Key Definitions and Results

Remark 1 (Abuse of Notation). Unlike linear algebra, in analysis column vectors and row vectors are considered the same. Every element in \mathbb{R}^{n} will be written as a column or a row interchangeably. We need to adjust the interpretation of a notation ourselves to make sure everything makes sense.

Definition 2. A function $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is said to be a linear transformation if for every $a \in \mathbb{R}$ and every $x, y \in \mathbb{R}^{m}$, one has

$$
T(a x)=a T(x) \quad \text { and } \quad T(x+y)=T(x)+T(y) .
$$

Definition 3. Let $X \subseteq \mathbb{R}^{m}$ and $Y \subseteq \mathbb{R}^{n}$, we say that $F: X \rightarrow Y$ is continuous at $\boldsymbol{a} \in X$ if for every given $\epsilon>0$, there is a $\delta>0$ such that for every $x \in X$,

$$
\|x-a\|<\delta \Longrightarrow\|F(x)-F(a)\|<\epsilon .
$$

Definition 4. We say that a function f has some property near $\boldsymbol{a} \in \mathbb{R}^{\boldsymbol{n}}$ if such property holds for each point of $B(a, \delta):=\{x:\|x-a\|<\delta\}$, for some $\delta>0$.

Definition 5 (1st Course Version). Let f be a real-valued function defined near $a \in \mathbb{R}^{n}$, then f is said to be differentiable at \boldsymbol{a} if there is a "tangent plane" at a such that

$$
\lim _{\|x-a\| \rightarrow 0} \frac{|f(x)-(f(a)+\nabla f(a) \cdot(x-a))|}{\|x-a\|}=0 .
$$

Definition 6. Let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a real-valued function defined near $a \in \mathbb{R}^{n}$ and $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ a usual basis of \mathbb{R}^{n}. For each i we define

$$
\frac{\partial f}{\partial x_{i}}(a)=\lim _{\mathbb{R} \ni h \rightarrow 0} \frac{f\left(a+h e_{i}\right)-f(a)}{h}=:\left.\frac{d}{d x_{i}} f\left(a_{1}, \ldots, a_{i-1}, x_{i}, a_{i+1}, \ldots, a_{n}\right)\right|_{x_{i}=a_{i}}
$$

Theorem 7 (Equation of Tangent Plane).

- Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$. The equation of the tangent plane to the surface $f=0$ at $a \in \mathbb{R}^{3}($ s.t. $f(a)=0)$ is $\nabla \boldsymbol{f}(\boldsymbol{a}) \cdot(\boldsymbol{x}-\boldsymbol{a})=\mathbf{0}$
- Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. The equation of the tangent plane to the surface $\{(x, y, f(x, y)): x, y \in \mathbb{R}\}$ at $(a, f(a))$ is $z=f(\boldsymbol{a})+\nabla f(\boldsymbol{a}) \cdot((\boldsymbol{x}, \boldsymbol{y})-\boldsymbol{a})$.

Example 1 (Review Problem 1). For each part, find $\frac{d y}{d x}$ at $(1,1)$ if x and y satisfy the equation
(a) $x^{4}+x y^{3}+e=2+e^{x}$
(b) $x=\frac{e^{2 y}-y^{e}}{e^{2}-1}$
(c) $x^{7}+x^{2} y^{2}+y^{7}+e^{y}=3+e$

Must you do implicit differentiation to find $\frac{d y}{d x}$ in each part?

Solution. (a) $y^{\prime}=(e-5) / 3$.
(b) $y^{\prime}=(e-1) /\left(2 e^{2}-e\right)$
(c) $y^{\prime}=-9 /(9+e)$

It is not necessary to do implicit differentiation in each part.
In (a) we can make y the subject, namely,

$$
y=\sqrt[3]{\frac{5+e^{x}-x^{4}}{x}}
$$

In (b) we can use the formula

$$
\frac{d y}{d x}=\frac{1}{\frac{d x}{d y}} .
$$

Finally in (c) it is seemingly hopeless to express y as a function of x, thus we must assume y is a function of x to do implicit differentiation. The feasibility will be guaranteed by the theorem in later lectures called Implicit Function Theorem. Implicit Function Theorem guarantees there exists a function $f(x)$ such that $y=f(x)$ is a solution of the equation

$$
x^{7}+x^{2} y^{2}+y^{7}+e^{y}=3+e .
$$

Note that although it exists, there is no general method to find $f(x)$. The situation is the same as that we know the maximum of $f:[1,2] \rightarrow \mathbb{R}$ given by

$$
f(x)=\frac{e^{x} \sin x}{\sqrt{x}}+\cos e^{e^{x}}
$$

must occur somewhere, say $x_{0} \in[1,2]$, but there is no general method to find x_{0}.

