\qquad
Definition 1. In this course the only norm we use is the "two norm". That is, for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ the notation $\|\cdot\|$ always means

$$
\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}} .
$$

Definition 2. Let $F=\left(f_{1}, \ldots, f_{m}\right)$ be a vector-valued function defined near $a \in \mathbb{R}^{n}$. F is said to be differentiable at \boldsymbol{a} if there is a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\lim _{\|x-a\| \rightarrow 0} \frac{\|F(x)-F(a)-T(x-a)\|}{\|x-a\|}=0 .
$$

Such linear transformation T is unique and denoted by $\operatorname{DF}(a)$. We say that $F^{\prime}(a):=\left[\frac{\partial f_{i}}{\partial x_{j}}(a)\right]_{m \times n}$ exists if all its first order partial derivatives at a exist.

Definition 3. We say that $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is \boldsymbol{C}^{1} at $\boldsymbol{a} \in \mathbb{R}^{n}$ if:
(i) Near a all first order partial derivatives exist ${ }^{(*)}$.
(ii) All first order partial derivatives of F are continuous at a.

Remark 4 (Procedure to Check Differentiability and Nondifferentiability).

- Step 1. Compute all $\frac{\partial f_{i}}{\partial x_{j}}$,s of $F=\left(f_{1}, \ldots, f_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ at $a \in \mathbb{R}^{n}$.
- Step 2. Construct the Jacobian matrix

$$
F^{\prime}(a)=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right] \text { (a) }
$$

and compute the limit $L=\lim _{x \rightarrow a} \frac{\left\|F(x)-F(a)-F^{\prime}(a)(x-a)\right\|}{\|x-a\|}$.
Case 1. If L exists and is zero, then F is differentiable at a by definition of differentiability.

Case 2. If L does not exist, or it exists but is nonzero, then F is not differentiable at a. Since if F is differentiable at a, its derivatives must make L vanish by definition.

Theorem 5 (Cauchy-Schwarz Inequality). Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{R}$, we have

$$
\left|\sum_{i=1}^{n} a_{i} b_{i}\right|^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) .
$$

Theorem 6. \|•\| satisfies the following properties:
(i) Positivity: $\|x\| \geq 0$ for all $x \in \mathbb{R}^{n}$ and $\|x\|=0 \Longrightarrow x=0$.
(ii) Scaling Property: For every $a \in \mathbb{R}$ and $x \in \mathbb{R}^{n},\|a x\|=|a| \cdot\|x\|$.
(iii) Triangle Inequality: For every $x, y \in \mathbb{R}^{n},\|x+y\| \leq\|x\|+\|y\|$.

Theorem 7. Let $F=\left(f_{1}, \ldots, f_{m}\right)$ be defined near $a \in \mathbb{R}^{n}$. If F is differentiable at a, then:
(i) All first order partial derivatives at a exist, i.e., $F^{\prime}(a)$ exists.
(ii) The matrix of $D F(a)$ w.r.t. usual bases is $F^{\prime}(a):=\left[\frac{\partial f_{i}}{\partial x_{j}}(a)\right]_{m \times n}$.

Theorem 8. Let $F=\left(f_{1}, \ldots, f_{m}\right)$ be defined near a, then F is differentiable at a \Longleftrightarrow all its coordinate functions are differentiable at a.

Theorem $9\left(C^{1}\right)$. If $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is C^{1} at a, then F is differentiable at a.
Theorem 10 (Chain Rule). Let $U \subseteq \mathbb{R}^{m}$ and $V \subseteq \mathbb{R}^{k}$ be open balls and consider the composition $U \xrightarrow{G} V \xrightarrow{F} \mathbb{R}^{n}$. If G is differentiable at $a \in U$ and F is differentiable at $G(a)$, then $F \circ G$ is differentiable at a, moreover,

$$
D(F \circ G)(a)=D F(G(a)) \circ D G(a),
$$

or in matrix form (when domain and range are given the usual bases),

$$
(F \circ G)^{\prime}(a)=F^{\prime}(G(a)) G^{\prime}(a)
$$

Remark 11. We have the following diagram:

