
Math3033 (Fall 2013-2014) Tutorial Note 2

Differentiability and C1 Theorem

Key Definitions and Results

Definition 1. In this course the only norm we use is the “two norm”. That is, for
x = (x1,. . . ,xn) ∈ Rn the notation ‖ ··· ‖ always means

‖x‖ =
√

x2
1+ x2

2+ · · ·+ x2
n .

Definition 2. Let F = ( f1,. . . , fm) be a vector-valued function defined near a ∈Rn .
F is said to be differentiable at aaa if there is a linear transformation T :Rn→Rm

such that
lim

‖x−a‖→0

‖F(x)−F(a)−T(x− a)‖
‖x− a‖

= 0.

Such linear transformation T is unique and denoted by DF(a). We say that
FFF′′′(((aaa))) :::=== [[[ ∂ fi∂x j

(((aaa)))]]]m×n exists if all its first order partial derivatives at a exist.

Definition 3. We say that F : Rn → Rm is CCC111 at aaa ∈∈∈ Rn if:

(i) Near a all first order partial derivatives exist(∗).

(ii) All first order partial derivatives of F are continuous at a.

Remark 4 (Procedure to Check Differentiability and Nondifferentiability).

• Step 1. Compute all
∂ f i
∂x j

’s of F = ( f1,. . . , fm) : Rn → Rm at a ∈ Rn .

• Step 2. Construct the Jacobian matrix

F′(a) =


∂ f1

∂x1

∂ f1

∂x2
· · ·

∂ f1

∂xn
...

...
. . .

...
∂ fm
∂x1

∂ fm
∂x2

· · ·
∂ fm
∂xn

 (a)

and compute the limit L = lim
x→a

‖F(x)−F(a)−F′(a)(x− a)‖
‖x− a‖

.

Case 1. If L exists and is zero, then F is differentiable at a by definition
of differentiability.

Case 2. If L does not exist, or it exists but is nonzero, then F is not
differentiable at a. Since if F is differentiable at a, its derivatives must make
L vanish by definition.

(∗) More precisely, there is an r > 0 such that all first order partial derivatives exist on B(a, r ).

Theorem 5 (Cauchy-Schwarz Inequality). Let a1,. . . ,an ,b1,. . . ,bn ∈ R, we
have ∣∣∣∣ n

ÿ

i=1

aibi

∣∣∣∣2 ≤ ( n
ÿ

i=1

a2
i

)( n
ÿ

i=1

b2
i

)
.

Theorem 6. ‖ · ‖ satisfies the following properties:

(i) Positivity: ‖x‖ ≥ 0 for all x ∈ Rn and ‖x‖ = 0 Ô⇒ x = 0.

(ii) Scaling Property: For every a ∈ R and x ∈ Rn , ‖ax‖ = |a| · ‖x‖.

(iii) Triangle Inequality: For every x,y ∈ Rn , ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Theorem 7. Let F = ( f1,. . . , fm) be defined near a ∈Rn . If F is differentiable at a,
then:

(i) All first order partial derivatives at a exist, i.e., F′(a) exists.

(ii) The matrix of DF(a) w.r.t. usual bases is F′(a) := [ ∂ fi∂x j
(a)]m×n .

Theorem 8. Let F = ( f1,. . . , fm) be defined near a, then F is differentiable at a
⇐⇒ all its coordinate functions are differentiable at a.

Theorem 9 (C1). If F : Rn → Rm is C1 at a, then F is differentiable at a.

Theorem 10 (Chain Rule). Let U ⊆ Rm and V ⊆ Rk be open balls and consider

the composition U
G
−−→ V

F
−−→ Rn . If G is differentiable at a ∈U and F is differ-

entiable at G(a), then F ◦G is differentiable at a, moreover,

D(F ◦G)(a) = DF(G(a))◦DG(a),

or in matrix form (when domain and range are given the usual bases),

(F ◦G)′(a) = F′(G(a))G′(a).

Remark 11. We have the following diagram:

C1 at a
Differentiable

at a

Continuous
at a

All f xi ’s
exist at a

×

×



Example 1. For each of the following f : R2 → R, find (i) lim
(x,y)→(0,0)

f (x,y),

(ii)
∂ f
∂x

(0,0) and
∂ f
∂y

(0,0). (iii) Determine if f x and fy are continuous at (0,0).

(a) f (x,y) =


xy

x2+ y2 , if (x,y) 6= (0,0),

0, if (x,y) = (0,0).

(b) f (x,y) =


x2y

x2+ y2 , if (x,y) 6= (0,0),

0, if (x,y) = (0,0).

(c) f (x,y) =


x2y2√
x2+ y2

, if (x,y) 6= (0,0),

0, if (x,y) = (0,0).

