Math2033 Mathematical Analysis (Spring 2013-2014)

Tutorial Note 1
Informal Logic, Indirect Proof, Sets and Functions

We need to know

- how to negate a statement in order to conduct indirect proof;
- what are the standard set operations;
- given two sets A, B, how to judge $A=B$ or $A \subseteq B$, or other possibility;
- what do we mean by injective (or one-one), surjective (or onto) and bijective.
Key definitions and results

Definition 1 (Terminology in Logic).

- A statement/proposition, usually denoted p or q, is a sentence with truth value (i.e., it is either true or false).
- Let p be a statement, its negation-NOT p-is denoted by $\sim p$.
- A conditional statement is of the form if p then q, denoted by $p \Longrightarrow q$.
- We say that p if and only if q if we have $p \Longrightarrow q$ and $q \Longrightarrow p$ at the same time. In that case, we also say p iff $q, p \Longleftrightarrow q$ and $p \& q$ are equivalent.
- In definitions, if is actually if and only if
- Given a conditional statement $p \Longrightarrow q$, its contrapositive is the following equivalent conditional statement:

$$
\sim q \Longrightarrow \sim p
$$

- Some statements consist of the following two Quantifiers:

Turned A: \forall denotes for all, for each, for every;
Turned E: \exists denotes for some, there is (at least one), there are (some).

Definition 2 (Standard Set Operations, Notations). Let A and B be two sets.

- $A \cup B=\{x: x \in A$ or $x \in B\}$
- $A \cap B=\{x: x \in A$ and $x \in B\}$
- $A \backslash B=\{x: x \in A, x \notin B\}$
- $A \times B=\{(a, b): a \in A, b \in B\}$
- $\mathbb{R}=(-\infty, \infty)$
- $\mathbb{C}=\{x+i y: x, y \in \mathbb{R}\}$
- $\mathbb{Q}=\{x \in \mathbb{R}: x$ rational $\}$
- $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$
- $\mathbb{N}=\{1,2,3, \ldots\}$
- More generally, given sets A_{1}, A_{2}, \ldots we denote

$$
\bigcup_{i=1}^{\infty} A_{i}:=A_{1} \cup A_{2} \cup \cdots \quad \text { and } \quad \bigcap_{i=1}^{\infty} A_{i}:=A_{1} \cap A_{2} \cap \cdots .
$$

The notations $\bigcup_{i=1}^{n}$ and $\bigcap_{i=1}^{n}$ are similarly defined.

- The Cartesian product $A \times B$ can be conducted infinitely many times:

$$
\prod_{i=1}^{\infty} A_{i}:=A_{1} \times A_{2} \times \cdots=\left\{\left(a_{1}, a_{2}, \ldots\right): a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots\right\}
$$

Definition 3 (1-1, onto, bijective). Let $f: X \rightarrow Y$ be a function between two sets. We say:

- f is injective/one-one if $f(x)=f(y) \Longrightarrow x=y$.
- f is surjective/onto if for every $y \in Y$, there is an $x \in X, f(x)=y$.
- f is bijective if it is both injective and surjective.

Definition 4 (Set's \subseteq, =). Let A, B be two sets, we say that $\boldsymbol{A} \subseteq \boldsymbol{B}$ if there holds $(\forall x) x \in A \Longrightarrow x \in B$. Moreover, we say that $\boldsymbol{A}=\boldsymbol{B}$ if $A \subseteq B$ and $B \subseteq A$.

Theorem 5 (Negation). Given statements p and q, we have the following rules:

$$
\begin{array}{ll}
\text { - } \sim(\forall x, \exists y, S(x, y))=\exists x, \forall y, \sim S(x, y) & \text { - } \sim(p \text { and } q)=\sim p \text { or } \sim q \\
\text { - } \sim(\exists x, \forall y, S(x, y))=\forall x, \exists y, \sim S(x, y) & \text { - } \sim(p \text { or } q)=\sim p \text { and } \sim q \\
\text { - } \sim(\sim p)=p & \text { - } \sim(p \Longrightarrow q)=p \text { and } \sim q
\end{array}
$$

Example 1. Negate the following statements:
(a) $A \subseteq B$.
(b) $\forall \epsilon>0, \exists \delta>0, \quad\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.
(c) $\forall \epsilon>0, \exists N \in \mathbb{N}, \quad n>N \Longrightarrow\left|a_{n}-a\right|<\epsilon$.
(d) $\exists M>0, \exists N \in \mathbb{N}, \quad n>N \Longrightarrow\left|a_{n}\right|<M$.

Sol (a) $A \subseteq B$ is the same as $\forall x \in A, x \in B$, therefore the negation is

$$
\exists x \in A, x \notin B .
$$

(b) The precise definition of " \Longrightarrow " in the statement above must be reinterpreted as

$$
\forall \epsilon>0, \exists \delta>0, \forall x, \quad\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

Now the negation is

$$
\exists \epsilon>0, \forall \delta>0, \exists \boldsymbol{x}, \quad\left|x-x_{0}\right|<\delta \quad \text { and } \quad\left|f(x)-f\left(x_{0}\right)\right| \geq \epsilon .
$$

(c) and (d) are the same as (b).

