- how to find supremum and infimum in a systematical way.
Key definitions and results

Definition 1 (Lower, Upper Bound).

- A set S is bounded below if there is an $m \in \mathbb{R}$ such that $m \leq x$ for all $x \in S$, such m is called a lower bound of S.
- Similarly, a set S is bounded above if there is an $M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S$, such M is called an upper bound of S.

Definition 2 (Infimum). If a set is bounded below, then the infimum of S, denoted by $\inf S$, is a lower bound of S such that for any lower bound m of S, we have

$$
m \leq \inf S
$$

It is also called the greatest lower bound of S.
Definition 3 (Supremum). If a set is bounded above, then the supremum of S, denoted by $\sup S$, is an upper bound of S such that for any upper bound M of S, we have

$$
\sup S \leq M
$$

It is also called the least upper bound of S.

Definition 4 (Convergence of Seqeucne). We say that a sequence $\left\{a_{\boldsymbol{n}}\right\}$ (or $\boldsymbol{a}_{\boldsymbol{n}}$) converges to \boldsymbol{a}, denoted by $\lim _{n \rightarrow \infty} a_{n}=a$ or $a_{n} \rightarrow a$, if

$$
\forall \epsilon>0, \exists N \in \mathbb{N} \quad \text { s.t. } \quad n>N \Longrightarrow\left|a_{n}-a\right|<\epsilon .
$$

Theorem 5 (Infimum Property). If a set S has an infimum in \mathbb{R}. Then for every $\epsilon>0$, there is an $x \in S$ such that $\inf S \leq x<\inf S+\epsilon$.

Theorem 6 (Infimum Limit). Let S be a nonempty set that is bounded below. Then a number $m=\inf S$ if and only if
(a) m is a lower bound.
(b) There is a sequence $\left\{x_{n}\right\}$ in S such that $\lim _{n \rightarrow \infty} x_{n}=m$.

Theorem 7 (Supremum Property). If a set S has a supremum in \mathbb{R}. Then for every $\epsilon>0$, there is an $x \in S$ such that $\sup S-\epsilon<x \leq \sup S$.

Theorem 8 (Supremum Limit). Let S be a nonempty set that is bounded above. Then a number $M=\sup S$ if and only if
(a) M is an upper bound.
(b) There is a sequence $\left\{x_{n}\right\}$ in S such that $\lim _{n \rightarrow \infty} x_{n}=M$.

Theorem 9 (Density of \mathbb{Q} and $\mathbb{R} \backslash \mathbb{Q}$). For every $x<y$ there is an $m / n \in \mathbb{Q}$ and also a $w \in \mathbb{R} \backslash \mathbb{Q}$ such that

$$
x<\frac{m}{n}<y \quad \text { and } \quad x<w<y .
$$

Example 1. Determine if each of the following sets has an infimum and a supremum in \mathbb{R}. If they exist, find them and explain.
(a) $A=\left\{\frac{\sqrt{2}}{m+n}+\frac{1}{k \sqrt{2}}: m, n, k \in \mathbb{N}\right\}$. (Practice Exercise 91(g))
(b) $B=\left\{\frac{k}{n!}: k, n \in \mathbb{N}, \frac{k}{n!}<\sqrt{2}\right\}$. (Practice Exercise 91(m))
(c) $C=\left\{a+b: a, b \in \mathbb{Q}, a^{2}<3,|2 b+1|<5\right\}$.

Sol (c) Proof of $\inf \boldsymbol{C}=-\sqrt{3}-3$. We divide this part into two steps.
Step 1. Find a suitable lower bound of C.
For every $x \in C$, there are $a, b \in \mathbb{R}$ such that $a^{2}<3$ and $|2 b+1|<5$ and

$$
x=a+b .
$$

Note that
$a^{2}<3 \Longleftrightarrow|a|<\sqrt{3} \Longleftrightarrow-\sqrt{3}<a<\sqrt{3}$ and
$|2 b+1|<5 \Longleftrightarrow-5<2 b+1<5 \Longleftrightarrow-3<b<2$,
therefore we have

$$
\begin{equation*}
-\sqrt{3}-3<x=a+b<\sqrt{3}+2 \tag{*}
\end{equation*}
$$

This holds for every $x \in C$, we conclude C is bounded below by $-\sqrt{3}-3$.

Step 2. Find a sequence in \boldsymbol{C} that converges to this lower bound.

Let's choose $a_{n}=-\sqrt{3}+\frac{1}{n}$ and $b_{n}=-3+\frac{1}{n}$. Then $a_{n}^{2}<3$ and $\left|2 b_{n}+1\right|<5$, so the number

$$
C \ni a_{n}+b_{n}=-\sqrt{3}-3+\frac{2}{n} \rightarrow-\sqrt{3}-3 .
$$

By Infimum Limit Theorem, $\inf C=-\sqrt{3}-3$.
Proof of $\sup \boldsymbol{C}=\sqrt{3}+2$. This is similar to the above.
By (*) $\sqrt{3}+2$ is an upper bound of C.
The sequence $a_{n}=\sqrt{3}-\frac{1}{n}, b_{n}=2-\frac{1}{n}$ satisfies

$$
C \ni a_{n}+b_{n} \rightarrow \sqrt{3}+2 .
$$

Therefore $\sup C=\sqrt{3}+2$.

