Math2033 Mathematical Analysis (Spring 2013-2014) Tutorial Note 3

Infimum and Supremum

- We need to know -

• how to find supremum and infimum in a systematical way.

Key definitions and results

Definition 1 (Lower, Upper Bound).

- A set *S* is **bounded below** if there is an $m \in \mathbb{R}$ such that $m \le x$ for all $x \in S$, such *m* is called a **lower bound** of *S*.
- Similarly, a set S is **bounded above** if there is an $M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S$, such M is called an **upper bound** of S.

Definition 2 (Infimum). If a set is bounded below, then the **infimum** of *S*, denoted by inf **S**, is a *lower bound* of *S* such that for any lower bound *m* of *S*, we have

 $m \leq \inf S$.

It is also called the greatest lower bound of *S*.

Definition 3 (Supremum). If a set is bounded above, then the **supremum** of S, denoted by sup S, is an *upper bound* of S such that for any upper bound M of S, we have

 $\sup S \leq M$.

It is also called the least upper bound of *S*.

Definition 4 (Convergence of Sequence). We say that a sequence $\{a_n\}$ (or a_n) converges to a, denoted by $\lim_{n \to \infty} a_n = a$ or $a_n \to a$, if

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \quad \text{s.t.} \quad n > N \implies |a_n - a| < \epsilon.$

- **Theorem 5 (Infimum Property).** If a set *S* has an infimum in \mathbb{R} . Then for every $\epsilon > 0$, there is an $x \in S$ such that $\inf S \le x < \inf S + \epsilon$.
- **Theorem 6 (Infimum Limit).** Let *S* be a nonempty set that is bounded below. Then a number $m = \inf S$ if and only if

(a) m is a lower bound.

(b) There is a sequence $\{x_n\}$ in *S* such that $\lim_{n\to\infty} x_n = m$.

- **Theorem 7 (Supremum Property).** If a set *S* has a supremum in \mathbb{R} . Then for every $\epsilon > 0$, there is an $x \in S$ such that $\sup S \epsilon < x \le \sup S$.
- **Theorem 8 (Supremum Limit).** Let S be a nonempty set that is bounded above. Then a number $M = \sup S$ if and only if
 - (a) M is an upper bound.
 - (b) There is a sequence $\{x_n\}$ in *S* such that $\lim_{n\to\infty} x_n = M$.
- **Theorem 9 (Density of** \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$). For every x < y there is an $m/n \in \mathbb{Q}$ and also a $w \in \mathbb{R} \setminus \mathbb{Q}$ such that

$$x < \frac{m}{n} < y$$
 and $x < w < y$.

Example 1. Determine if each of the following sets has an infimum and a supremum in \mathbb{R} . If they exist, find them and explain.

(a) $A = \left\{ \frac{\sqrt{2}}{m+n} + \frac{1}{k\sqrt{2}} : m, n, k \in \mathbb{N} \right\}.$ (Practice Exercise 91(g)) (b) $B = \left\{ \frac{k}{n!} : k, n \in \mathbb{N}, \frac{k}{n!} < \sqrt{2} \right\}.$ (Practice Exercise 91(m)) (c) $C = \{a+b : a, b \in \mathbb{Q}, a^2 < 3, |2b+1| < 5\}.$

<u>Sol</u> (c) **Proof of** inf $C = -\sqrt{3} - 3$. We divide this part into two steps.

Step 1. Find a suitable lower bound of *C*. For every $x \in C$, there are $a, b \in \mathbb{R}$ such that $a^2 < 3$ and |2b + 1| < 5 and

x = a + b.

Note that

 $a^2 < 3 \iff |a| < \sqrt{3} \iff -\sqrt{3} < a < \sqrt{3}$ and $|2b+1| < 5 \iff -5 < 2b+1 < 5 \iff -3 < b < 2$,

therefore we have

 $-\sqrt{3} - 3 < x = a + b < \sqrt{3} + 2.$

(*)

This holds for every $x \in C$, we conclude *C* is bounded below by $-\sqrt{3}-3$.

Step 2. Find a sequence in *C* that converges to this lower bound.

Let's choose $a_n = -\sqrt{3} + \frac{1}{n}$ and $b_n = -3 + \frac{1}{n}$. Then $a_n^2 < 3$ and $|2b_n + 1| < 5$, so the number

$$C \ni a_n + b_n = -\sqrt{3} - 3 + \frac{2}{n} \rightarrow -\sqrt{3} - 3.$$

By Infimum Limit Theorem, $\inf C = -\sqrt{3} - 3$.

Proof of sup $C = \sqrt{3} + 2$. This is similar to the above.

By (*) $\sqrt{3}$ + 2 is an upper bound of *C*.

