Math3033 (Fall 2013-2014)

Tutorial Note 2

Differentiability and C^1 Theorem

- Key Definitions and Results

Definition 1. In this course **the only norm** we use is the "**two norm**". That is, for $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ the notation $\|\cdot\|$ always means

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Definition 2. Let $F = (f_1, ..., f_m)$ be a vector-valued function defined near $a \in \mathbb{R}^n$. *F* is said to be **differentiable at** *a* if there is a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{|x-a|| \to 0} \frac{\|F(x) - F(a) - T(x-a)\|}{\|x-a\|} = 0.$$

Such linear transformation *T* is unique and denoted by DF(a). We say that $F'(a) := \left[\frac{\partial f_i}{\partial x_i}(a)\right]_{m \times n}$ exists if all its first order partial derivatives at *a* exist.

Definition 3. We say that $F : \mathbb{R}^n \to \mathbb{R}^m$ is C^1 at $a \in \mathbb{R}^n$ if:

- (i) Near *a* all first order partial derivatives $exist^{(*)}$.
- (ii) All first order partial derivatives of F are continuous at a.

Remark 4 (Procedure to Check Differentiability and Nondifferentiability).

• Step 1. Compute all
$$\frac{\partial f_i}{\partial x_i}$$
's of $F = (f_1, \dots, f_m) : \mathbb{R}^n \to \mathbb{R}^m$ at $a \in \mathbb{R}^n$.

• <u>Step 2.</u> Construct the Jacobian matrix

$$F'(a) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} (a)$$

and compute the limit $L = \lim_{x \to a} \frac{\|F(x) - F(a) - F'(a)(x - a)\|}{\|x - a\|}.$

Case 1. If L exists and is zero, then F is differentiable at a by definition of differentiability.

Case 2. If L does not exist, or it exists but is nonzero, then F is not differentiable at a. Since if F is differentiable at a, its derivatives must make L vanish by definition.

Theorem 5 (Cauchy-Schwarz Inequality). Let $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$, we have

$$\left|\sum_{i=1}^{n} a_i b_i\right|^2 \leq \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right).$$

Theorem 6. $\|\cdot\|$ satisfies the following properties:

- (i) **Positivity:** $||x|| \ge 0$ for all $x \in \mathbb{R}^n$ and $||x|| = 0 \implies x = 0$.
- (ii) **Scaling Property:** For every $a \in \mathbb{R}$ and $x \in \mathbb{R}^n$, $||ax|| = |a| \cdot ||x||$.
- (iii) **Triangle Inequality:** For every $x, y \in \mathbb{R}^n$, $||x + y|| \le ||x|| + ||y||$.

Theorem 7. Let $F = (f_1, ..., f_m)$ be defined near $a \in \mathbb{R}^n$. If *F* is differentiable at *a*, then:

- (i) All first order partial derivatives at a exist, i.e., F'(a) exists.
- (ii) The matrix of DF(a) w.r.t. usual bases is $F'(a) := \left[\frac{\partial f_i}{\partial x_i}(a)\right]_{m \times n}$.
- **Theorem 8.** Let $F = (f_1, \dots, f_m)$ be defined near *a*, then *F* is differentiable at *a* \iff all its coordinate functions are differentiable at *a*.

Theorem 9 (C^1). If $F : \mathbb{R}^n \to \mathbb{R}^m$ is C^1 at a, then F is differentiable at a.

Theorem 10 (Chain Rule). Let $U \subseteq \mathbb{R}^m$ and $V \subseteq \mathbb{R}^k$ be open balls and consider the composition $U \xrightarrow{G} V \xrightarrow{F} \mathbb{R}^n$. If G is differentiable at $a \in U$ and F is differentiable at G(a), then $F \circ G$ is differentiable at a, moreover,

 $D(F \circ G)(a) = DF(G(a)) \circ DG(a),$

or in matrix form (when domain and range are given the usual bases),

 $(F \circ G)'(a) = F'(G(a))G'(a).$

Remark 11. We have the following diagram:

^(*) More precisely, there is an r > 0 such that all first order partial derivatives exist on B(a, r).

