Math3033 (Fall 2013-2014) Tutorial Note 2
Differentiability and C' Theorem

Key Definitions and Results

Definition 1. In this course the only norm we use is the “two norm”. That is, for
x =(xg,...,x,) € R" the notation || - || always means

llxll = \/xF+x35+- +x2.

Definition 2. Let F = (f1,...,fm) be a vector-valued function defined near a € R".
F is said to be differentiable at a if there is a linear transformation 7 : R" — R™
such that

IFC) - Fla)=T(x=all _

lx—all—0 llx —all
Such linear transformation 7 is unique and denoted by DF(a). We say that

F'(a):= [gf: ; (a)],..xn exists if all its first order partial derivatives at a exist.

Definition 3. We say that F : R” — R™ is C! at a € R" if:
(i) Near a all first order partial derivatives exist™).

(ii) Al first order partial derivatives of F are continuous at a.

Remark 4 (Procedure to Check Differentiability and Nondifferentiability).

gf" 'SOf F=(fl,....fm): R" 5R™ at g € R",
Xj

e Step 1. Compute all

e Step 2. Construct the Jacobian matrix

of oh on
ox;  0x 0xp
Fa=|: : -~ :|@
ofm Ofn  Ofn
ox;  0x 0xp
F(x)-F(a)-F’ -
and compute the limit L = lim IF @)~ Fla) (@)x a)II.
x—a llx = all
Case 1. If L exists and is zero, then F is differentiable at a by definition

of differentiability.

Case 2. If L does not exist, or it exists but is nonzero, then F is not
differentiable at a. Since if F' is differentiable at a, its derivatives must make
L vanish by definition.

() More precisely, there is an r > 0 such that all first order partial derivatives exist on B(a, r).

Theorem 5 (Cauchy-Schwarz Inequality). Let ay,...,a,,b1,....bp € R, we

have
n 2 n n
Zaibi < (20%) (be)
i=1 i=1 i=1
Theorem 6. ||-|| satisfies the following properties:

(i) Positivity: ||x|| >0 for all x e R” and ||x||=0 == x =0.
(ii) Scaling Property: For every a € R and x € R", ||lax]|| = |a|-||x]|.
(iii) Triangle Inequality: For every x,y € R", [|x + y|| < ||x]| + ||l
Theorem 7. Let F =(f1,...,fm) be defined near a € R". If F is differentiable at a,
then:

(1) All first order partial derivatives at a exist, i.e., F’(a) exists.

(ii) The matrix of DF(a) w.r.t. usual bases is F’(a) := [gX; (@)mxn-

Theorem 8. Let F = (fi,...,fm) be defined near a, then F is differentiable at a
< all its coordinate functions are differentiable at a.

Theorem 9 (C'). If F: R" —» R™ is C! at a, then F is differentiable at a.

Theorem 10 (Chain Rule). Let U C R™ and V C R* be open balls and consider

G F
the composition U — V — R”. If G is differentiable at a € U and F is differ-
entiable at G(a), then F o G is differentiable at a, moreover,

D(F o G)(a) = DF(G(a)) o DG(a),
or in matrix form (when domain and range are given the usual bases),

(FoG)(a)=F'(G(a)G'(a).

Remark 11. We have the following diagram:

Differentiable
C at a >
at a

All fy,’s //: : Continuous
exist at a at a




Example 1. For each of the following f : R> — R, find (i) ( lim  f(x,y),

x,y)—=(0,0)

f of

0
(ii) 8—(0,0) and 8—(0,0). (iii) Determine if f, and f, are continuous at (0,0).
X y

(@ f(x,y)= P%ﬁ’ﬁww¢@m
0, lf (x,y) — (0’0)

2

y .
(b) f(x,y)= ﬁ:p’ﬁww#mm

0, if (x,y) = (0,0).
x2y2
—=— if(x, 0,0),
(©) f(x,y)= 2+y2 if (x,y) # (0,0)
0, if (x,y) = (0,0).