Solution. (a) (i) If we let y = k x, then for x 6= 0 we have

f (x,k x) =
k

1+ k2 ,

therefore different paths produce different limits, thus lim(x,y)→(0,0) f (x,y) does not ex-
ist.

(ii) Since f (x,0) = f (0,y) = 0 for x,y ∈ R, we have

f x (0,0) =
d
dx

f (x,0)
∣∣∣∣
x=0
=

d
dx

0
∣∣∣∣
x=0
= 0

and

fy (0,0) =
d
dy

f (0,y)
∣∣∣∣
y=0
=

d
dy

0
∣∣∣∣
y=0
= 0.

(iii) For (x,y) 6= (0,0), we have

f x =
y3 − x2y

(x2 + y2)2 and fy =
x3 − xy2

(x2 + y2)2 ,

and thus f x (0,y) = 1/y→∞ as y→ 0 and fy (x,0) = 1/x →∞ as x → 0, so f x , fy are
both not continuous at (0,0).

(b) (i) Since for (x,y) 6= (0,0) we have

| f (x,y)| =
∣∣∣∣ x2

x2 + y2

∣∣∣∣ · |y| ≤ |y| ≤√x2 + y2 = ‖(x,y)‖,

thus lim(x,y)→(0,0) f (x,y) = 0.

(ii) We still have f (x,0) = 0 and f (0,y) = 0 for each x,y ∈ R, therefore

f x (0,0) = fy (0,0) = 0

for the same reason as in (a) (ii).
(iii) For (x,y) 6= (0,0) we have

f x =
2xy3

(x2 + y2)2 and fy =
x4 − x2y2

(x2 + y2)2

and thus by polar coordinate (x,y) = (r cosθ,r sinθ), where θ = θ(r), we have

f x = 2cosθ sin3 θ and fy = cos4 θ − cos2 θ sin2 θ

thus different choices of θ(r) (i.e., different paths) will product different limits, f x , fy
are not continuous at (0,0).

(c) (i) By polar coordinate we have f = r3 cos2 θ sin2 θ, therefore f → 0 as (x,y)→
(0,0).

(ii) We still have f (x,0) = f (0,y) = 0 for each x,y ∈ R, therefore

f x (0,0) = fy (0,0) = 0

as in part (a) (ii).
(iii) For (x,y) 6= (0,0) we have

f x =
x3y2 +2xy4

(x2 + y2)3/2 and fy =
y3x2 +2yx4

(x2 + y2)3/2

both f x , fy → 0 as (x,y)→ (0,0), this is obvious by using polar coordinate system



Example 2. For each of the following f : R2 → R, determine f x and fy at
every (a,b) ∈ R2, where they exist.

(a) f (x,y) = cos |xy|.

(b) f (x,y) = x sin |y|.

Solution. (a) As cos is an even function, we have f = cos(xy), thus direct differentiation
yields

f x (a,b) = −bsin(ab) and fy (a,b) = −a sin(ab).

(b) For every (a,b) ∈ R2 we have

f x (a,b) =
d
dx

f (x,b)
∣∣∣∣
x=a

=
d
dx

(x sin |b|)
∣∣∣∣
x=a

= sin |b|

Now we compute fy (a,b).

Case 1. If b > 0, then (x,y) near (a,b) implies y > 0 implies f (x,y) = x sin y, thus
direct differentiation gives fy (a,b) = a cos b.

Case 2. If b < 0, then similarly we have (x,y) near (a,b) implies y < 0 implies
f = −x sin y, and also direct differentiation gives fy (a,b) = −a cos b.

Case 3. If b = 0, then since

fy (a,0) =
d
dy

f (a,y)
∣∣∣∣
y=0
=

d
dy

a sin |y|
∣∣∣∣
y=0
= a lim

h→0

sin |h|
h

,

the limit exists only when a = 0, therefore we conclude

fy (0,0) = 0.

Example 3. Let α > 1
2 and f : R2→ R be defined by

f (x,y) =

{
|xy|α ln(x2+ y2), (x,y) 6= (0,0),
0, (x,y) = (0,0).

Prove that f is differentiable at (0,0).

Solution. We need to find a linear map T such that

f (~x)− f (~0)−T~x
‖~x‖

→ 0 as ~x→ ~0.

By the definition of differentiability the only candidate of such T is the linear map in-
duced by the Jacobian matrix

f ′(~0) = ∇ f (~0) =
[

f x (~0) fy (~0)
]
.

Step 1. Since f (x,0)= f (0,y)= 0 for every x,y ∈R, by direct computation we have

f x (0,0) =
d
dx

f (x,0)
∣∣∣∣
x=0
=

d
dx

0
∣∣∣∣
x=0
= 0.