Example 2. Let A and B be bounded.

(a) Let $A+B=\{a+b: a \in A, b \in B\}$. Show that

$$
\sup (A+B)=\sup A+\sup B
$$

and

$$
\inf (X+Y)=\inf X+\inf Y
$$

(b) Let $c X=\{c x: x \in X\}$. Show that

$$
\sup (c X)=c \sup X \quad \text { when } c>0
$$

and

$$
\sup (c X)=c \inf X \quad \text { when } c<0
$$

Sol (a) For every $x \in A+B$, there are $a \in A, b \in B$, such that $x=a+b \leq \sup A+\sup B$, so $\sup A+\sup B$ is an upper bound of $A+B$.
We construct a sequence in $A+B$ that converges to $\sup A+\sup B$. By Supremum Limit Theorem, there are sequences $\left\{a_{n}\right\}$ in A and $\left\{b_{n}\right\}$ in B such that

$$
a_{n} \rightarrow \sup A \quad \text { and } \quad b_{n} \rightarrow \sup B
$$

Therefore

$$
A+B \ni a_{n}+b_{n} \rightarrow \sup A+\sup B .
$$

We conclude that $\sup (A+B)=\sup A+\sup B$.
The rest of part (a) and also part (b) are similar. 】

Example 3. Find $\sup A$ and $\inf A$, where

$$
A=\left\{\frac{m}{\sqrt{3} \times 2^{n}}: m \in \mathbb{Z}, n \in \mathbb{N}\right\} \cap(0,4)
$$

Also define $S=\left\{y-\frac{1}{e^{x}}: x, y \in A\right\}$, what is $\sup S$ and $\inf S$?

Sol (i) By definition $x>0$ for every $x \in A$. Since

$$
A \ni \frac{1}{\sqrt{3} \times 2^{n}} \rightarrow 0
$$

therefore inf $A=0$.
(ii) Now we show that $\sup A=4$.

4 is an upper bound of A by definition.
Since for every $y \in \mathbb{R}$ we have $\left[y \cdot 2^{n}\right] / 2^{n} \rightarrow y$, where $[y]$ denotes the integral part of y. Therefore

$$
A \ni \frac{\left[4 \sqrt{3} \cdot 2^{n}\right]}{\sqrt{3} \cdot 2^{n}} \rightarrow \frac{4 \sqrt{3}}{\sqrt{3}}=4 .
$$

We conclude $\sup A=4$.
Simple manipulation of inequalities gives

$$
\inf S=-1 \quad \text { and } \quad \sup S=4-\frac{1}{e^{4}}
$$

For example, let's prove $\sup S=4-1 / e^{4}$ rigorously, the fact that $\inf S=-1$ is left to you. Indeed, we see that for every $x, y \in A, \inf A \leq x, y \leq \sup A$, therefore

$$
y-\frac{1}{e^{x}} \leq \sup A-\frac{1}{e^{\sup A}}=4-\frac{1}{e^{4}}
$$

so $4-\frac{1}{e^{4}}$ is an upper bound of S. Next, by Supremum Limit Theorem, there is a sequence $A \ni x_{n} \rightarrow 4$, and thus

$$
S \ni x_{n}-\frac{1}{e^{x_{n}}} \rightarrow 4-\frac{1}{e^{4}}
$$

and therefore $\sup S=4-\frac{1}{e^{4}}$.

Exercises

1. (2006 Fall Midterm) Let $\left(0, \frac{1}{2}\right) \cap \mathbb{Q} \subseteq A_{1} \subseteq[0,1)$. For $n=1,2, \ldots$ we let

$$
A_{n+1}=\left\{\sqrt{x}: x \in A_{n}\right\}
$$

Determine the supremum and infimum of $\bigcup_{k=1}^{\infty} A_{k}$ with proof.
2. (2005 Final) Determine the supremum of

$$
S=\bigcup_{n=1}^{\infty}\left\{\frac{1}{x}+\frac{1}{n \sqrt{2}}: x \in(2,3] \backslash \mathbb{Q}\right\}
$$

and be sure to give a proof for your answer.
3. (2002 Spring) Suppose $\left\{x_{n}\right\}$ converges to $w \in \mathbb{R}$ and $x_{n}<w$ for all $n \in \mathbb{N}$. Now for each $n \in \mathbb{N}$ we let

$$
y_{n}=\sup \left\{x_{2 k}: k \in \mathbb{N}, k \leq \frac{n+1}{2}\right\}
$$

Show that $\left\{y_{n}\right\}$ converges to w.
4. Find supremum and infimum of each of the following sets:
(a) $\{\sqrt{n}-[\sqrt{n}]: n \in \mathbb{N}\}^{(*)}$;
(b) $\left\{\frac{\alpha m+\beta n}{m+n}: m, n \in \mathbb{N}, m+n \neq 0\right\}, \alpha, \beta>0$;
(c) $\left\{\frac{m^{2}-n}{m^{2}+n^{2}}: n, m \in \mathbb{N}, m>n\right\}$;
(d) $\left\{\frac{n-k^{2}}{n^{2}+k^{3}}: n, k \in \mathbb{N}\right\}$.