Example 2. Write down the contrapositive of the following known results:
(a) If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
(b) If $f(x)$ is differentiable at a, then it is continuous at a.

Sol (a) If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum a_{n}$ diverges.
(b) If $f(x)$ is not continuous at a, then it is not differentiable at a.

Example 3. Show that $\sqrt{2}$ is an irrational number.

Sol We prove by contradiction, suppose $\sqrt{2}$ is rational, then there are $a, b \in \mathbb{Z}$ such that $\sqrt{2}=\frac{a}{b}$.
Since we can always cancel the common factor of a and b in the fractional representation a / b, we can assume that a and b are coprime, otherwise just divide both the numerator and denominator by $\operatorname{gcd}(a, b)$ and call the new integers a^{\prime}, b^{\prime} respectively.
Now $\sqrt{2} b=a$, so $2 b^{2}=a^{2}$, this is possible only when a is even, therefore we may set $a=2 a^{\prime}$ for some $a^{\prime} \in \mathbb{Z}$, and then

$$
2 b^{2}=4 a^{\prime 2} \Longleftrightarrow b^{2}=2 a^{\prime 2},
$$

but again this is possible only when b is even. Which means that a, b are both even, and thus cannot be coprime, a contradiction to the first two paragraphs.

Example 4. Let $a \in \mathbb{R}$ be such that the equation $x^{3}+\sqrt{2} x^{2}-\sqrt{3} x+a=0$ has three real roots. Prove that the equation has an irrational root.

Sol Suppose that all roots of the polynomial are rational, then we have

$$
\begin{aligned}
x^{3}+\sqrt{2} x^{2}-\sqrt{3} x+a & =\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) \\
& =x^{3}-\left(a_{1}+a_{2}+a_{3}\right) x^{2}+\cdots .
\end{aligned}
$$

for some $a_{1}, a_{2}, a_{3} \in \mathbb{Q}$. By comparing the coefficient, we have $\sqrt{2}=-a_{1}-a_{2}-a_{3} \in \mathbb{Q}$, a contradiction.

Example 5. Let A, B, C, D be sets (you may imagine they are subsets of \mathbb{R}^{2} for motivation). Prove the following set equalities:
(a) $A \backslash B=A \cap B^{c}$, where $A, B \subseteq X$ and $B^{c}=X \backslash B$.
(b) $(A \cup B)^{c}=A^{c} \cap B^{c}$ and $(A \cap B)^{c}=A^{c} \cup B^{c}$, where $A, B \subseteq X, \bullet^{c}=X \backslash \bullet$.
(c) $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$
(d) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(e) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
(f) $A \backslash(B \backslash C)=(A \backslash B) \cup(A \cap C)$, then what is $A \backslash(A \backslash C)$?
(g) $(A \cup B) \backslash(A \cap B)=(A \backslash B) \cup(B \backslash A)$

Sol To show two sets A, B are equal, we need to show $A \subseteq B$ and $B \subseteq A$, in other words, we need to prove $x \in A$ iff $x \in B$.
(a) $x \in A \backslash B$
iff $(x \in A$ and $x \notin B)$
iff $\left(x \in A\right.$ and $\left.x \in B^{c}\right)$
iff $x \in A \cap B^{c}$.
(b) $x \in(A \cup B)^{c}$
iff $x \notin A \cup B$
iff $\sim(x \in A \cup B)$
iff $\sim(x \in A$ or $x \in B)$
iff $(\sim(x \in A)$ and $\sim(x \in B))$
iff $(x \notin A$ and $x \notin B)$
iff ($x \in A^{c}$ and $x \in B^{c}$)
iff $x \in A^{c} \cap B^{c}$.
The other one is essentially the same.
(c) This is essentially the first part in (b). Note that we prefer the notation in this part because the notation \bullet^{c} being a relative complement is ambiguous!
Now we have
$x \in A \backslash(B \cup C)$
iff $(x \in A$ and $x \notin(B \cup C))$
iff $x \in A$ and $(x \notin B$ and $x \notin C)$
iff $(x \in A$ and $x \notin B)$ and $(x \in A$ and $x \notin C)$
iff $x \in(A \backslash B) \cap(A \backslash C)$
(d), (e) follow from the following fact which can be proved by listing the truth table (which we shall not do):
(i) P and $(Q$ or $R)=[(P$ and $Q)$ or $(P$ and $R)]$
(ii) P or $(Q$ and $R)=[(P$ or $Q)$ and $(P$ or $R)]$

Letting $P=x \in A, Q=x \in B$ and $R=x \in C$, we get (d) and (e) respectively.
(f) $x \in A \backslash(B \backslash C)$
iff $x \in A$ and $\sim(x \in B \backslash C)$
iff $x \in A$ and $\sim(x \in B$ and $x \notin C)$
iff $x \in A$ and $(x \notin B$ or $x \in C)$
iff $(x \in A$ and $x \notin B)$ or $(x \in A$ and $x \in C)$

Example 6. Let $a, b \in \mathbb{Q}$ and $a<b$. Prove that $\exists c \in \mathbb{R} \backslash \mathbb{Q}$ such that $a \leq c \leq b$.