And similarly fy (0,0) = 0.

Step 2. Since f (0,0) = 0 and T = f ′(0,0) =
[
0 0

]
, we have

lim
‖(x,y)‖→0

f (x,y)− f (0,0)−
[
0 0

]
[ xy ]

‖(x,y)‖
= lim
‖(x,y)‖→0

|xy|α ln(x2 + y2)√
x2 + y2

By polar coordinate the latter expression becomes 2r2α−1 lnr |cosθ|α |sinθ|α . As 2α > 1
by the given condition, thus

lim
‖(x,y)‖→0

f (x,y)− f (0,0)−
[
0 0

]
[ xy ]

‖(x,y)‖
= 0.

Exercise 1. Determine with proof if

f (x,y) :=


ln(1+ x4+ y4)

x2+ y2 , (x,y) 6= (0,0),

0, (x,y) 6= (0,0)

is differentiable at (0,0).

Exercise 2. Let F :Rn→Rn be a linear map defined by F(x)= Ax, for some matrix
A. Show that F is differentiable on Rn , moreover, F′(x) = A, for each x ∈ Rn .



Example 4. Let α < 3/2, prove that

f (x,y) =


x4+ y4

(x2+ y2)α
, (x,y) 6= (0,0),

0, (x,y) = (0,0)

is differentiable on R2 by using CCC111 theorem.

Solution. By direct computation for every (x,y) 6= (0,0),

f x = −2α
x(x4 + y4)

(x2 + y2)α+1 +
4x3

(x2 + y2)α

and

f x = −2α
y(x4 + y4)

(x2 + y2)α+1 +
4y3

(x2 + y2)α
,

therefore f is C1 at every point (a,b) ∈ R2 \ {(0,0)}. It remains to check f is C1 at (0,0),
for this, let’s compute f x (0,0) and fy (0,0). Since f (x,0) = x4−2α , f (0,y) = y4−2α and
2α < 3 implies 4−2α > 1 , thus we have

f x (0,0) =
d
dx

x4−2α
∣∣∣∣
x=0
= 0 and fy (0,0) =

d
dy

y4−2α
∣∣∣∣
y=0
= 0.

It remains to check f x , fy → 0 as (x,y)→ (0,0), this follows easily by using polar coor-
dinate.

In the following exercise we slightly loosen the hypothesis in C1 theorem.

Exercise 3. Let f (x,y) be defined near (x0,y0). Suppose:

(a) f x (x0,y0) exists;

(b) fy exists near (x0,y0) and is continuous at (x0,y0).

Show that f (x,y) is differentiable at (x0,y0). Try to extend this exercise to three or
more variables.

Example 5. Let F : R2→ R3 and G : R2→ R2 be defined by

F(x,y) = (x,y,x2y) and G(s,t) = (s+ t,s2− t2).

What is (F ◦G)′(2,1)? What is
(
(F ◦G)((0,1)+ t(2,0)︸ ︷︷ ︸

:=γ(t)

)
)′(1)?

Solution. By chain rule we have

(F ◦G)′(2,1) = F′(G(2,1))G′(2,1)

=

 −−−−∇x−−−−
−−−−∇y−−−−

−−−−∇x2y−−−−

 (3,3)
[
−−−−∇(s+ t)−−−−
−−−−∇(s2 − t2)−−−−

]
(2,1)

=

 1 0
0 1

2xy x2

 (3,3)
[

1 1
2s −2t

]
(2,1)

=

 1 0
0 1

18 9

[1 1
4 −2

]
=

 1 1
4 −2

54 0

 .
Also we have

(F ◦G ◦γ)′(1) = (F ◦G)′((γ(1))γ′(1)

= (F ◦G)′(2,1)
[

2
0

]
=

 1 1
4 −2
54 0

[2
0

]
=

 2
8

108

 .

Recall that in page 137 of the lecture notes of Math3033 we have defined the norm
of an m× n matrix A = [ai j ]m×n by ‖A‖ =

ř

i, j a2
i j and shown the fact that ‖Ax‖ ≤

‖A‖ · ‖x‖.

Exercise 4 (“Mean Value Theorem”). Suppose F : U → Rm is a function on
some convex domain U ⊆ Rn . Let z ∈ Rm , show that for every x,y ∈ U , there is a
point c ∈ L := {t x+ (1− t)y : t ∈ (0,1)} such that

z · (F(x)−F(y)) = z ·F′(c)(x− y),

hence show that there is c̃ ∈ L such that

‖F(x)−F(y)‖ ≤ ‖F′(c̃)‖ · ‖x− y‖.