Example 1. For each of the following $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, find (i) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$,
(ii) $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$. (iii) Determine if f_{x} and f_{y} are continuous at $(0,0)$.
(a) $f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0), \\ 0, & \text { if }(x, y)=(0,0) .\end{cases}$
(b) $f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0), \\ 0, & \text { if }(x, y)=(0,0) .\end{cases}$
(c) $f(x, y)= \begin{cases}\frac{x^{2} y^{2}}{\sqrt{x^{2}+y^{2}}}, & \text { if }(x, y) \neq(0,0), \\ 0, & \text { if }(x, y)=(0,0) .\end{cases}$

Solution. (a) (i) If we let $y=k x$, then for $x \neq 0$ we have

$$
f(x, k x)=\frac{k}{1+k^{2}}
$$

therefore different paths produce different limits, thus $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
(ii) Since $f(x, 0)=f(0, y)=0$ for $x, y \in \mathbb{R}$, we have

$$
f_{x}(0,0)=\left.\frac{d}{d x} f(x, 0)\right|_{x=0}=\left.\frac{d}{d x} 0\right|_{x=0}=0
$$

and

$$
f_{y}(0,0)=\left.\frac{d}{d y} f(0, y)\right|_{y=0}=\left.\frac{d}{d y} 0\right|_{y=0}=0
$$

(iii) For $(x, y) \neq(0,0)$, we have

$$
f_{x}=\frac{y^{3}-x^{2} y}{\left(x^{2}+y^{2}\right)^{2}} \quad \text { and } \quad f_{y}=\frac{x^{3}-x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

and thus $f_{x}(0, y)=1 / y \rightarrow \infty$ as $y \rightarrow 0$ and $f_{y}(x, 0)=1 / x \rightarrow \infty$ as $x \rightarrow 0$, so f_{x}, f_{y} are both not continuous at $(0,0)$.
(b) (i) Since for $(x, y) \neq(0,0)$ we have

$$
|f(x, y)|=\left|\frac{x^{2}}{x^{2}+y^{2}}\right| \cdot|y| \leq|y| \leq \sqrt{x^{2}+y^{2}}=\|(x, y)\|,
$$

thus $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$.
(ii) We still have $f(x, 0)=0$ and $f(0, y)=0$ for each $x, y \in \mathbb{R}$, therefore

$$
f_{x}(0,0)=f_{y}(0,0)=0
$$

for the same reason as in (a) (ii).
(iii) For $(x, y) \neq(0,0)$ we have

$$
f_{x}=\frac{2 x y^{3}}{\left(x^{2}+y^{2}\right)^{2}} \quad \text { and } \quad f_{y}=\frac{x^{4}-x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

and thus by polar coordinate $(x, y)=(r \cos \theta, r \sin \theta)$, where $\theta=\theta(r)$, we have

$$
f_{x}=2 \cos \theta \sin ^{3} \theta \quad \text { and } \quad f_{y}=\cos ^{4} \theta-\cos ^{2} \theta \sin ^{2} \theta
$$

thus different choices of $\theta(r)$ (i.e., different paths) will product different limits, f_{x}, f_{y} are not continuous at $(0,0)$.
(c) (i) By polar coordinate we have $f=r^{3} \cos ^{2} \theta \sin ^{2} \theta$, therefore $f \rightarrow 0$ as $(x, y) \rightarrow$ $(0,0)$.
(ii) We still have $f(x, 0)=f(0, y)=0$ for each $x, y \in \mathbb{R}$, therefore

$$
f_{x}(0,0)=f_{y}(0,0)=0
$$

as in part (a) (ii).
(iii) For $(x, y) \neq(0,0)$ we have

$$
f_{x}=\frac{x^{3} y^{2}+2 x y^{4}}{\left(x^{2}+y^{2}\right)^{3 / 2}} \quad \text { and } \quad f_{y}=\frac{y^{3} x^{2}+2 y x^{4}}{\left(x^{2}+y^{2}\right)^{3 / 2}}
$$

both $f_{x}, f_{y} \rightarrow 0$ as $(x, y) \rightarrow(0,0)$, this is obvious by using polar coordinate system

Example 2. For each of the following $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, determine f_{x} and f_{y} at every $(a, b) \in \mathbb{R}^{2}$, where they exist.
(a) $f(x, y)=\cos |x y|$.
(b) $f(x, y)=x \sin |y|$.

