Math2033 Mathematical Analysis (Spring 2013-2014) Tut

Tutorial Note 1

Informal Logic, Indirect Proof, Sets and Functions

- We need to know -

- how to negate a statement in order to conduct indirect proof;
- what are the standard set operations;
- given two sets A, B, how to judge A = B or $A \subseteq B$, or other possibility;
- what do we mean by *injective* (or *one-one*), *surjective* (or *onto*) and *bijective*.

Key definitions and results

Definition 1 (Terminology in Logic).

- A statement/proposition, usually denoted p or q, is a sentence with truth value (i.e., it is either true or false).
- Let p be a statement, its **negation**—NOT p—is denoted by $\sim p$.
- A conditional statement is of the form *if* p *then* q, denoted by $p \implies q$.
- We say that p if and only if q if we have p ⇒ q and q ⇒ p at the same time. In that case, we also say p iff q, p ⇔ q and p & q are equivalent.
- In definitions, if is actually if and only if.
- Given a conditional statement $p \implies q$, its **contrapositive** is the following *equivalent* conditional statement:

 $\sim q \implies \sim p$

• Some statements consist of the following two **Quantifiers**:

Turned A: \forall denotes for all, for each, for every;

Turned E: \exists denotes for some, there is (at least one), there are (some).

Definition 2 (Standard Set Operations, Notations). Let A and B be two sets.

• $A \cup B = \{x : x \in A \text{ or } x \in B\}$

• $\mathbb{C} = \{x + iy : x, y \in \mathbb{R}\}$

• $\mathbb{Q} = \{x \in \mathbb{R} : x \text{ rational}\}$

- $A \cap B = \{x : x \in A \text{ and } x \in B\}$
- $A \setminus B = \{x : x \in A, x \notin B\}$
- $A \times B = \{(a, b) : a \in A, b \in B\}$
- $\mathbb{R} = (-\infty, \infty)$

ℤ = {0,±1,±2,...}
ℕ = {1,2,3,...}

• More generally, given sets A_1, A_2, \ldots we denote

$$\bigcup_{i=1}^{\infty} A_i := A_1 \cup A_2 \cup \cdots \text{ and } \bigcap_{i=1}^{\infty} A_i := A_1 \cap A_2 \cap \cdots.$$

The notations $\bigcup_{i=1}^{n}$ and $\bigcap_{i=1}^{n}$ are similarly defined.

• The **Cartesian product** $A \times B$ can be conducted infinitely many times:

$$\prod_{i=1}^{\infty} A_i := A_1 \times A_2 \times \dots = \{(a_1, a_2, \dots) : a_1 \in A_1, a_2 \in A_2, \dots\}$$

- **Definition 3 (1-1, onto, bijective).** Let $f : X \to Y$ be a function between two sets. We say:
 - *f* is **injective/one-one** if $f(x) = f(y) \implies x = y$.
 - *f* is **surjective/onto** if for every $y \in Y$, there is an $x \in X$, f(x) = y.
 - f is **bijective** if it is both injective and surjective.
- **Definition 4 (Set's** \subseteq , =). Let *A*, *B* be two sets, we say that $A \subseteq B$ if there holds $(\forall x) \ x \in A \implies x \in B$. Moreover, we say that A = B if $A \subseteq B$ and $B \subseteq A$.

Theorem 5 (Negation). Given statements p and q, we have the following rules:

- $\sim (\forall x, \exists y, S(x, y)) = \exists x, \forall y, \sim S(x, y)$ $\sim (p \text{ and } q) = \sim p \text{ or } \sim q$
- $\sim (\exists x, \forall y, S(x, y)) = \forall x, \exists y, \sim S(x, y)$ $\sim (p \text{ or } q) = \sim p \text{ and } \sim q$
- $\sim (\sim p) = p$ $\sim (p \implies q) = p$ and $\sim q$

	Example	1.	Negate	the f	ollowing	statements:
--	---------	----	--------	-------	----------	-------------

(a) $A \subseteq B$.

- (b) $\forall \epsilon > 0, \exists \delta > 0,$ $|x x_0| < \delta \implies |f(x) f(x_0)| < \epsilon.$ (c) $\forall \epsilon > 0, \exists N \in \mathbb{N},$ $n > N \implies |a_n - a| < \epsilon.$
- (d) $\exists M > 0, \exists N \in \mathbb{N}, \quad n > N \implies |a_n| < M.$

<u>Sol</u> (a) $A \subseteq B$ is the same as $\forall x \in A, x \in B$, therefore the negation is

 $\exists x \in A, x \notin B.$

(b) The precise definition of " \implies " in the statement above must be reinterpreted as

$$\forall \epsilon > 0, \exists \delta > 0, \forall \mathbf{x}, \quad |x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon.$$

Now the negation is

 $\exists \epsilon > 0, \forall \delta > 0, \exists x, |x - x_0| < \delta \text{ and } |f(x) - f(x_0)| \ge \epsilon.$

(c) and (d) are the same as (b).