The sequence $a_n = \sqrt{3} - \frac{1}{n}$, $b_n = 2 - \frac{1}{n}$ satisfies

$$C \ni a_n + b_n \to \sqrt{3} + 2.$$

Therefore $\sup C = \sqrt{3} + 2$.

```
Example 2. Let A and B be bounded.

(a) Let A + B = \{a + b : a \in A, b \in B\}. Show that

sup(A + B) = sup A + sup B

and

inf(X + Y) = inf X + inf Y.

(b) Let cX = \{cx : x \in X\}. Show that

sup(cX) = c sup X when c > 0

and

sup(cX) = c inf X when c < 0.
```

Sol (a) For every $x \in A + B$, there are $a \in A, b \in B$, such that $x = a + b \le \sup A + \sup B$, so $\sup A + \sup B$ is an upper bound of A + B.

We construct a sequence in A + B that converges to sup $A + \sup B$. By Supremum Limit Theorem, there are sequences $\{a_n\}$ in A and $\{b_n\}$ in B such that

$$a_n \to \sup A$$
 and $b_n \to \sup B$.

Therefore

 $A + B \ni a_n + b_n \rightarrow \sup A + \sup B.$

We conclude that $\sup(A + B) = \sup A + \sup B$.

The rest of part (a) and also part (b) are similar.

Example 3. Find sup *A* and inf *A*, where $A = \left\{ \frac{m}{\sqrt{3} \times 2^n} : m \in \mathbb{Z}, n \in \mathbb{N} \right\} \cap (0, 4).$ Also define $S = \left\{ y - \frac{1}{e^x} : x, y \in A \right\}$, what is sup *S* and inf *S*?

<u>Sol</u> (i) By definition x > 0 for every $x \in A$. Since

$$A \ni \frac{1}{\sqrt{3} \times 2^n} \to 0$$

therefore $\inf A = 0$.

(ii) Now we show that $\sup A = 4$.

4 is an upper bound of *A* by definition.

Since for every $y \in \mathbb{R}$ we have $[y \cdot 2^n]/2^n \to y$, where [y] denotes the integral part of y. Therefore

$$A \ni \frac{[4\sqrt{3} \cdot 2^n]}{\sqrt{3} \cdot 2^n} \to \frac{4\sqrt{3}}{\sqrt{3}} = 4.$$

We conclude $\sup A = 4$.

Simple manipulation of inequalities gives

inf
$$S = -1$$
 and $\sup S = 4 - \frac{1}{e^4}$.

For example, let's prove sup $S = 4 - 1/e^4$ rigorously, the fact that inf S = -1 is left to you.

Indeed, we see that for every $x, y \in A$, $\inf A \le x, y \le \sup A$, therefore

$$y - \frac{1}{e^x} \le \sup A - \frac{1}{e^{\sup A}} = 4 - \frac{1}{e^4},$$

so $4 - \frac{1}{e^4}$ is an upper bound of *S*. Next, by Supremum Limit Theorem, there is a sequence $A \ni x_n \to 4$, and thus $S \ni x_n - \frac{1}{e^{x_n}} \to 4 - \frac{1}{e^4}$,

and therefore
$$\sup S = 4 - \frac{1}{e^4}$$
.

Exercises

1. (2006 Fall Midterm) Let $\left(0, \frac{1}{2}\right) \cap \mathbb{Q} \subseteq A_1 \subseteq [0, 1)$. For $n = 1, 2, \ldots$ we let

 $A_{n+1} = \{\sqrt{x} : x \in A_n\}.$

Determine the supremum and infimum of $\bigcup_{k=1}^{\infty} A_k$ with proof.

2. (2005 Final) Determine the supremum of

$$S = \bigcup_{n=1}^{\infty} \left\{ \frac{1}{x} + \frac{1}{n\sqrt{2}} : x \in (2,3] \setminus \mathbb{Q} \right\}$$

and be sure to give a proof for your answer.

3. (2002 Spring) Suppose $\{x_n\}$ converges to $w \in \mathbb{R}$ and $x_n < w$ for all $n \in \mathbb{N}$. Now for each $n \in \mathbb{N}$ we let

$$y_n = \sup\left\{x_{2k} : k \in \mathbb{N}, k \le \frac{n+1}{2}\right\}.$$

Show that $\{y_n\}$ converges to w.

4. Find supremum and infimum of each of the following sets:

(a)
$$\left\{\sqrt{n} - \left[\sqrt{n}\right] : n \in \mathbb{N}\right\}^{(*)};$$

(b) $\left\{\frac{\alpha m + \beta n}{m + n} : m, n \in \mathbb{N}, m + n \neq 0\right\}, \alpha, \beta > 0;$
(c) $\left\{\frac{m^2 - n}{m^2 + n^2} : n, m \in \mathbb{N}, m > n\right\};$
(d) $\left\{\frac{n - k^2}{n^2 + k^3} : n, k \in \mathbb{N}\right\}.$

^{(*) [}x] denotes the **integral part** of x, which is the *biggest* integer not exceeding x. e.g., [2.033] = 2 and [-1.033] = -2. It is also commonly denoted by $\lfloor x \rfloor$ (= [x]), called **floor function**.