
Math3033 (Fall 2013-2014) Tutorial Note 3

Inverse and Implicit Function Theorem

Key Definitions and Results

Definition 1. We say that F : Rn → Rm is CCC111 at aaa ∈∈∈ Rnnn if:

(i) Near a all first order partial derivatives exists.

(ii) All partial derivatives of F are continuous at a.

Definition 2. Let F : U → Rm be defined on some U ⊆ Rn , we say that F is CCC111 on
a subset EEE ⊆⊆⊆UUU if F is C1 at each a ∈ E.

Definition 3. Let x = (xi1 ,. . . ,xih ), F : Rn → Rm and p ∈ Rn . If F′(p) exists, we
define

Fxi1 , ...,xih
(p) := Fx (p) :=
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...

∂ fm
∂xi1

· · ·
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 (p).

Theorem 4 (Inverse Function). Let F : Rn → Rn be a function such that:

(i) F is C1 near p ∈ Rn .

(ii) det(F′(p)) 6= 0.

Then there is an r > 0 such that F |B(p,r ) has a C1 inverse G : F(B(p,r))→ Rn ,
and by the chain rule we have

G′(F(x)) = (F′(x))−1 for all x ∈ B(p,r).

Theorem 5 (Implicit Function). Let F : Rn → Rm (n > m) be a function such
that:

(i) F is C1 near p = (p1,. . . ,pn).

(ii) F(p) = 0.

(iii) The right block matrix indicated below is invertible:
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• Then near p the variables (xn−m+1,. . . ,xn) can be solved implicitly from the
equation F(x1,. . . ,xn) = 0 and expressed as a C1 function G(x1,. . . ,xn−m).

• More precisely, there is an open ball B(p,r)⊆Rn and a C1 function G defined
on the “open set”

U := {(x1,. . . ,xn−m) : (x1,. . . ,xn) ∈ B(p,r)}

such that

= B(p,r)∩F−1({0})
= image of U under (id,G)

=
{

(x1,. . . ,xn−m ,G(x1,. . . ,xn−m)) : (x1,. . . ,xn−m) ∈U
}
.

(∗)

• Furthermore, by Example 1 of this tutorial note we have

G′(p1,. . . ,pn−m) = −
([ invertible

part of FFF′′′(((ppp)))

])−1

×

[ remaining
part of FFF′′′(((ppp)))

]
. (�)

Example 1. Consider Implicit Function Theorem 5, explain the geometrical
meaning of the set equality (∗) when n = 3 and m = 1.

Solution. (*) says that the surface

F−1({0}) = {(x,y,z) ∈ R3 : F(x,y,z) = 0}

near p can be parametrized as the graph of a C1 function G defined near (p1,p2).

Thus generally Implicit Function Theorem is nothing but parametrization of “abstract
surfaces” near some point, in such general cases G will be vector-valued and cannot be
easily visualized, unless we are god :).



Example 2. Let

u = x+ y,

3 = sin x+ cos y.

Show that when (x,y) is near (0,1), x and y can be expressed as a differentiable
function in (u,3). Compute xu ,x3,yu ,y3 at (1,cos1).

Solution. Define
(u,3) = F(x,y).

To express x,y as a differentiable function of (u,3) is to find differentiable F−1 such that
(x,y) = F−1(u,3). For this, we use Inverse Function Theorem.

Step 1: We need to show that FFF is CCC111 near (((000,,,111))).

Procedure: The standard way to do this is to find an r > 0 such that all partial
derivatives of F exist and are continuous on BBB((((((000,,,111))),,,rrr))). In many cases it is
easy to choose suitable r .

Now
ux = 1, uy = 1

and
3x = cos x, 3y = −sin y.

As they exist and are continuous on R2, they exist and are continuous on B((0,1),1), so
F is C1 near (0,1).

Step 2: We need to show that FFF′′′(((000,,,111))) is invertible. This is a routine calculation:

det F′(0,1) =
[

1 1
1 −sin1

]
= −sin1−1 6= 0.

Step 3: Make conclusion (=.=). By Inverse Function Theorem near (0,1) F has a
C1 inverse F−1, thus

(x,y) = (x(u,3),y(u,3)) = F−1(u,3) : near F(0,1)→ near (0,1)

is now a differentiable function of (u,3). Moreover,[
xu x3
yu y3

]
(1,cos1) = (F−1)′(F(0,1))

= (F′(0,1))−1

=

[
1 1
1 −sin1

]−1

=
1

1+ sin1

[
sin1 1

1 −1

]
.

Example 3. Consider the following equations

x2+2y2+u2+ 3 = 6, (1)

2x3+4y2+u+ 32 = 9. (2)

(a) Show that near p = (1,−1,−1,2), (u,3) can be expressed as a differentiable
function of (x,y).

(b) Compute ux and 3x at (1,−1).

Solution. (a) We define

F(x,y,u,3) = ( f ,g) =
[

x2 +2y+2+u2 + 3−6
2x3 +4y2 +u+ 32 −9

]
.

To “solve” (u,3) out from the equations F = 0 for (x,y,u,3) near p, we try to prove Fu,3(p)
is an invertible matrix plus some extra conditions.

Step 1: Show that FFF is CCC111 near ppp. It is similar to Example 2, indeed,

F′(x,y,u,3) =
[

f x fy fu f3
gx gy gu g3

]
=

[
2x 4y 2u 1
6x2 8y 1 23

]
,

clearly all partial derivatives exist and are continuous on B(p,1), so F is C1 near p.
Step 2: Show that FFF(((ppp))) === 000. This can be done by direct calculation, make sure

that you finish this step in your midterm/final exams.
Step 3: Show that FFFu,3(((ppp))) is invertible. We have

F′(p) = F′(1,−1,−1,2) =
[

2 −4 −2 1
6 −8 1 4

]
.