Example 2. Write down the contrapositive of the following known results: (a) If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 0$.

(b) If f(x) is differentiable at *a*, then it is continuous at *a*.

<u>Sol</u> (a) If $\lim_{n\to\infty} a_n \neq 0$, then $\sum a_n$ diverges.

(b) If f(x) is not continuous at *a*, then it is not differentiable at *a*.

Example 3. Show that $\sqrt{2}$ is an irrational number.

<u>Sol</u> We prove by contradiction, suppose $\sqrt{2}$ is rational, then there are $a, b \in \mathbb{Z}$ such that $\sqrt{2} = \frac{a}{b}$.

Since we can always cancel the common factor of a and b in the fractional representation a/b, we can assume that a and b are **coprime**, otherwise just divide both the numerator and denominator by gcd(a, b) and call the new integers a', b' respectively.

Now $\sqrt{2}b = a$, so $2b^2 = a^2$, this is possible only when *a* is even, therefore we may set a = 2a' for some $a' \in \mathbb{Z}$, and then

$$2b^2 = 4a'^2 \iff b^2 = 2a'^2$$

but again this is possible only when b is even. Which means that a, b are both even, and thus cannot be coprime, a contradiction to the first two paragraphs.

Example 4. Let $a \in \mathbb{R}$ be such that the equation $x^3 + \sqrt{2}x^2 - \sqrt{3}x + a = 0$ has three real roots. Prove that the equation has an irrational root.

Sol Suppose that all roots of the polynomial are rational, then we have

$$x^{3} + \sqrt{2}x^{2} - \sqrt{3}x + a = (x - a_{1})(x - a_{2})(x - a_{3})$$
$$= x^{3} - (a_{1} + a_{2} + a_{3})x^{2} + \cdots$$

for some $a_1, a_2, a_3 \in \mathbb{Q}$. By comparing the coefficient, we have $\sqrt{2} = -a_1 - a_2 - a_3 \in \mathbb{Q}$, a contradiction.

Example 5. Let A, B, C, D be sets (you may imagine they are subsets of \mathbb{R}^2 for motivation). Prove the following set equalities:

(a) $A \setminus B = A \cap B^c$, where $A, B \subseteq X$ and $B^c = X \setminus B$.

(b) $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$, where $A, B \subseteq X, \bullet^c = X \setminus \bullet$.

(c) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$

(d) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

(e) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

(f) $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$, then what is $A \setminus (A \setminus C)$?

(g) $(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$

Sol To show two sets *A*, *B* are equal, we need to show $A \subseteq B$ and $B \subseteq A$, in other words, we need to prove $x \in A$ iff $x \in B$.

(a) $x \in A \setminus B$ iff $(x \in A \text{ and } x \notin B)$ iff $(x \in A \text{ and } x \in B^c)$ iff $x \in A \cap B^c$. (b) $x \in (A \cup B)^c$

 $iff x \notin A \cup B$ $iff \sim (x \in A \cup B)$ $iff \sim (x \in A \text{ or } x \in B)$ $iff (\sim (x \in A) \text{ and } \sim (x \in B))$ $iff (x \notin A \text{ and } x \notin B)$ $iff (x \in A^c \text{ and } x \in B^c)$ $iff x \in A^c \cap B^c.$

The other one is essentially the same.

(c) This is essentially the first part in (b). Note that we prefer the notation in this part because the notation \bullet^c being a **relative complement** is **ambiguous!** Now we have $x \in A \setminus (B \cup C)$ iff $(x \in A \text{ and } x \notin (B \cup C))$ iff $x \in A \text{ and } x \notin (B \cup C)$ iff $(x \in A \text{ and } x \notin B)$ and $(x \in A \text{ and } x \notin C)$ iff $(x \in A \text{ and } x \notin B)$ and $(x \in A \text{ and } x \notin C)$ iff $x \in (A \setminus B) \cap (A \setminus C)$

(d), (e) follow from the following fact which can be proved by listing the *truth table* (which we shall not do):

(i)	P and $(Q or R) = [(P and Q) or (P and R)]$	(*)
(ii)	P or (Q and R) = [(P or Q) and (P or R)]	(**)

Letting $P = x \in A$, $Q = x \in B$ and $R = x \in C$, we get (d) and (e) respectively.

(f) $x \in A \setminus (B \setminus C)$ iff $x \in A$ and $\sim (x \in B \setminus C)$ iff $x \in A$ and $\sim (x \in B$ and $x \notin C)$ iff $x \in A$ and $(x \notin B \text{ or } x \in C)$ iff $(x \in A \text{ and } x \notin B)$ or $(x \in A \text{ and } x \in C)$ iff $x \in (A \setminus B) \cup (A \cap C)$.

