Math2033 Mathematical Analysis (Spring 2013-2014) Tutorial Note 2

Countability

We need to know

e how to judge whether a set is countable;

e how to prove the existence of some desired element via countability.

Key definitions and results

Definition 1 (Countability).
e A set S is countably infinite if there is a bijection f : N — §.
e A set is said to be countable if it is finite or countably infinite.

e A set is said to be uncountable if it is not countable.

Theorem 2 (Countable Subset). Suppose A C B, then:
(a) Bis countable = A is countable.

(b) A is uncountable = B is uncountable.

Theorem 3 (Bijection). If there is a bijection f : A — B, then

A is countable <= B is countable.

Theorem 4 (Countable Union).

S is countable and Ay is countable Vs € S — U Ay is countable.
seS

Theorem 5 (Product).

Ay,Ay,..., A, are countable = A| X Ay X--- X A,, is countable.

Theorem 6 (Injection). Let f : A — B be injective, then

B is countable == A is countable.

Theorem 7 (Surjection). Let g : A — B be surjective, then

A is countable = B is countable.

Remark. We cannot replace n by oo in Product Theorem 5, a textbook example is
{0,1}*°:={0,1} x {0,1} x - -~

which is uncountable.

Example 1. Determine whether the following set is countable:

A:={xeR:9sin’ x+3sin’ x+ 1 =0}

Sol The usual technique is to rewrite the expression of A. To do this, we find a equivalent
statement of “a € A”.

Note that

acA
— 9sin®a+3sin’a+1=0
<« sina is a zero (i.e., root) of P(x) :=9x° +3x> +1
sina€ Z(P):={xeReR: Px)=0}
sina = k for some k € Z(P)
<= aec{xeR:sinx =k,k € Z(P)}
<~ g€ U {xeR:sinx =k}
keZ(P)
— ac U (xeR:x=nr+(=1)"sin" k,In e 7}
keZ(P)
ae U U{xeR:x:nﬂ+(—l)nsin_1k}
keZ(P)neZ
<~ ac€ U U{nﬂ+(—1)”sin_]k}.

keZ(P)neZ

<~
<~

!

Since every nonzero has at most finitely many zeros, Z(P) is necessarily a finite
set, hence a countable set. Next Z is countable, and therefore by Countable Union

Theorem twice,
A= |J Ytnr+1)"sin" k)
keZ(P)neZ

is countable. |



Example 2 (Practice Exercise 23). Determine if the set E of all circles in R?
with centers at rational coordinate points and positive rational radius is countable.

Sol Let C(Z,r) denote the circle with center X € R? and radius r > 0. Also let’s denote Q* =

QN (0,00).

We need to be careful what is the object we are going to count. Of course any circle,
being a subset of R2, must be uncountable. But would we say a human being, an entity, is
uncountable just because it is made up of a myriad of biological cells?

Our object to count is circles.
By definition, E = {C((a,b),r) ta,beQ,re Q*}, and therefore

e={J U U {cw@n.n}.

acQbeQreQ+

by Countable Union Theorem thrice, E is countable. |

Example 3 (Practice Exercise 89). Determine if the following sets are count-
able or not.

(a) S is the set of all intersection points (x,y) of the line y = rx with the graphs
of all equations y = Xtx+m,me’.

i S={x2+ y2 1 x,y € A}, where A is a nonempty countable subset of R.

Sol (a)deSs
=1

— c?e{(x,y):y=7rx}ﬂ{(x,y):y=x3+x+m}, for some M € Z
— de UmeZIm’

s08=,,czIm-

Note that 7,;, has at most 3 points, since if we solve the the intersection, then (x,y) = (x,7x)

lies on y = x3 + x + m iff 7x = x> + x + m, which has at most 3 solutions.

Thus S is countable by Countable Union Theorem once.

()aeSiffa=x*+y* IxeATyeYiff aclJ,,U,calx*+y*. Countable Union

Theorem twice will do. |

yeA

Example 4. Show that the power set of N, denoted by 2N or P(N), is an uncount-
able set.

Sol Recall the power set of X is defined to be the collection of all possible subsets of X. For
example, if X = {1,2,3}, then

20023 = {0,112}, (3}.(1.21.(2.31.(3.11.{1,2.3} }.

The number of elements in 21123} js 23 = 8.
In general, if | X| = n, then [2%| = 2", this motivate the notation 2X .
To show 2N is uncountable, we try to show it is bijective to an uncountable set.

To form a subset of N, say A, for each k € N we either put k into A or cast it aside. If we
choose k, we assign k a value 1, if we abandon it, we assign k a value 0.