Sol We prove by contradiction, suppose on the contrary that for every $c \in \mathbb{R} \backslash \mathbb{Q}$, we have $a>c$ or $c>d$, i.e., we have

$$
x \notin \mathbb{Q} \Longrightarrow c<a \text { or } c>b
$$

which by contrapositive is the same as

$$
a \leq c \leq b \Longrightarrow x \in \mathbb{Q}
$$

Now consider the number $\sqrt{2}$, which satisfies

$$
1<\sqrt{2}<2
$$

multiplying both sides by $d=\frac{b-a}{2}$, we have

$$
d<\sqrt{2} d<2 d
$$

and therefore

$$
a+d<\sqrt{2}+d<a+2 d \Longrightarrow a<\sqrt{2}+d<b .
$$

By our hypothesis which implies $\sqrt{2}+d \in \mathbb{Q}$, but since $a, b \in \mathbb{Q}, d=\frac{b-a}{2} \in \mathbb{Q}$, and hence $\sqrt{2} \in \mathbb{Q}$, a contraditcion to Example 3.

Example 7. Let $P(n)$ be a true or false statement. Given $P(1)$ is true, suppose:

$$
\begin{equation*}
\forall n \in \mathbb{N} \text {, if } P(n) \text { is true, then } P(n+1) \text { is also true. } \tag{*}
\end{equation*}
$$

Prove that for each $n \in \mathbb{N}, P(n)$ is true.

Sol Suppose on the contrary that $P(m)$ is not true for some $m \in \mathbb{N}$. Let m be the least integer such that $P(m)$ is false. More precisely, we true

$$
m=\min \{n \in \mathbb{N}: P(n) \text { is false }\}
$$

the set on the RHS is nonempty by our assumption.
Since $p(1)$ is true, $m \neq 1$, thus $m \geq 2$. As m is the least one, $m-1 \notin\{n \in \mathbb{N}: P(n)$ is false $\}$ i.e., $P(m-1)$ is true. But then by the hypothesis of this example, $P(m)$ must also be true, a contradiction.

Exercises

1. Let A, B, C and D be sets, prove the following set equalities/inequalities:
(a) If $A \subseteq B$, then $A \backslash C \subseteq B \backslash C$.
(b) If $A \subseteq B$, then $C \backslash B \subseteq C \backslash A$.
(c) If $C \neq \emptyset$ and $A \times C=B \times C$, then $A=B$.
(d) $A \times(B \cap C)=(A \times B) \cap(A \times C)$
(e) $A \times(B \cup C)=(A \times B) \cup(A \times C)$
(f) $A \times(B \backslash C)=(A \times B) \backslash(A \times C)$
(g) $A \times B \backslash(C \times D)=[A \times(B \backslash D)] \cup[(A \backslash C) \times(B \cap D)]$
(h) For $a \in \mathbb{R}$ we let $A_{a}=\left\{\left(x, a\left(x^{2}-1\right)\right) \in \mathbb{R}^{2}: x \in \mathbb{R}\right\}$, prove that

$$
\bigcap_{a \in \mathbb{R}} A_{a}=\{(-1,0),(1,0)\}
$$

2. Let A and B be sets. If $2^{A} \subseteq 2^{B}$, show that $A \subseteq B$.
3. Show that $A \cap B \subseteq C \cup D \Longrightarrow(A \backslash C) \cap(B \backslash D)=\emptyset$.
4. Is $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\frac{2 x}{3 x^{2}+1}$ injective? Is it surjective?
5. (a) Show that a function $f: A \rightarrow B$ is bijective if and only if there is a function $g: B \rightarrow A$ such that

$$
f \circ g(b)=b, \forall b \in B \quad \text { and } \quad g \circ f(a)=a, \forall a \in A
$$

Such a g is called the inverse function of f, denoted by f^{-1}.
(b) Generally how are the graphs of f and f^{-1} related? By considering inverse function, show that

$$
\int_{1}^{\sqrt{2}} \cos ^{-1}\left(\frac{1}{x}\right) d x=\frac{\pi}{2 \sqrt{2}}-\ln (1+\sqrt{2})
$$

without integration by parts. Here $\cos ^{-1}(x)$ is $\arccos (x)$, NOT $\frac{1}{\cos (x)}$.
6. ($\boldsymbol{\pi}$ is irrational) For the sake of contradiction, let's assume that $\pi=a / b$ for some $a, b \in \mathbb{N}$. For $n=1,2, \ldots$ we define $f_{n}(x)=\frac{1}{n!} x^{n}(a-b x)^{n}$ on \mathbb{R}.
(a) Show that $f_{n}\left(\frac{a}{b}-x\right)=f_{n}(x)$ for every x.
(b) Show that for every $k=0,1,2, \ldots, f_{n}^{(k)}(0), f_{n}^{(k)}\left(\frac{a}{b}\right) \in \mathbb{Z}$.
(c) Show that $\int_{0}^{\pi} f_{n}(x) \sin x d x \in \mathbb{Z}$ for every $n \geq 1$.
(d) Explain why part (c) leads to a contradiction.

