
Math2033 Mathematical Analysis (Spring 2013-2014) Tutorial Note 2

Countability

We need to know

• how to judge whether a set is countable;

• how to prove the existence of some desired element via countability.

Key definitions and results

Definition 1 (Countability).

• A set S is countably infinite if there is a bijection f : N→ S.

• A set is said to be countable if it is finite or countably infinite.

• A set is said to be uncountable if it is not countable.

Theorem 2 (Countable Subset). Suppose A ⊂ B, then:

(a) B is countable Ô⇒ A is countable.

(b) A is uncountable Ô⇒ B is uncountable.

Theorem 3 (Bijection). If there is a bijection f : A→ B, then

A is countable ⇐⇒ B is countable.

Theorem 4 (Countable Union).

S is countable and As is countable ∀s ∈ S Ô⇒
⋃
s∈S

As is countable.

Theorem 5 (Product).

A1, A2, . . . , An are countable Ô⇒ A1× A2× · · ·× An is countable.

Theorem 6 (Injection). Let f : A→ B be injective, then

B is countable Ô⇒ A is countable.

Theorem 7 (Surjection). Let g : A→ B be surjective, then

A is countable Ô⇒ B is countable.

Remark. We cannot replace n by ∞ in Product Theorem 5, a textbook example is

{0,1}∞ := {0,1}×{0,1}× · · ·

which is uncountable.

Example 1. Determine whether the following set is countable:

A := {x ∈ R : 9sin9 x+3sin3 x+1 = 0}

Sol The usual technique is to rewrite the expression of A. To do this, we find a equivalent
statement of “a ∈ A”.

Note that

a ∈ A
⇐⇒ 9sin9 a+3sin3 a+1 = 0
⇐⇒ sin a is a zero (i.e., root) of P(x) := 9x9 +3x3 +1
⇐⇒ sin a ∈ Z(P) := {x ∈ R ∈ R : P(x) = 0}
⇐⇒ sin a = k for some k ∈ Z(P)
⇐⇒ a ∈ {x ∈ R : sin x = k,∃k ∈ Z(P)}
⇐⇒ a ∈

⋃
k∈Z (P)

{x ∈ R : sin x = k}

⇐⇒ a ∈
⋃

k∈Z (P)

{x ∈ R : x = nπ+ (−1)n sin−1 k,∃n ∈ Z}

⇐⇒ a ∈
⋃

k∈Z (P)

⋃
n∈Z

{x ∈ R : x = nπ+ (−1)n sin−1 k}

⇐⇒ a ∈
⋃

k∈Z (P)

⋃
n∈Z

{nπ+ (−1)n sin−1 k}.

Since every nonzero has at most finitely many zeros, Z(P) is necessarily a finite
set, hence a countable set. Next Z is countable, and therefore by Countable Union
Theorem twice,

A =
⋃

k∈Z (P)

⋃
n∈Z
{nπ+ (−1)n sin−1 k}

is countable.



Example 2 (Practice Exercise 23). Determine if the set E of all circles in R2

with centers at rational coordinate points and positive rational radius is countable.

Sol Let C(~x,r) denote the circle with center ~x ∈ R2 and radius r ≥ 0. Also let’s denote Q+ =
Q∩ (0,∞).

We need to be careful what is the object we are going to count. Of course any circle,
being a subset of R2, must be uncountable. But would we say a human being, an entity, is
uncountable just because it is made up of a myriad of biological cells?

Our object to count is circles.

By definition, E =
{

C
(

(a, b),r
)

: a, b ∈Q,r ∈Q+
}

, and therefore

E =
⋃
a∈Q

⋃
b∈Q

⋃
r∈Q+

{
(C((a, b),r)

}
,

by Countable Union Theorem thrice, E is countable.

Example 3 (Practice Exercise 89). Determine if the following sets are count-
able or not.

(a) S is the set of all intersection points (x, y) of the line y = πx with the graphs
of all equations y = x3+ x+m, m ∈ Z.

(i) S = {x2+ y2 : x, y ∈ A}, where A is a nonempty countable subset of R.

Sol (a) ~a ∈ S

⇐⇒ ~a ∈

:=Im︷ ︸︸ ︷
{(x, y) : y = πx}∩ {(x, y) : y = x3 + x+m}, for some M ∈ Z

⇐⇒ ~a ∈
⋃

m∈Z Im ,

so S =
⋃

m∈Z Im .

Note that Im has at most 3 points, since if we solve the the intersection, then (x, y) = (x,πx)
lies on y = x3 + x+m iff πx = x3 + x+m, which has at most 3 solutions.

Thus S is countable by Countable Union Theorem once.

(i) ~a ∈ S iff ~a = x2 + y2 ∃x ∈ A,∃y ∈ Y iff a ∈
⋃

x∈A

⋃
y∈A{x

2 + y2}, Countable Union
Theorem twice will do.

Example 4. Show that the power set of N, denoted by 2N orP(N), is an uncount-
able set.

Sol Recall the power set of X is defined to be the collection of all possible subsets of X . For
example, if X = {1,2,3}, then

2{1,2,3} =
{
∅, {1}, {2}, {3}, {1,2}, {2,3}, {3,1}, {1,2,3}

}
.