Example 1. For each of the following $f : \mathbb{R}^2 \to \mathbb{R}$, find (i) $\lim_{(x,y)\to(0,0)} f(x,y)$, (ii) $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$. (iii) Determine if f_x and f_y are continuous at (0,0). (a) $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$ (b) $f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$ (c) $f(x,y) = \begin{cases} \frac{x^2y^2}{\sqrt{x^2 + y^2}}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$

Solution. (a) (i) If we let y = kx, then for $x \neq 0$ we have

$$f(x,kx) = \frac{k}{1+k^2}$$

therefore different paths produce different limits, thus $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

(ii) Since f(x,0) = f(0,y) = 0 for $x, y \in \mathbb{R}$, we have

$$f_x(0,0) = \frac{d}{dx} f(x,0) \bigg|_{x=0} = \frac{d}{dx} 0 \bigg|_{x=0} = 0$$

and

$$f_{y}(0,0) = \frac{d}{dy}f(0,y)\Big|_{y=0} = \frac{d}{dy}0\Big|_{y=0} = 0$$

(iii) For $(x, y) \neq (0, 0)$, we have

$$f_x = \frac{y^3 - x^2 y}{(x^2 + y^2)^2}$$
 and $f_y = \frac{x^3 - xy^2}{(x^2 + y^2)^2}$

and thus $f_x(0,y) = 1/y \to \infty$ as $y \to 0$ and $f_y(x,0) = 1/x \to \infty$ as $x \to 0$, so f_x, f_y are both not continuous at (0,0).

(b) (i) Since for $(x, y) \neq (0, 0)$ we have

$$|f(x,y)| = \left|\frac{x^2}{x^2 + y^2}\right| \cdot |y| \le |y| \le \sqrt{x^2 + y^2} = ||(x,y)||$$

thus $\lim_{(x,y)\to(0,0)} f(x,y) = 0.$

(ii) We still have f(x,0) = 0 and f(0,y) = 0 for each $x, y \in \mathbb{R}$, therefore

$$f_x(0,0) = f_y(0,0) = 0$$

for the same reason as in (a) (ii). (iii) For $(x, y) \neq (0, 0)$ we have

2

$$f_x = \frac{2xy^3}{(x^2 + y^2)^2}$$
 and $f_y = \frac{x^4 - x^2y^2}{(x^2 + y^2)^2}$

and thus by polar coordinate $(x, y) = (r \cos \theta, r \sin \theta)$, where $\theta = \theta(r)$, we have

$$f_x = 2\cos\theta\sin^3\theta$$
 and $f_y = \cos^4\theta - \cos^2\theta\sin^2\theta$

thus different choices of $\theta(r)$ (i.e., different paths) will product different limits, f_x, f_y are not continuous at (0,0).

(c) (i) By polar coordinate we have $f = r^3 \cos^2 \theta \sin^2 \theta$, therefore $f \to 0$ as $(x, y) \to (0, 0)$.

(ii) We still have f(x,0) = f(0,y) = 0 for each $x, y \in \mathbb{R}$, therefore

$$f_x(0,0) = f_y(0,0) = 0$$

as in part (a) (ii).

(iii) For $(x, y) \neq (0, 0)$ we have

$$f_x = \frac{x^3 y^2 + 2xy^4}{(x^2 + y^2)^{3/2}}$$
 and $f_y = \frac{y^3 x^2 + 2yx^4}{(x^2 + y^2)^{3/2}}$

both $f_x, f_y \to 0$ as $(x, y) \to (0, 0)$, this is obvious by using polar coordinate system

Example 2. For each of the following $f : \mathbb{R}^2 \to \mathbb{R}$, determine f_x and f_y at every $(a,b) \in \mathbb{R}^2$, where they exist.

(a) $f(x, y) = \cos |xy|$.

(b) $f(x,y) = x \sin|y|$.