(by (*))

Example 6. Let $a, b \in \mathbb{Q}$ and a < b. Prove that $\exists c \in \mathbb{R} \setminus \mathbb{Q}$ such that $a \le c \le b$.

Sol We prove by contradiction, suppose on the contrary that for every $c \in \mathbb{R} \setminus \mathbb{Q}$, we have a > c or c > d, i.e., we have

$$x \notin \mathbb{Q} \implies c < a \text{ or } c > b,$$

which by contrapositive is the same as

$$a \le c \le b \implies x \in \mathbb{Q}.$$

Now consider the number $\sqrt{2}$, which satisfies

 $1 < \sqrt{2} < 2$,

multiplying both sides by $d = \frac{b-a}{2}$, we have

$$d < \sqrt{2}d < 2d,$$

and therefore

$$a+d < \sqrt{2}+d < a+2d \implies a < \sqrt{2}+d < b.$$

By our hypothesis which implies $\sqrt{2} + d \in \mathbb{Q}$, but since $a, b \in \mathbb{Q}$, $d = \frac{b-a}{2} \in \mathbb{Q}$, and hence $\sqrt{2} \in \mathbb{Q}$, a contradiction to Example 3.

Example 7. Let P(n) be a true or false statement. Given P(1) is true, suppose:

 $\forall n \in \mathbb{N}$, if P(n) is true, then P(n + 1) is also true.

(*)

Prove that for each $n \in \mathbb{N}$, P(n) is true.

Sol Suppose on the contrary that P(m) is not true for some $m \in \mathbb{N}$. Let *m* be the least integer such that P(m) is false. More precisely, we true

 $m = \min\{n \in \mathbb{N} : P(n) \text{ is false}\},\$

the set on the RHS is nonempty by our assumption.

Since p(1) is true, $m \neq 1$, thus $m \ge 2$. As *m* is the least one, $m - 1 \notin \{n \in \mathbb{N} : P(n) \text{ is false}\}$, i.e., P(m-1) is true. But then by the hypothesis of this example, P(m) must also be true, a contradiction.

Exercises

1. Let *A*, *B*, *C* and *D* be sets, prove the following set equalities/inequalities:

(a) If $A \subseteq B$, then $A \setminus C \subseteq B \setminus C$. (b) If $A \subseteq B$, then $C \setminus B \subseteq C \setminus A$. (c) If $C \neq \emptyset$ and $A \times C = B \times C$, then A = B. (d) $A \times (B \cap C) = (A \times B) \cap (A \times C)$ (e) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ (f) $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$ (g) $A \times B \setminus (C \times D) = [A \times (B \setminus D)] \cup [(A \setminus C) \times (B \cap D)]$ (h) For $a \in \mathbb{R}$ we let $A_a = \{(x, a(x^2 - 1)) \in \mathbb{R}^2 : x \in \mathbb{R}\}$, prove that

 $\bigcap_{a \in \mathbb{R}} A_a = \{(-1,0), (1,0)\}.$

2. Let *A* and *B* be sets. If $2^A \subseteq 2^B$, show that $A \subseteq B$.

3. Show that
$$A \cap B \subseteq C \cup D \implies (A \setminus C) \cap (B \setminus D) = \emptyset$$
.

4. Is $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \frac{2x}{3x^2 + 1}$ injective? Is it surjective?

5. (a) Show that a function $f : A \to B$ is bijective if and only if there is a function $g : B \to A$ such that

 $f \circ g(b) = b, \forall b \in B$ and $g \circ f(a) = a, \forall a \in A$.

Such a g is called **the inverse function** of f, denoted by f^{-1} .

(b) Generally how are the graphs of f and f^{-1} related? By considering inverse function, show that

$$\int_{1}^{\sqrt{2}} \cos^{-1}\left(\frac{1}{x}\right) dx = \frac{\pi}{2\sqrt{2}} - \ln(1 + \sqrt{2})$$

without integration by parts. Here $\cos^{-1}(x)$ is $\arccos(x)$, NOT $\frac{1}{\cos(x)}$.

- 6. (π is irrational) For the sake of contradiction, let's assume that $\pi = a/b$ for some $a, b \in \mathbb{N}$. For n = 1, 2, ... we define $f_n(x) = \frac{1}{n!}x^n(a-bx)^n$ on \mathbb{R} .
 - (a) Show that $f_n(\frac{a}{b} x) = f_n(x)$ for every *x*.
 - (b) Show that for every $k = 0, 1, 2, ..., f_n^{(k)}(0), f_n^{(k)}(\frac{a}{b}) \in \mathbb{Z}$.
 - (c) Show that $\int_0^{\pi} f_n(x) \sin x \, dx \in \mathbb{Z}$ for every $n \ge 1$.
 - (d) Explain why part (c) leads to a contradiction.