1 (Application of Im.F.T.). Let $f(x_1,...,x_k)$ be a homogeneous polynomial of degree $d \ge 1^{(*)}$, i.e.,

 $f(tx_1, \dots, tx_k) = t^d f(x_1, \dots, x_k)$ for every $t \in \mathbb{R}$.

Show that if $c \neq 0$, then the surface $f^{-1}(\{c\}) = \{x \in \mathbb{R}^k : f(x_1, \dots, x_k) = c\}$ can be locally parametrized as the graph of a *smooth* (i.e., has partial derivatives of any order) function. *You may try to plot out* $x^2 + y^2 - z^2 = 1$ and $x^2 + y^2 - z^2 = 0$ on WOLFRAMALPHA to see their difference.

*Example 2 (HKU, Analysis II, Spring 2009). Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable. Suppose that there is a number c > 0 such that

 $||F(x) - F(y)|| \ge c||x - y||, \quad \text{for all } x, y \in \mathbb{R}^n.$

Show that *F* is one-one and $DF(x) \neq 0$ for all $x \in \mathbb{R}^n$.

Solution. We note that the map from \mathbb{R}^n to \mathbb{R} defined by

 $x \mapsto \|F'(x)\|$

is continuous since *F* is continuously differentiable (i.e., C^1). Therefore if $F'(x_0) = 0$, for some x_0 , then for every $\epsilon > 0$ there is a $\delta > 0$ such that

 $||x - x_0|| < \delta \implies ||F'(x)|| < \epsilon.$

Therefore by Exercise 4 of tutorial note 2 we have for every $x, y \in B(x_0, \delta)$,

$$||F(x) - F(y)|| \le \epsilon ||x - y||.$$

By hypothesis of this example we have

 $c||x - x_0|| \le \epsilon ||x - x_0||,$

therefore if we take $x \in B(x_0, \delta) \setminus \{x_0\}$, then

 $c \leq \epsilon$.

But $\epsilon > 0$ is arbitrary, we have $0 < c \le 0$ by taking $\epsilon \to 0^+$, a contradiction.

The following exercise is for those who knows:

1) The definition of openness, closedness, connectedness of subsets in \mathbb{R}^n .

2) The "local version" of inverse function theorem instead of the weaker one stated in this course. Namely, we need the following version:

Theorem. If $F = (f_1, ..., f_n)$ is <u>defined near $a \in \mathbb{R}^n$ </u>, <u> C^1 near a</u> and <u>det $f'(a) \neq 0$ </u>, then f is a local C^1 -diffeomorphism at a.

Exercise 2 (Application of In.F.T.). Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be C^1 on \mathbb{R}^2 . Suppose that:

- det F'(x) = 0 for at most finitely many $x \in \mathbb{R}^2$.
- For every M > 0 the set $\{x \in \mathbb{R}^2 : |F(x)| \le M\}$ is bounded^(†);

Prove that *F* maps \mathbb{R}^2 onto \mathbb{R}^2 .

Hint: Prove by contradiction.

^(*) For example, $x^3 + x^2y + y^3$ and $x^4 - xy^3$ are homogeneous polynomial of degree 3 and 4 respectively.

^(†) Such a continuous map is said to be **proper**.