Example 2 (Review Problem 2).

(a) For every $(a, b) \in \mathbb{R}^{2}$, find $\frac{\partial F}{\partial x}(a, b)$ if $F(x, y)=\sin \left|x^{2}+y\right|$.
(b) For every $(a, b) \in \mathbb{R}^{2}$, find $\frac{\partial G}{\partial y}(a, b)$ if $G(x, y)=\left\{\begin{array}{ll}\frac{x^{2}-y^{2}}{x-y} & \text { if } x \neq y \\ 3 x & \text { if } x=y\end{array}\right.$.

Solution. (a) We consider case by case:
Case 1. When $a^{2}+b>0, F_{x}(a, b)$ exists with $F_{x}(a, b)=2 a \cos \left(a^{2}+b\right)$.
Case 2. When $a^{2}+b<0, F_{x}(a, b)$ exists with $F_{x}(a, b)=-2 a \cos \left(a^{2}+b\right)$.
Case 3. If $a^{2}+b=0$, then we have

$$
\begin{aligned}
F_{x}(a, b) & =\lim _{h \rightarrow 0} \frac{F(a+h, b)-F(a, b)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (|h| 2 a+h \mid)}{h} \\
& = \begin{cases}0, & \text { when } a=0, \\
\text { does not exist, } & \text { when } a>0, \\
\text { does not exist, } & \text { when } a<0 .\end{cases}
\end{aligned}
$$

So in this case the only point that has derivative is $(0,0)$, i.e., $F_{x}(0,0)=0$.
(b) If $a \neq b$, then for (x, y) near (a, b), we still have $x \neq y$, hence $G(x, y)=x+y$, it follows that

$$
G_{y}(x, y)=1 \Longrightarrow G_{y}(a, b)=1 .
$$

If $a=b$, then by definition we have

$$
G_{x}(a, b)=\lim _{h \rightarrow 0} \frac{G(a, b+h)-G(a, b)}{h}=\lim _{h \rightarrow 0} \frac{h-a}{h}= \begin{cases}1, & a=0 \\ \text { does not exist, } & a \neq 0\end{cases}
$$

(a) Show that f is not continuous at $(0,0)$.
(b) Compute $f_{x}(0,0)$ and $f_{y}(0,0)$.
(c) Convince yourself this function is an example that: Although f satisfies (i) $x \mapsto$ $f\left(x, y_{0}\right)$ is continuous for each fixed $y_{0} \in \mathbb{R}$; and (ii) $y \mapsto f\left(x_{0}, y\right)$ is continuous for each fixed $x_{0} \in \mathbb{R}$. Yet f is not continuous.

Exercise 2. Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $G(x, y)=e^{|x-y|}$, compute, if exists, $G_{x}(a, b)$ for all $(a, b) \in \mathbb{R}^{2}$.

Example 3 (Review Problem 3).

(a) Find the equation of the tangent plane to the graph of the equation

$$
e^{x}+y^{2} z+z \cos x=1
$$

at $(0,0,0)$ in \mathbb{R}^{3}.
(b) Find the equation of the tangent plane to the graph of the function

$$
f(x, y)=x e^{y}+y e^{x}
$$

at $(0,0,0)$ in \mathbb{R}^{3}.

Solution. (a) The equation of the tangent plane is given by

$$
\nabla\left(e^{x}+y^{2} z+z \cos x-1\right)(0,0,0) \cdot((x, y, z)-(0,0,0))=0,
$$

a simple computation gives $\nabla\left(e^{x}+y^{2} z+z \cos x-1\right)(0,0,0)=(1,0,1)$, therefore the equation that characterizes the tangent plane is

$$
x+z=0 .
$$

(b) The equation of tangent plane is directly given by the linear approximation of f at (0,0), namely,

$$
z=f(0,0)+\nabla f(0,0)((x, y)-(0,0))=0+(1,1) \cdot(x, y)=x+y .
$$

Example 4 (Review Problem 4). Is the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
T(x, y)=\left(4 x-3 y, y+\frac{1}{2} x,-(x+y)\right)
$$

a linear transformation? If so, what is its matrix w.r.t. the usual bases of \mathbb{R}^{2} and \mathbb{R}^{3} ? Is it injective? Is it surjective? Is it bijective?