The number of elements in 2{1,2,3} is 23 = 8.

In general, if |X | = n, then |2X | = 2n , this motivate the notation 2X .

To show 2N is uncountable, we try to show it is bijective to an uncountable set.

To form a subset of N, say A, for each k ∈ N we either put k into A or cast it aside. If we
choose k, we assign k a value 1, if we abandon it, we assign k a value 0.

Graphically, we have

1 2 3 4 5 6 7 8 9 10 . . .

0 1 1 0 1 0 0 1 0 0

to mean we choose 2,3,5,8, . . . and don’t choose the remaining which is assigned a value
0. Therefore it is easy to imagine now

2N←→ {(a1, a2, . . . ) : a1, a2, · · · ∈ {0,1}} = {0,1}∞.

In lecture we know that {0,1}∞ is uncountable, thus we are done.

Remark. We can also state a much general fact in terms of Cardinality. In Exercise 6 if
we replace X by N we have |2N|> |N|, therefore 2N is uncountable.

Remark. The same technique to construct bijection from a set of functions on N to a
set of sequences can be used to solve Exercise 3, try to practice more!



Example 5. A real number a ∈ R is said to be algebraic if there is a nonzero
polynomial P(x) ∈Q[x] such that P(a) = 0.

(a) Show that the set of algebraic numbers is countable.

(b) A number is said to be transcendental if it is not algebraic. Explain why
there must be a transcendental number.

Sol (a) To understand the countability of the set of algebraic numbers, we need to rewrite the
expression:

a is algebraic
iff P(a) = 0 for some P ∈Q[x] \ {0} (definition)
iff a ∈ Z(P) for some P ∈Q[x] \ {0}

(definition, recall Z(P) := {x ∈ R : P(x) = 0})
iff a ∈

⋃
P∈Q[x]\{0} Z(P).

The iff’s mean
{algebraic number} =

⋃
P∈Q[x]\{0}

Z(P). (∗)

Now Z(P) is just a finite set (hence countable) since P, as a nonzero polynomial, has only
finitely many zeros.

In view of Countable Union Theorem, it is enough to show Q[x] is countable.

To see this, rewrite this as

Q[x] =
∞⋃
n=0

{a0 + a1x+ · · ·+ an xn : a0, a1, . . . , an ∈Q}

=

∞⋃
n=0

⋃
(a0,a1,...,an )∈Q×Q×···×Q

{a0 + a1x+ · · ·+ an xn}

Here Q×Q× · · · ×Q is countable by Product Theorem, therefore Q[x] is countable by
Countable Union Theorem.

Finally the set in (∗) is countable again by Countable Union Theorem.

(b) The existence of transcendental number is now obvious because

R \ {algebraic number}

is uncountable, therefore nonempty.

Exercises

1. Determine with proof whether each of the following sets is countable:

(a) A = {
√
|x|+ y : x ∈ Z, y ∈ (0,1) \Q}

(b) B = {sin x+ cos y : x, y ∈ R}

(c) C =
{

1
m
+

1
n

: m, n ∈ N
}

(d) D = {[x]2+ y : x ∈ R, y ∈Q}, [x] is the largest integer not exceeding x

2. Show that the set F of all finite subsets of N is countable.

Caution: Note that F ⊆ 2N and 2N was shown to be uncountable in Example 4,
therefore Countable Subset Theorem is not available.

3. Is the set F of functions from N to {1,2,3} countable? [Insturction: Try to show
that G : F → {1,2,3}∞ given by G( f ) = ( f (1), f (2), . . . ) ∈ {1,2,3}∞ is bijective.
Next, show that {1,2,3}∞ contains an uncountable subset.]

4. (2002 Spring) Let S be the set of all lines ` on the R2 such that ` passes through
two distinct points in Q×Q. Let T be the set of all points, each of which is the
intersection of a pair of distinct lines in S. Determine if T is countable or not.

5. (2003 Spring) Let P be a countable set of points in R2. Prove that there exists a
circle C with the origin as center and positive radius such that every point of the
circle C is not in P. (Note points inside the circle do not belong to the circle)

6. (Cardinality) For a set A, the symbol |A| is called the cardinality of A. It is
defined to be the number of elements in A when A has just finitely many elements
(i.e., a finite set). When A is an infinite set, we denote |A| =∞. Such∞’s can still
be compared by further defining the following formal inequality: Let X ,Y be two
sets.

We say that |X | ≤ |Y | if there is an injection from X into Y .

Therefore, for example, if X ⊆ Y , then |X | ≤ |Y | since x 7→ x : X → Y is one of
possible injections. We also define strict inequality as follows:

Let X ,Y be two sets, we say that |X | < |Y |
if there is an injection but no surjection from X into Y .

Finally we define |X |= |Y | if there is a bijection between them. Schröder-Bernstein
Theorem tells us |X | = |Y | if and only if |X | ≤ |Y | and |X | ≥ |Y |.

Now let X be any set.

(a) Show that |2X | ≥ |X |.
(b) Prove that |2X | > |X | by showing there is no surjection f : X → 2X .

[Instruction: Suppose such f exists, consider Af = {x ∈ X : x 6∈ f (x)} (pos-
sibly = ∅), then what happens after choosing y ∈ X s.t. f (y) = Af ?]


