- how to judge whether a set is countable;
- how to prove the existence of some desired element via countability.
Key definitions and results

Definition 1 (Countability).

- A set S is countably infinite if there is a bijection $f: \mathbb{N} \rightarrow S$.
- A set is said to be countable if it is finite or countably infinite.
- A set is said to be uncountable if it is not countable.

Theorem 2 (Countable Subset). Suppose $A \subset B$, then:
(a) B is countable $\Longrightarrow A$ is countable.
(b) A is uncountable $\Longrightarrow B$ is uncountable.

Theorem 3 (Bijection). If there is a bijection $f: A \rightarrow B$, then

$$
A \text { is countable } \Longleftrightarrow B \text { is countable. }
$$

Theorem 4 (Countable Union).

S is countable and A_{s} is countable $\forall s \in S \Longrightarrow \bigcup_{s \in S} A_{s}$ is countable.

Theorem 5 (Product).

$$
A_{1}, A_{2}, \ldots, A_{n} \text { are countable } \Longrightarrow A_{1} \times A_{2} \times \cdots \times A_{n} \text { is countable }
$$

Theorem 6 (Injection). Let $f: A \rightarrow B$ be injective, then

$$
B \text { is countable } \Longrightarrow A \text { is countable. }
$$

Theorem 7 (Surjection). Let $g: A \rightarrow B$ be surjective, then A is countable $\Longrightarrow B$ is countable.

Remark. We cannot replace n by ∞ in Product Theorem 5, a textbook example is

$$
\{0,1\}^{\infty}:=\{0,1\} \times\{0,1\} \times \cdots
$$

which is uncountable

Example 1. Determine whether the following set is countable:

$$
A:=\left\{x \in \mathbb{R}: 9 \sin ^{9} x+3 \sin ^{3} x+1=0\right\}
$$

Sol The usual technique is to rewrite the expression of A. To do this, we find a equivalent statement of " $a \in A$ ".

Note that
$a \in A$
$\Longleftrightarrow 9 \sin ^{9} a+3 \sin ^{3} a+1=0$
$\Longleftrightarrow \sin a$ is a zero (i.e., root) of $P(x):=9 x^{9}+3 x^{3}+1$
$\Longleftrightarrow \sin a \in Z(P):=\{x \in \mathbb{R} \in \mathbb{R}: P(x)=0\}$
$\Longleftrightarrow \sin a=k$ for some $k \in Z(P)$
$\Longleftrightarrow a \in\{x \in \mathbb{R}: \sin x=k, \exists k \in Z(P)\}$
$\Longleftrightarrow a \in \bigcup\{x \in \mathbb{R}: \sin x=k\}$ $k \in Z(P)$
$\Longleftrightarrow a \in \bigcup\left\{x \in \mathbb{R}: x=n \pi+(-1)^{n} \sin ^{-1} k, \exists n \in \mathbb{Z}\right\}$
$\Longleftrightarrow a \in \bigcup \bigcup\left\{x \in \mathbb{R}: x=n \pi+(-1)^{n} \sin ^{-1} k\right\}$ $k \in Z(P) n \in \mathbb{Z}$
$\Longleftrightarrow a \in \bigcup_{k \in \mathbb{Z}(P)} \bigcup_{n \in \mathbb{Z}}\left\{n \pi+(-1)^{n} \sin ^{-1} k\right\}$.

Since every nonzero has at most finitely many zeros, $Z(P)$ is necessarily a finite set, hence a countable set. Next \mathbb{Z} is countable, and therefore by Countable Union Theorem twice,

$$
A=\bigcup_{k \in Z(P)} \bigcup_{n \in \mathbb{Z}}\left\{n \pi+(-1)^{n} \sin ^{-1} k\right\}
$$

is countable.

Example 2 (Practice Exercise 23). Determine if the set E of all circles in \mathbb{R}^{2} with centers at rational coordinate points and positive rational radius is countable.

Sol Let $C(\vec{x}, r)$ denote the circle with center $\vec{x} \in \mathbb{R}^{2}$ and radius $r \geq 0$. Also let's denote $\mathbb{Q}^{+}=$ $\mathbb{Q} \cap(0, \infty)$.

We need to be careful what is the object we are going to count. Of course any circle, being a subset of \mathbb{R}^{2}, must be uncountable. But would we say a human being, an entity, is uncountable just because it is made up of a myriad of biological cells?
Our object to count is circles.
By definition, $E=\left\{C((a, b), r): a, b \in \mathbb{Q}, r \in \mathbb{Q}^{+}\right\}$, and therefore

$$
E=\bigcup_{a \in \mathbb{Q}} \bigcup_{b \in \mathbb{Q}} \bigcup_{r \in \mathbb{Q}^{+}}\{(C((a, b), r)\},
$$

by Countable Union Theorem thrice, E is countable.