Solution. (a) As $\cos is$ an even function, we have $f = \cos(xy)$, thus direct differentiation yields

 $f_x(a,b) = -b\sin(ab)$ and $f_y(a,b) = -a\sin(ab)$.

(b) For every $(a,b) \in \mathbb{R}^2$ we have

$$f_x(a,b) = \frac{d}{dx}f(x,b)\bigg|_{x=a} = \frac{d}{dx}(x\sin|b|)\bigg|_{x=a} = \sin|b|$$

Now we compute $f_{y}(a,b)$.

Case 1. If b > 0, then (x, y) near (a, b) implies y > 0 implies $f(x, y) = x \sin y$, thus direct differentiation gives $f_y(a, b) = a \cos b$.

Case 2. If b < 0, then similarly we have (x, y) near (a, b) implies y < 0 implies $f = -x \sin y$, and also direct differentiation gives $f_y(a, b) = -a \cos b$.

Case 3. If b = 0, then since

$$f_y(a,0) = \frac{d}{dy}f(a,y)\Big|_{y=0} = \frac{d}{dy}a\sin|y|\Big|_{y=0} = a\lim_{h\to 0}\frac{\sin|h|}{h},$$

the limit exists only when a = 0, therefore we conclude

 $f_{y}(0,0) = 0.$

Example 3. Let $\alpha > \frac{1}{2}$ and $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} |xy|^{\alpha} \ln(x^2 + y^2), & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Prove that f is differentiable at (0,0).

Solution. We need to find a linear map *T* such that

$$\frac{f(\vec{x}) - f(\vec{0}) - T\vec{x}}{\|\vec{x}\|} \to 0 \quad \text{as } \vec{x} \to \vec{0}.$$

By the definition of differentiability the only candidate of such T is the linear map induced by the Jacobian matrix

$$f'(\vec{0}) = \nabla f(\vec{0}) = \left[f_x(\vec{0}) \quad f_y(\vec{0}) \right].$$

Step 1. Since f(x,0) = f(0,y) = 0 for every $x, y \in \mathbb{R}$, by direct computation we have

$$f_x(0,0) = \frac{d}{dx}f(x,0)\bigg|_{x=0} = \frac{d}{dx}0\bigg|_{x=0} = 0.$$

And similarly $f_{y}(0,0) = 0$.

Step 2. Since f(0,0) = 0 and $T = f'(0,0) = \begin{bmatrix} 0 & 0 \end{bmatrix}$, we have

$$\lim_{\|(x,y)\| \to 0} \frac{f(x,y) - f(0,0) - \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}}{\|(x,y)\|} = \lim_{\|(x,y)\| \to 0} \frac{|xy|^{\alpha} \ln(x^2 + y^2)}{\sqrt{x^2 + y^2}}$$

By polar coordinate the latter expression becomes $2r^{2\alpha-1} \ln r |\cos \theta|^{\alpha} |\sin \theta|^{\alpha}$. As $2\alpha > 1$ by the given condition, thus

$$\lim_{\|(x,y)\|\to 0} \frac{f(x,y) - f(0,0) - \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}}{\|(x,y)\|} = 0.$$

Exercise 1. Determine with proof if

$$f(x,y) := \begin{cases} \frac{\ln(1+x^4+y^4)}{x^2+y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) \neq (0,0) \end{cases}$$

is differentiable at (0,0).

Exercise 2. Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map defined by F(x) = Ax, for some matrix *A*. Show that *F* is differentiable on \mathbb{R}^n , moreover, F'(x) = A, for each $x \in \mathbb{R}^n$.

Example 4. Let $\alpha < 3/2$, prove that

$$f(x,y) = \begin{cases} \frac{x^4 + y^4}{(x^2 + y^2)^{\alpha}}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$$

is differentiable on \mathbb{R}^2 by using C^1 theorem.