Solution. (a) (i) If we let y = kx, then for x # 0 we have

flxkx) = m,

therefore different paths produce different limits, thus limy, y)—0,0) f(x,y) does not ex-

ist.
(ii) Since f(x,0) = £(0,y) = 0 for x,y € R, we have

d
fx(0,0) = — f(x,0) —0] =0
* dx x=0 dx x=0
and
d d
fv(0,0)= d*f(O,y) = d—o 0.
y y=0 Y ly=0
(iii) For (x,y) # (0,0), we have
3 2 3 2
_yT=xy _ X=Xy
fx= (2 +y22 and  fy 2+ y22

and thus fx(0,y) =1/y > coas y = 0 and fy(x,0) =1/x — o0 as x = 0, so fx, fy are

both not continuous at (0,0).
(b) (i) Since for (x,y) # (0,0) we have

Ayl < Iyl < /22 +y2 = 1)l

2

If(x,y)l =

X
x2+y2

thus limx, y)—(0,0) f(x,y) = 0.

(i1) We still have f(x,0) =0 and f(0,y) = 0 for each x,y € R, therefore
fx(0,0)= £,(0,00=0

for the same reason as in (a) (ii).
(iii) For (x,y) # (0,0) we have

3 wd f o x4 x2y?
y (x2+y2)2

_ 2xy
- (x2 + y2)2

fx
and thus by polar coordinate (x,y) = (r cos6,r sinf), where 8 = 6(r), we have
fx =2cos6 sin’9 and fy= cos* 6 — cos? 0sin? 0

thus different choices of 6(r) (i.e., different paths) will product different limits, fy, fy
are not continuous at (0,0).

(c) (i) By polar coordinate we have f = r3 cos? §sin? 6, therefore f—0as(x,y) >
(0,0).
(i1) We still have f(x,0) = f(0,y) = 0 for each x,y € R, therefore

fx(0,0) = f,(0,0)=0

as in part (a) (ii).
(>iii) For (x,y) # (0,0) we have

B x3y?+2xy* and  fy = y3xZ+2yx*
- (x2 +y2)3/2 y - (x2 +y2)3/2

fx

both fx,fy — 0as (x,y) — (0,0), this is obvious by using polar coordinate system



Example 2. For each of the following f : R> — R, determine f, and fy at
every (a,b) € R2, where they exist.

(@) f(x,y)=cos|xyl.
(b) f(x,y) = xsinly|.

Solution. (a) As cos is an even function, we have f = cos(xy), thus direct differentiation
yields
fx(a,b) = —=bsin(ab) and fy(a,b) = —asin(ab).

(b) For every (a,b) € R? we have
d d . .
fx(a,b)=— f(x,b) = —(xsin|b|) =sin|b|
dx x=a dx x=a
Now we compute fy(a,b).

Case 1. If b > 0, then (x,y) near (a,b) implies y > 0 implies f(x,y) = xsiny, thus
direct differentiation gives fy(a,b) = acosb.

Case 2. If b < 0, then similarly we have (x,y) near (a,b) implies y < 0 implies
f =—xsiny, and also direct differentiation gives f (a,b) = —acosb.

Case 3. If b = 0, then since

. sinlh|
=a lim
=0 h—0 h

d .
= —asinly|

d
fy(&o) = jyf(avy) dy

s

y=0 y

the limit exists only when a = 0, therefore we conclude

£,(0,0)=0.

Example 3. Leta > § and f : R? > R be defined by

) = { ITICE D, @) £ 0.0,
’ 0, (x.) = (0,0).

Prove that f is differentiable at (0,0).

Solution. We need to find a linear map T such that
f~f©O)-T%
1R

By the definition of differentiability the only candidate of such T is the linear map in-
duced by the Jacobian matrix

.
-0 asX—0.