Example 3 (Practice Exercise 89). Determine if the following sets are countable or not.
(a) S is the set of all intersection points (x, y) of the line $y=\pi x$ with the graphs of all equations $y=x^{3}+x+m, m \in \mathbb{Z}$.
(i) $S=\left\{x^{2}+y^{2}: x, y \in A\right\}$, where A is a nonempty countable subset of \mathbb{R}.

Sol (a) $\vec{a} \in S$
$\Longleftrightarrow \vec{a} \in\left\{((x, y): y=\pi x\} \cap\left\{(x, y): y=x^{3}+x+m\right\}\right.$, for some $M \in \mathbb{Z}$
$\Longleftrightarrow \vec{a} \in \bigcup_{m \in \mathbb{Z}} I_{m}$,
so $S=\bigcup_{m \in \mathbb{Z}} I_{m}$.
Note that I_{m} has at most 3 points, since if we solve the the intersection, then $(x, y)=(x, \pi x)$ lies on $y=x^{3}+x+m$ iff $\pi x=x^{3}+x+m$, which has at most 3 solutions.

Thus S is countable by Countable Union Theorem once.
(i) $\vec{a} \in S$ iff $\vec{a}=x^{2}+y^{2} \exists x \in A, \exists y \in Y$ iff $a \in \bigcup_{x \in A} \bigcup_{y \in A}\left\{x^{2}+y^{2}\right\}$, Countable Union Theorem twice will do.

Example 4. Show that the power set of \mathbb{N}, denoted by $2^{\mathbb{N}}$ or $\mathcal{P}(\mathbb{N})$, is an uncountable set.

Sol Recall the power set of X is defined to be the collection of all possible subsets of X. For example, if $X=\{1,2,3\}$, then

$$
2^{\{1,2,3\}}=\{0,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{3,1\},\{1,2,3\}\} .
$$

The number of elements in $2^{\{1,2,3\}}$ is $2^{3}=8$.
In general, if $|X|=n$, then $\left|2^{X}\right|=2^{n}$, this motivate the notation 2^{x}.
To show $2^{\mathbb{N}}$ is uncountable, we try to show it is bijective to an uncountable set.
To form a subset of \mathbb{N}, say A, for each $k \in \mathbb{N}$ we either put k into A or cast it aside. If we choose k, we assign k a value 1 , if we abandon it, we assign k a value 0 .

Graphically, we have

1	2	3	4	5	6	7	8	9	10
\mid									
0	1	1	0	1	0	0	1	0	0

to mean we choose $2,3,5,8, \ldots$ and don't choose the remaining which is assigned a value 0 . Therefore it is easy to imagine now

$$
2^{\mathbb{N}} \longleftrightarrow\left\{\left(a_{1}, a_{2}, \cdots\right): a_{1}, a_{2}, \cdots \in\{0,1\}\right\}=\{0,1\}^{\infty} .
$$

In lecture we know that $\{0,1\}^{\infty}$ is uncountable, thus we are done.

Remark. We can also state a much general fact in terms of Cardinality. In Exercise 6 if we replace X by \mathbb{N} we have $\left|2^{\mathbb{N}}\right|>|\mathbb{N}|$, therefore $2^{\mathbb{N}}$ is uncountable.

Remark. The same technique to construct bijection from a set of functions on \mathbb{N} to a set of sequences can be used to solve Exercise 3, try to practice more!

Example 5. A real number $a \in \mathbb{R}$ is said to be algebraic if there is a nonzero polynomial $P(x) \in \mathbb{Q}[x]$ such that $P(a)=0$.
(a) Show that the set of algebraic numbers is countable.
(b) A number is said to be transcendental if it is not algebraic. Explain why there must be a transcendental number.