Solution. By direct computation for every $(x, y) \neq (0, 0)$,

$$f_x = -2\alpha \frac{x(x^4 + y^4)}{(x^2 + y^2)^{\alpha + 1}} + \frac{4x^3}{(x^2 + y^2)^{\alpha}}$$

and

$$f_x = -2\alpha \frac{y(x^4 + y^4)}{(x^2 + y^2)^{\alpha + 1}} + \frac{4y^3}{(x^2 + y^2)^{\alpha}},$$

therefore *f* is C^1 at every point $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$. It remains to check *f* is C^1 at (0,0), for this, let's compute $f_x(0,0)$ and $f_y(0,0)$. Since $f(x,0) = x^{4-2\alpha}$, $f(0,y) = y^{4-2\alpha}$ and $2\alpha < 3$ implies $4-2\alpha > 1$, thus we have

$$f_x(0,0) = \frac{d}{dx} x^{4-2\alpha} \Big|_{x=0} = 0$$
 and $f_y(0,0) = \frac{d}{dy} y^{4-2\alpha} \Big|_{y=0} = 0.$

It remains to check $f_x, f_y \to 0$ as $(x, y) \to (0, 0)$, this follows easily by using polar coordinate.

In the following exercise we slightly loosen the hypothesis in C^1 theorem.

Exercise 3. Let f(x,y) be defined near (x_0,y_0) . Suppose:

(a) $f_x(x_0, y_0)$ exists;

(b) f_y exists near (x_0, y_0) and is continuous at (x_0, y_0) .

Show that f(x,y) is differentiable at (x_0,y_0) . Try to extend this exercise to three or more variables.

Example 5. Let
$$F : \mathbb{R}^2 \to \mathbb{R}^3$$
 and $G : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by
 $F(x,y) = (x,y,x^2y)$ and $G(s,t) = (s+t,s^2-t^2)$.
What is $(F \circ G)'(2,1)$? What is $((F \circ G)(\underbrace{(0,1)+t(2,0)}_{:=\gamma(t)}))'(1)$?

Solution. By chain rule we have

$$(F \circ G)'(2,1) = F'(G(2,1))G'(2,1)$$

$$= \begin{bmatrix} ---\nabla x - ---\\ ---\nabla y - ---\\ ---\nabla x^2 y - -- \end{bmatrix} (3,3) \begin{bmatrix} ---\nabla (s+t) - ---\\ --\nabla (s^2 - t^2) - -- \end{bmatrix} (2,1)$$

$$= \begin{bmatrix} 1 & 0\\ 0 & 1\\ 2xy & x^2 \end{bmatrix} (3,3) \begin{bmatrix} 1 & 1\\ 2s & -2t \end{bmatrix} (2,1)$$

$$= \begin{bmatrix} 1 & 0\\ 0 & 1\\ 18 & 9 \end{bmatrix} \begin{bmatrix} 1 & 1\\ 4 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 1\\ 4 & -2\\ 54 & 0 \end{bmatrix}.$$

Also we have

$$(F \circ G \circ \gamma)'(1) = (F \circ G)'((\gamma(1))\gamma'(1)$$
$$= (F \circ G)'(2,1) \begin{bmatrix} 2\\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 1\\ 4 & -2\\ 54 & 0 \end{bmatrix} \begin{bmatrix} 2\\ 0 \end{bmatrix} = \begin{bmatrix} 2\\ 8\\ 108 \end{bmatrix}$$

Recall that in page 137 of the lecture notes of Math3033 we have defined the norm of an $m \times n$ matrix $A = [a_{ij}]_{m \times n}$ by $||A|| = \sum_{i,j} a_{ij}^2$ and shown the fact that $||Ax|| \le ||A|| \cdot ||x||$.

Exercise 4 ("Mean Value Theorem"). Suppose $F : U \to \mathbb{R}^m$ is a function on some convex domain $U \subseteq \mathbb{R}^n$. Let $z \in \mathbb{R}^m$, show that for every $x, y \in U$, there is a point $c \in L := \{tx + (1-t)y : t \in (0,1)\}$ such that

$$z \cdot (F(x) - F(y)) = z \cdot F'(c)(x - y),$$

hence show that there is $\tilde{c} \in L$ such that

$$||F(x) - F(y)|| \le ||F'(\tilde{c})|| \cdot ||x - y||.$$