FO=VO= [0 £0)

Step 1. Since f(x,0) = f(0,y) =0 for every x,y € R, by direct computation we have

=0.
x=0

d d
0,0) = — f(x,0 =—0

fx(0,0) dxf(x, )LZO T

And similarly f(0,0) = 0.
Step 2. Since f(0,0)=0and 7 = f7(0,0)= [0 0], we have
. f.y) = f(0,00-[0 0][3] . |xy® In(x2 + y2)
lim = lim ——~—--
NI, 3)lI—0 [ICe, I leyl=0  /x2 +y2

By polar coordinate the latter expression becomes 2r22=nr|cos6||sin6|®. As 2a > 1
by the given condition, thus

fy)=f0,00-[0 0][y]

=0.
n<x,§r)rﬁ—>o [1Ce, W
Exercise 1. Determine with proof if
In(1+x*+y%)
S e 0.0,
flx,y) = Xty
0, (x,y) #(0,0)

is differentiable at (0,0).

Exercise 2. Let F': R” — R" be a linear map defined by F(x) = Ax, for some matrix
A. Show that F is differentiable on R”, moreover, F’(x) = A, for each x € R".



Example 4. Let a < 3/2, prove that

xt+y?
flxy) = Gﬁ;p’ww¢@m

0, (x,y) = (0,0)

is differentiable on R? by using C ! theorem.

Solution. By direct computation for every (x,y) # (0,0),

x(x*+ y4) 453
a +
(x2 +y2)a+l (XZ +y2)a

fx:_2

and
Yatayh 4y
(x2+y2)a+l (x2+y2)"’
therefore f is clat every point (a,b) € R2\ {(0,0)}. It remains to check fis clat (0,0,
for this, let’s compute fx(0,0) and fy(0,0). Since f(x,0) = X722 £0,y) = y*2@ and

2a < 3 implies , thus we have

£2(0,0) = L 420
dx

fx =2«

d 4
=0 d 0,0) = — @ =0.
and  f,(0,0) dyy

x=0 y=0

It remains to check fx,fy — 0 as (x,y) — (0,0), this follows easily by using polar coor-
dinate.

In the following exercise we slightly loosen the hypothesis in C! theorem.

Exercise 3. Let f(x,y) be defined near (xg,yp). Suppose:
(a) fx(x0,y0) exists;
(b) fy exists near (xo,yo) and is continuous at (xo,yo).

Show that f(x,y) is differentiable at (xg,yp). Try to extend this exercise to three or
more variables.

Example 5. Let F : R? - R? and G : R> — R? be defined by
F(x,y) = (x,y,x%y) and G(s,r) = (s+1,5> —1%).

What is (F 0 GY'(2,1)? What is ((F 0 G)((0,1) +1(2,0)))(1)?
| S ——

=y (1)

Solution. By chain rule we have

(FoG)'(2,1) = F'(G(2,1))G’(2,1)

- Vx—
| vy ] (3,3){ — Vs+n)— ](2,1)

- V(s2-2y—
e V(s2-12)
! 0 ) |
=lo 1 (3,3){ B }(2,1)
_ny x2 2s 2t

L0l (I
=0 1 {4 _2]: 4 -2].
18 9 540

Also we have

(FoGoy)(1)=(FoG) (y(1))y'(1)

11 2
=(FoG)(2,1) B}: 4 =2 Lﬂ: 8 |.
54 0 108

Recall that in page 137 of the lecture notes of Math3033 we have defined the norm

of an m x n matrix A = [a;jlmxn by llAll =] a?. and shown the fact that ||Ax|| <

i,j7ij
ALl llx[].

Exercise 4 (“Mean Value Theorem”). Suppose F : U — R™ is a function on
some convex domain U C R". Let z € R™, show that for every x,y € U, there is a
point c € L :={tx+ (1 —¢)y : t € (0,1)} such that

2 (F(x)=F(y)) = z-F'(c)(x—y),
hence show that there is ¢ € L such that

IF )= FDI < IF" Ol llx = yll.