Sol (a) To understand the countability of the set of algebraic numbers, we need to rewrite the expression:
a is algebraic
iff $P(a)=0$ for some $P \in \mathbb{Q}[x] \backslash\{0\}$
(definition)
iff $a \in Z(P)$ for some $P \in \mathbb{Q}[x] \backslash\{0\}$
(definition, recall $Z(P):=\{x \in \mathbb{R}: P(x)=0\}$)
iff $a \in \bigcup_{P \in \mathbb{Q}[x] \backslash\{0\}} Z(P)$.
The iff's mean

$$
\begin{equation*}
\text { \{algebraic number }\}=\bigcup_{P \in \mathbb{Q} x x]\{0\}} Z(P) . \tag{*}
\end{equation*}
$$

Now $Z(P)$ is just a finite set (hence countable) since P, as a nonzero polynomial, has only finitely many zeros.
In view of Countable Union Theorem, it is enough to show $\mathbb{Q}[x]$ is countable.
To see this, rewrite this as

$$
\begin{aligned}
\mathbb{Q}[x] & =\bigcup_{n=0}^{\infty}\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n}: a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Q}\right\} \\
& =\bigcup_{n=0}^{\infty} \bigcup_{\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathbb{Q} \times \mathbb{Q} \times \cdots \times \mathbb{Q}}\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right\}
\end{aligned}
$$

Here $\mathbb{Q} \times \mathbb{Q} \times \cdots \times \mathbb{Q}$ is countable by Product Theorem, therefore $\mathbb{Q}[x]$ is countable by Countable Union Theorem.

Finally the set in (*) is countable again by Countable Union Theorem.
(b) The existence of transcendental number is now obvious because

$$
\mathbb{R} \backslash\{\text { algebraic number }\}
$$

is uncountable, therefore nonempty.

Exercises

1. Determine with proof whether each of the following sets is countable:
(a) $A=\{\sqrt{|x|+y}: x \in \mathbb{Z}, y \in(0,1) \backslash \mathbb{Q}\}$
(b) $B=\{\sin x+\cos y: x, y \in \mathbb{R}\}$
(c) $C=\left\{\frac{1}{m}+\frac{1}{n}: m, n \in \mathbb{N}\right\}$
(d) $D=\left\{[x]^{2}+y: x \in \mathbb{R}, y \in \mathbb{Q}\right\},[x]$ is the largest integer not exceeding x
2. Show that the set \mathcal{F} of all finite subsets of \mathbb{N} is countable.

Caution: Note that $\mathcal{F} \subseteq 2^{\mathbb{N}}$ and $2^{\mathbb{N}}$ was shown to be uncountable in Example 4, therefore Countable Subset Theorem is not available.
3. Is the set \mathcal{F} of functions from \mathbb{N} to $\{1,2,3\}$ countable? [Insturction: Try to show that $\mathcal{G}: \mathcal{F} \rightarrow\{1,2,3\}^{\infty}$ given by $\mathcal{G}(f)=(f(1), f(2), \ldots) \in\{1,2,3\}^{\infty}$ is bijective. Next, show that $\{1,2,3\}^{\infty}$ contains an uncountable subset.]
4. (2002 Spring) Let S be the set of all lines ℓ on the \mathbb{R}^{2} such that ℓ passes through two distinct points in $\mathbb{Q} \times \mathbb{Q}$. Let T be the set of all points, each of which is the intersection of a pair of distinct lines in S. Determine if T is countable or not.
5. (2003 Spring) Let P be a countable set of points in \mathbb{R}^{2}. Prove that there exists a circle C with the origin as center and positive radius such that every point of the circle C is not in P. (Note points inside the circle do not belong to the circle)
6. (Cardinality) For a set A, the symbol $|A|$ is called the cardinality of A. It is defined to be the number of elements in A when A has just finitely many elements (i.e., a finite set). When A is an infinite set, we denote $|A|=\infty$. Such ∞ 's can still be compared by further defining the following formal inequality: Let X, Y be two sets.

We say that $|X| \leq|Y|$ if there is an injection from X into Y.
Therefore, for example, if $X \subseteq Y$, then $|X| \leq|Y|$ since $x \mapsto x: X \rightarrow Y$ is one of possible injections. We also define strict inequality as follows:

$$
\begin{aligned}
& \text { Let } X, Y \text { be two sets, we say that }|X|<|Y| \\
& \text { if there is an injection but no surjection from } X \text { into } Y \text {. }
\end{aligned}
$$

Finally we define $|X|=|Y|$ if there is a bijection between them. Schröder-Bernstein Theorem tells us $|X|=|Y|$ if and only if $|X| \leq|Y|$ and $|X| \geq|Y|$.
Now let X be any set.
(a) Show that $\left|2^{X}\right| \geq|X|$.
(b) Prove that $\left|2^{X}\right|>|X|$ by showing there is no surjection $f: X \rightarrow 2^{X}$. [Instruction: Suppose such f exists, consider $A_{f}=\{x \in X: x \notin f(x)\}$ (possibly $=\emptyset$), then what happens after choosing $y \in X$ s.t. $f(y)=A_{f}$?]