Solution. (a) As \cos is an even function, we have $f=\cos (x y)$, thus direct differentiation yields

$$
f_{x}(a, b)=-b \sin (a b) \quad \text { and } \quad f_{y}(a, b)=-a \sin (a b)
$$

(b) For every $(a, b) \in \mathbb{R}^{2}$ we have

$$
f_{x}(a, b)=\left.\frac{d}{d x} f(x, b)\right|_{x=a}=\left.\frac{d}{d x}(x \sin |b|)\right|_{x=a}=\sin |b|
$$

Now we compute $f_{y}(a, b)$.
Case 1. If $b>0$, then (x, y) near (a, b) implies $y>0$ implies $f(x, y)=x \sin y$, thus direct differentiation gives $f_{y}(a, b)=a \cos b$.

Case 2. If $b<0$, then similarly we have (x, y) near (a, b) implies $y<0$ implies $f=-x \sin y$, and also direct differentiation gives $f_{y}(a, b)=-a \cos b$.

Case 3. If $b=0$, then since

$$
f_{y}(a, 0)=\left.\frac{d}{d y} f(a, y)\right|_{y=0}=\left.\frac{d}{d y} a \sin |y|\right|_{y=0}=a \lim _{h \rightarrow 0} \frac{\sin |h|}{h},
$$

the limit exists only when $a=0$, therefore we conclude

$$
f_{y}(0,0)=0 .
$$

Example 3. Let $\alpha>\frac{1}{2}$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}|x y|^{\alpha} \ln \left(x^{2}+y^{2}\right), & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

Prove that f is differentiable at $(0,0)$.

Solution. We need to find a linear map T such that

$$
\frac{f(\vec{x})-f(\overrightarrow{0})-T \vec{x}}{\|\vec{x}\|} \rightarrow 0 \quad \text { as } \vec{x} \rightarrow \overrightarrow{0} .
$$

By the definition of differentiability the only candidate of such T is the linear map induced by the Jacobian matrix

$$
f^{\prime}(\overrightarrow{0})=\nabla f(\overrightarrow{0})=\left[\begin{array}{ll}
f_{x}(\overrightarrow{0}) & f_{y}(\overrightarrow{0})
\end{array}\right] .
$$

Step 1. Since $f(x, 0)=f(0, y)=0$ for every $x, y \in \mathbb{R}$, by direct computation we have

$$
f_{x}(0,0)=\left.\frac{d}{d x} f(x, 0)\right|_{x=0}=\left.\frac{d}{d x} 0\right|_{x=0}=0
$$

And similarly $f_{y}(0,0)=0$.
Step 2. Since $f(0,0)=0$ and $T=f^{\prime}(0,0)=\left[\begin{array}{ll}0 & 0\end{array}\right]$, we have

$$
\lim _{\|(x, y)\| \rightarrow 0} \frac{f(x, y)-f(0,0)-\left[\begin{array}{ll}
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]}{\|(x, y)\|}=\lim _{\|(x, y)\| \rightarrow 0} \frac{|x y|^{\alpha} \ln \left(x^{2}+y^{2}\right)}{\sqrt{x^{2}+y^{2}}}
$$

By polar coordinate the latter expression becomes $2 r^{2 \alpha-1} \ln r|\cos \theta|^{\alpha}|\sin \theta|^{\alpha}$. As $2 \alpha>1$ by the given condition, thus

$$
\lim _{\|(x, y)\| \rightarrow 0} \frac{f(x, y)-f(0,0)-\left[\begin{array}{ll}
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]}{\|(x, y)\|}=0
$$

Exercise 1. Determine with proof if

$$
f(x, y):= \begin{cases}\frac{\ln \left(1+x^{4}+y^{4}\right)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y) \neq(0,0)\end{cases}
$$

is differentiable at $(0,0)$.
Exercise 2. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map defined by $F(x)=A x$, for some matrix A. Show that F is differentiable on \mathbb{R}^{n}, moreover, $F^{\prime}(x)=A$, for each $x \in \mathbb{R}^{n}$.

Example 4. Let $\alpha<3 / 2$, prove that

$$
f(x, y)= \begin{cases}\frac{x^{4}+y^{4}}{\left(x^{2}+y^{2}\right)^{\alpha}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

is differentiable on \mathbb{R}^{2} by using C^{1} theorem.