Therefore Fu,3(p) =
[
−2 1
1 4

]
with det Fu,3(p) = −9, thus Fu,3(p) is invertible. By Im-

plicit Fucntion Theorem u,3 can be expressed as a function G(x,y) defined near (1,−1)
(such that F(x,y,G(x,y)) = 0 for (x,y) near (1,−1)).

(b) Method 1. We use the equation on the first page of tutorial note 3 (or the exact
version in Example 4) directly to get

G′(1,−1) = −
[
−2 1
1 4

]−1 [2 −4
6 −8

]
=

[
2/9 −8/9
−14/9 12/9

]
.

Method 2. We can try to create a system of linear equations and then solve for ux

and 3x . Indeed, we differentiate (1) and (2) w.r.t. x to obtain

2x+2uux + 3x = 0 and 6x2 +ux +233x = 0.

Now we put (x,y) = (1,−1) and use the fact that u(1,−1) = −1 and 3(1,−1) = 2, then

2ux − 32 = 2 and ux +43x = −6,

we solve them to get ux (1,−1) = 2/9 and 3x (1,−1) = −14/9.



*Example 1. In this example we consider n = 4 and m = 2 of Implicit Function
Theorem, for simplicity. Let F : R4→R2 and p0 = (x0,y0,u0,30) ∈R4. Suppose:

(i) F is C1 near p0.

(ii) F(p0) = 0.

(iii) Fu,3(p0) is invertible.

Show that near p0, u,3 can be solved from the equation F(x,y,u,3) = 0 and ex-
pressed as a C1 function G(x,y) near (x0,y0). Not only that, we have for (x,y)
near (x0,y0),[

ux uy

3x 3y

]
(x,y) = G′(x,y) = −[Fu,3

(
x,y,G(x,y)

)
]−1Fx,y

(
x,y,G(x,y)

)
. (�′)

Solution. (i), (ii) and (iii) are just the conditions in Implicit Function Theorem, thus near
p0, (u,3) can be expressed as a C1 function G(x,y) such that F(x,y,G(x,y)) = 0 for (x,y)
near (x0,y0). Now we differentiate both sides (taking Jacobian matrix) to get

0 = F′(x,y,G(x,y)) ·

 1 0
0 1

G′(x,y)

 = Fx,y (x,y,G(x,y))+Fu,3(x,y,G(x,y))G′(x,y),

here last equality follows from block matrix multiplication, note that G′(x,y) is a 2× 2
matrix, now we solve from the above equation to get

G′(x,y) = −Fu,3(x,y,G(x,y))−1Fx,y (x,y,G(x,y)).

When (x,y) = (x0,y0), then

G′(x0,y0) = −Fu,3(p0)−1Fx,y (p0),

this is the version we use in Example 3.

Exercise 1 (Application of Im.F.T.). Let f (x1,. . . ,xk ) be a homogeneous poly-
nomial of degree d ≥ 1(∗), i.e.,

f (t x1,. . . t xk ) = td f (x1,. . . ,xk ) for every t ∈ R.

Show that if ccc 6 6 6=== 000, then the surface f −1({c}) = {x ∈ Rk : f (x1,. . . ,xk ) = c} can be
locally parametrized as the graph of a smooth (i.e., has partial derivatives of any
order) function. You may try to plot out x2 + y2 − z2 = 1 and x2 + y2 − z2 = 0 on
WOLFRAMALPHA to see their difference.

(∗) For example, x3 + x2y + y3 and x4 − xy3 are homogeneous polynomial of degree 3 and 4 respec-
tively.

*Example 2 (HKU, Analysis II, Spring 2009). Let F : Rn → Rn be con-
tinuously differentiable. Suppose that there is a number c > 0 such that

‖F(x)−F(y)‖ ≥ c‖x− y‖, for all x,y ∈ Rn .

Show that F is one-one and DF(x) 6= 0 for all x ∈ Rn .

Solution. We note that the map from Rn to R defined by

x 7→ ‖F′(x)‖

is continuous since F is continuously differentiable (i.e., C1). Therefore if F′(x0) = 0,
for some x0, then for every ε > 0 there is a δ > 0 such that

‖x− x0‖ < δ Ô⇒ ‖F′(x)‖ < ε.

Therefore by Exercise 4 of tutorial note 2 we have for every x,y ∈ B(x0,δ),

‖F(x)−F(y)‖ ≤ ε‖x− y‖.

By hypothesis of this example we have

c‖x− x0‖ ≤ ε‖x− x0‖,

therefore if we take x ∈ B(x0,δ) \ {x0}, then

c ≤ ε .

But ε > 0 is arbitrary, we have 0 < c ≤ 0 by taking ε → 0+, a contradiction.

The following exercise is for those who knows:

1) The definition of openness, closedness, connectedness of subsets in Rn .

2) The “local version” of inverse function theorem instead of the weaker one
stated in this course. Namely, we need the following version:

Theorem. If F = ( f1,. . . , fn) is defined near a ∈ Rn , C1 near a and
det f ′(a) 6= 0, then f is a local C1-diffeomorphism at a.

Exercise 2 (Application of In.F.T.). Let F : R2 → R2 be C1 on R2. Suppose
that:

• det F′(x) = 0 for at most finitely many x ∈ R2.

• For every M > 0 the set {x ∈ R2 : |F(x)| ≤ M} is bounded(†);

Prove that F maps R2 onto R2.

Hint: Prove by contradiction.

(†) Such a continuous map is said to be proper.