Solution. (i) Yes, it is linear since

$$
T(x, y)=\left[\begin{array}{cc}
4 & -3 \\
1 / 2 & 1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right],
$$

and from linear algebra we know that $x \mapsto A x$ is always linear when A is a matrix.
(ii) This is just the standard matrix, denoted by [T], i.e.,

$$
[T]=\left[\begin{array}{cc}
4 & -3 \\
1 / 2 & 1 \\
-1 & -1
\end{array}\right]
$$

(iii) Let $S: V \rightarrow W$ be a linear map between vector spaces. Recall that the following are equivalent:

- S is injective (or 1-1);
- $\operatorname{ker} S=\{0\}$;
- $S x=0 \Longrightarrow x=0$.

We will use the third condition. Suppose that $T(x, y)=0$, i.e.,

$$
\begin{aligned}
4 x-3 y & =0 \\
\frac{1}{2} x+y & =0 \\
-x-y & =0
\end{aligned}
$$

The first and third equations imply $x=y=0$, thus T is injective.
(iv) By Rank-Nullity Theorem we have

$$
2=\operatorname{dim} \operatorname{ker} T+\operatorname{dim} \operatorname{range} T,
$$

as T is injective, $\operatorname{ker} T=\{0\}$, so it has zero dimension, and we have dimrange $T=2$, hence range $T \neq \mathbb{R}^{3}$, i.e., T is not surjective.
(v) Since it is not surjective, it is not bijective.

Example 5 (Review Problem 5). Let $a, b \in \mathbb{R}$ be constants and let the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
T(x, y)=(a x+b y, a b y+3 x) .
$$

For what values of a and b will the linear transformation be invertible?

Solution. Let $[T]$ denote its standard matrix, then

$$
[T]=\left[\begin{array}{cc}
a & b \\
3 & a b
\end{array}\right],
$$

and we learn that T is invertible if and only if $[T]$ does, and $[T]$ is invertible iff $\operatorname{det}[T]=$ $b\left(a^{2}-3\right) \neq 0$, thus $b \neq 0, a \neq \sqrt{3}$ and $a \neq-\sqrt{3}$.
*Example 1. Let $A=\left[a_{i j}\right]_{3 \times 3}$ be a real symmetric matrix. By using knowledge from Math2121 and Math2021:
(a) Prove that

$$
\int_{\mathbb{R}^{3}} \exp \left(-\frac{1}{2} \sum_{i, j=1}^{3} a_{i j} x_{i} x_{j}\right) d V<\infty
$$

if and only if A is positive definite ${ }^{(*)}$.
(b) (Left as Exercise) When A is positive definite, for $b_{1}, b_{2}, b_{3} \in \mathbb{R}$ show that

$$
\int_{\mathbb{R}^{3}} \exp \left(-\frac{1}{2} \sum_{i, j=1}^{3} a_{i j} x_{i} x_{j}+\sum_{i=1}^{3} b_{i} x_{i}\right) d V=\frac{\exp \left(\frac{1}{2} b^{T} A^{-1} b\right)(2 \pi)^{3 / 2}}{\sqrt{\operatorname{det} A}}
$$

where $b=\left(b_{1}, b_{2}, b_{3}\right)^{T}$.

Solution. (a) For clarity all vectors will be column vectors. We can write the integral as

$$
I=\int_{\mathbb{R}^{3}} \exp \left(-\frac{1}{2} x^{T} A x\right) d V(x),
$$

where $x \in \mathbb{R}^{3}$. Since A is symmetric, it is orthogonally diagonalizable, namely, there is an orthogonal 3×3 matrix P (i.e., $P^{T} P=I$) such that

$$
P^{T} A P=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right],
$$

for some $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$. Therefore by change of variable $x=P y$ we have

$$
I:=\int_{\mathbb{R}^{3}} \exp \left(-\frac{1}{2}(P y)^{T} A P y\right) \underbrace{|\operatorname{det} P|}_{=1} d V=\int_{\mathbb{R}^{3}} e^{-0.5 \lambda_{1} y_{1}^{2}-0.5 \lambda_{2} y_{2}^{2}-0.5 \lambda_{3} y_{3}^{2}} d V .
$$

By using the fact that volume integral can be computed by writing $d V=d y_{1} d y_{2} d y_{3}$, we have

$$
I=\int_{\mathbb{R}} e^{-\frac{\lambda_{1}}{2} t^{2}} d t \int_{\mathbb{R}} e^{-\frac{\lambda_{2}}{2} t^{2}} d t \int_{\mathbb{R}} e^{-\frac{\lambda_{3}}{2} t^{2}} d t
$$

Each of the three integrals are at least positive, and thus we have $I<\infty$ if and only if $\lambda_{i}>0$ for all i if and only if A is positive definite (given that A is symmetric).

Exercise 3. Finish part (b) of Example 1. Part (a) and (b) of Example 1 can be generalized to \mathbb{R}^{n} once we understand how to define volume there.