Solution. By direct computation for every $(x, y) \neq(0,0)$,

$$
f_{x}=-2 \alpha \frac{x\left(x^{4}+y^{4}\right)}{\left(x^{2}+y^{2}\right)^{\alpha+1}}+\frac{4 x^{3}}{\left(x^{2}+y^{2}\right)^{\alpha}}
$$

and

$$
f_{x}=-2 \alpha \frac{y\left(x^{4}+y^{4}\right)}{\left(x^{2}+y^{2}\right)^{\alpha+1}}+\frac{4 y^{3}}{\left(x^{2}+y^{2}\right)^{\alpha}},
$$

therefore f is C^{1} at every point $(a, b) \in \mathbb{R}^{2} \backslash\{(0,0)\}$. It remains to check f is C^{1} at $(0,0)$, for this, let's compute $f_{x}(0,0)$ and $f_{y}(0,0)$. Since $f(x, 0)=x^{4-2 \alpha}, f(0, y)=y^{4-2 \alpha}$ and $2 \alpha<3$ implies $4-2 \alpha>1$, thus we have

$$
f_{x}(0,0)=\left.\frac{d}{d x} x^{4-2 \alpha}\right|_{x=0}=0 \quad \text { and } \quad f_{y}(0,0)=\left.\frac{d}{d y} y^{4-2 \alpha}\right|_{y=0}=0
$$

It remains to check $f_{x}, f_{y} \rightarrow 0$ as $(x, y) \rightarrow(0,0)$, this follows easily by using polar coordinate.

In the following exercise we slightly loosen the hypothesis in C^{1} theorem.
Exercise 3. Let $f(x, y)$ be defined near $\left(x_{0}, y_{0}\right)$. Suppose:
(a) $f_{x}\left(x_{0}, y_{0}\right)$ exists;
(b) f_{y} exists near $\left(x_{0}, y_{0}\right)$ and is continuous at $\left(x_{0}, y_{0}\right)$.

Show that $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$. Try to extend this exercise to three or more variables.

Example 5. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
F(x, y)=\left(x, y, x^{2} y\right) \quad \text { and } \quad G(s, t)=\left(s+t, s^{2}-t^{2}\right)
$$

What is $(F \circ G)^{\prime}(2,1)$? What is $((F \circ G)(\underbrace{(0,1)+t(2,0)}))^{\prime}(1)$?

$$
:=\gamma(t)
$$

Solution. By chain rule we have

$$
\begin{aligned}
(F \circ G)^{\prime}(2,1) & =F^{\prime}(G(2,1)) G^{\prime}(2,1) \\
& =\left[\begin{array}{c}
-\nabla x- \\
-\nabla y- \\
-
\end{array}\right](3,3)\left[\begin{array}{l}
-\nabla(s+t)- \\
-\nabla\left(s^{2}-t^{2}\right)-
\end{array}\right](2,1) \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
2 x y & x^{2}
\end{array}\right](3,3)\left[\begin{array}{cc}
1 & 1 \\
2 s & -2 t
\end{array}\right](2,1) \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
18 & 9
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
4 & -2 \\
54 & 0
\end{array}\right] .
\end{aligned}
$$

Also we have

$$
\begin{aligned}
(F \circ G \circ \gamma)^{\prime}(1) & =(F \circ G)^{\prime}\left((\gamma(1)) \gamma^{\prime}(1)\right. \\
& =(F \circ G)^{\prime}(2,1)\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
4 & -2 \\
54 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
8 \\
108
\end{array}\right]
\end{aligned}
$$

Recall that in page 137 of the lecture notes of Math3033 we have defined the norm of an $m \times n$ matrix $A=\left[a_{i j}\right]_{m \times n}$ by $\|A\|=\sum_{i, j} a_{i j}^{2}$ and shown the fact that $\|A x\| \leq$ $\|A\| \cdot\|x\|$.

Exercise 4 ("Mean Value Theorem"). Suppose $F: U \rightarrow \mathbb{R}^{m}$ is a function on some convex domain $U \subseteq \mathbb{R}^{n}$. Let $z \in \mathbb{R}^{m}$, show that for every $x, y \in U$, there is a point $c \in L:=\{t x+(1-t) y: t \in(0,1)\}$ such that

$$
z \cdot(F(x)-F(y))=z \cdot F^{\prime}(c)(x-y)
$$

hence show that there is $\tilde{c} \in L$ such that

$$
\|F(x)-F(y)\| \leq\left\|F^{\prime}(\tilde{c})\right\| \cdot\|x-y\|
$$