Graphically, we have

1 2 3 4 5 6 7 8 910
011 01 0 0100
to mean we choose 2,3,5,8,... and don’t choose the remaining which is assigned a value
0. Therefore it is easy to imagine now

N ((ar,a2,...) 1 ar,az, - €10, 1)) = {0, 1),

In lecture we know that {0, 1}*° is uncountable, thus we are done. |

Remark. We can also state a much general fact in terms of Cardinality. In Exercise 6 if
we replace X by N we have \2N| > |N|, therefore 2V is uncountable.

Remark. The same technique to construct bijection from a set of functions on N to a
set of sequences can be used to solve Exercise 3, try to practice more!



Example 5. A real number a € R is said to be algebraic if there is a nonzero
polynomial P(x) € Q[x] such that P(a) = 0.

(a) Show that the set of algebraic numbers is countable.

(b) A number is said to be transcendental if it is not algebraic. Explain why
there must be a transcendental number.

Sol (a) To understand the countability of the set of algebraic numbers, we need to rewrite the
expression:

a is algebraic
iff P(a) = 0 for some P € Q[x]\ {0} (definition)
iff a € Z(P) for some P € Q[x]\ {0}

(definition, recall Z(P):={xeR: P(x)=0})

iffae UPeQ[x]\m} Z(P).

The iff’s mean
{algebraic number} = U Z(P). (%)
PeQ[x]\{0}
Now Z(P) is just a finite set (hence countable) since P, as a nonzero polynomial, has only
finitely many zeros.

In view of Countable Union Theorem, it is enough to show Q[x] is countable.

To see this, rewrite this as

o)

Qlx]= U{a0+alx+-~-+anx” 1ag,ay,...,an €Q}
=0

n
[ee)
=U U {“0+alx+-~-+anx"}
n=0(ag,ar,...,a,)EQxQx--xQ

Here QX QX ---x Q is countable by Product Theorem, therefore Q[x] is countable by
Countable Union Theorem.

Finally the set in (x) is countable again by Countable Union Theorem.
(b) The existence of transcendental number is now obvious because
R\ {algebraic number}

is uncountable, therefore nonempty. |

Exercises

1. Determine with proof whether each of the following sets is countable:

(@) A={Vlx|+y:x€Z,ye(0,D\Q}
(b) B={sinx+cosy:x,y€eR}

1 1
(c) C= {—i— :m,neN}
m n
(d) D={[x]*+ y:x R,y e @}, [x] is the largest integer not exceeding x

. Show that the set F of all finite subsets of N is countable.

Caution: Note that ¥ € 2N and 2N was shown to be uncountable in Example 4,
therefore Countable Subset Theorem is not available.

. Is the set ¥ of functions from N to {1,2,3} countable? [Insturction: Try to show

that G : ¥ — {1,2,3}* given by G(f) = (f(1), f(2),...) € {1,2,3}* is bijective.
Next, show that {1,2,3}* contains an uncountable subset.]

. (2002 Spring) Let S be the set of all lines £ on the R? such that £ passes through

two distinct points in Q X Q. Let T be the set of all points, each of which is the
intersection of a pair of distinct lines in S. Determine if T is countable or not.

. (2003 Spring) Let P be a countable set of points in R?. Prove that there exists a

circle C with the origin as center and positive radius such that every point of the
circle C is not in P. (Note points inside the circle do not belong to the circle)

. (Cardinality) For a set A, the symbol |A| is called the cardinality of A. It is

defined to be the number of elements in A when A has just finitely many elements
(i.e., a finite set). When A is an infinite set, we denote |A| = co. Such oo’s can still
be compared by further defining the following formal inequality: Let X,Y be two
sets.

We say that |X| < |Y| if there is an injection from X into Y.
Therefore, for example, if X C Y, then |X| < |Y] since x — x : X — Y is one of
possible injections. We also define strict inequality as follows:

Let X,Y be two sets, we say that | X| < |Y|
if there is an injection but no surjection from X into Y.

Finally we define |X| = |Y| if there is a bijection between them. Schroder-Bernstein
Theorem tells us |X| = |Y| if and only if |X| <|Y| and |X| > |Y|.
Now let X be any set.

(a) Show that [2X| > |X].

(b) Prove that [2X| > |X] by showing there is no surjection f : X — 2X,

[Instruction: Suppose such f exists, consider Ay ={x € X : x ¢ f(x)} (pos-
sibly = 0), then what happens after choosing y € X s.t. f(y) = Az?]



