Math2033 Mathematical Analysis (Spring 2013-2014)

Tutorial Note 0
Mathematical Induction and Inequalities
We need to know

- who is my TA
- the standard procedure to go about mathematical induction;
- how to manipulate basic inequalities.

Key definitions and results

Mathematical Induction

Step 1. Show that $P(1)$ is true.
Step 2. Let n be s.t. $P(n)$ is true, then show that $P(n+1)$ is true.
Then we can conclude that $P(n)$ holds for each $n \in \mathbb{N}$.

Variation of Mathematical Induction

Step 1. Show that $P(1)$ is true
Step 2. Let n be s.t. $P(1), P(2), \ldots, P(n)$ are true, then show that $P(n+1)$ is true
Then we can conclude that $P(n)$ holds for each $n \in \mathbb{N}$.

Remark. We can modify step 1 a little bit. If we prove $P(j)$ is true instead of $P(1)$, then after we finish step 2 , we can conclude $P(j), P(j+1), P(j+2), \ldots$ are true.

Rules (Inequalities). We need to keep the following in mind:
(a) If $c<d$, we have $c+\boldsymbol{a}<d+\boldsymbol{a}$ and $c-\boldsymbol{a}<d-\boldsymbol{a}$ for any $a \in \mathbb{R}$.
(b) If $p \leq q$ and $r<s$, then $p+r<q+s$. [Caution: We cannot subtract inequalities arbitrarily, e.g., $p-\boldsymbol{r}<q-\boldsymbol{s}$ can be wrong.]
(c) If $c<d$, then $\boldsymbol{a} c<\boldsymbol{a} d$ for any $a>0$ and $\boldsymbol{b} c>\boldsymbol{b} d$ for any $b<0$.
Most importantly, when $c<d,-c>-d$.
(d) If $x>y>0$, then $0<\frac{1}{x}<\frac{1}{y}$. [Caution: Given that $a>b>0$ and $c>d>0$, we cannot divide inequalities, i.e., $\frac{a}{c}>\frac{b}{d}$ can be wrong. However, we can multiply, i.e., $a c>b d$ is true (note that positivity is crucial).]
(e) If $x>y>0$, then $\sqrt{x}>\sqrt{y}>0$.
[Actually we have learnt that when $f: A \rightarrow B$ is strictly increasing and $x, y \in$ A, then whenever $x>y, f(x)>f(y)$. The above is the case that $f(x)=\sqrt{x}$.]

Example 1. Prove that for every $n=1,2,3, \ldots$, we have

$$
\sum_{k=1}^{n} k^{2}=1^{2}+2^{2}+\cdots+n^{2}=\frac{n}{6}(n+1)(2 n+1) .
$$

Sol Let $P(n)$ denote the statement " $\sum_{k=1}^{n} k^{2}=\frac{n}{6}(n+1)(2 n+1)$."
Step 1 (Base Case). LHS $=1^{2}=1$, RHS $=\frac{1}{6}(1+1)(2+1)=1$, so $P(1)$ holds.
Step 2 (Indutive Step). Assume $P(n)$ holds, i.e., assume that

$$
\sum_{k=1}^{n} k^{2}=\frac{n}{6}(n+1)(2 n+1)
$$

we try to show $P(n+1)$ holds. By the way in this step the statmenet $P(n)$ is called induction hypothesis.

Indeed,

$$
\begin{aligned}
\sum_{k=1}^{n+1} k^{2} & =\sum_{k=1}^{n} k^{2}+(n+1)^{2} \\
& =\frac{n}{6}(n+1)(2 n+1)+(n+1)^{2} \quad \quad \text { (by induction hypothesis) } \\
& =(n+1)\left(\frac{n}{6}(2 n+1)+n+1\right) \\
& =\frac{n+1}{6}((n+1)+1)(2(n+1)+1),
\end{aligned}
$$

therefore $P(n+1)$ holds.
By MI, $P(n)$ is true for each $n \in \mathbb{N}$.

Example 2. Let $x_{1}=1$ and $x_{n+1}=\frac{x_{n}}{2}+\sqrt{x_{n}}$ for $n=1,2,3, \ldots$. Prove that $0<$ $x_{n}<x_{n+1}$ for $n=1,2,3, \ldots$.

Sol Step 1. When $n=1$, we need to show $0<x_{1}<x_{2}$.
Indeed,

$$
x_{2}=\frac{x_{1}}{2}+\sqrt{x_{1}}=\frac{1}{2}+\sqrt{1}=\frac{3}{2}>1=x_{1}
$$

so $x_{2}>x_{1}>0$.
Step 2. Suppose that $0<x_{n}<x_{n+1}$, then we have

$$
x_{n+2}=\frac{x_{n+1}}{2}+\sqrt{x_{n+1}}>\frac{x_{n}}{2}+\sqrt{x_{n}}=x_{n+1}>0,
$$

so by MI we are done.

Example 3. Let $x_{1}=1$ and $x_{n+1}=\frac{2-x_{n}}{3+x_{n}}$. Prove that for all $k=1,2,3, \ldots$, we have

$$
0<x_{2 k}<x_{2 k+2}<x_{2 k+1}<x_{2 k-1} .
$$

Sol Step 1. Note that

$$
x_{n+1}=\frac{2-x_{n}}{3+x_{n}}=\frac{5}{3+x_{n}}-1
$$

and the first 4 terms are

$$
x_{1}=1, \quad x_{2}=\frac{1}{4}, \quad x_{3}=\frac{7}{13} \quad \text { and } \quad x_{4}=\frac{19}{46}
$$

Therefore the statement is true when $k=1$.
Step 2. Suppose that

$$
\begin{equation*}
x_{2 k}<x_{2 k+2}<x_{2 k+1}<x_{2 k-1} \tag{*}
\end{equation*}
$$

we need to show $x_{2 k+2}<x_{2 k+4}<x_{2 k+3}<x_{2 k+1}$. By (*) we have

$$
0<3+x_{2 k}<3+x_{2 k+2}<3+x_{2 k+1}<3+x_{2 k-1}
$$

now we take reciprocal and mutiply by 5 to get

$$
\frac{5}{3+x_{2 k}}>\frac{5}{3+x_{2 k+2}}>\frac{5}{3+x_{2 k+1}}>\frac{5}{3+x_{2 k-1}}>0
$$

subtracting every term by 1 above, we have

$$
x_{2 k+1}>x_{2 k+3}>x_{2 k+2}>x_{2 k}>0 .
$$

By repeating the above process all over again we have

$$
0<x_{2 k+2}<x_{2 k+4}<x_{2 k+3}<x_{2 k+1} .
$$

By MI we are done.

Example 4 (Finitely Many Propositions). Suppose an $n \times n$ upper triangular matrix A is invertible, show that A^{-1} is also upper triangular.

Sol Let's recall, that A^{-1} is upper triangular is the same as that

$$
A^{-1} e_{k} \in \operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}, \quad \text { for all } k \in \mathbb{N},
$$

here $e_{i}=(0, \ldots, 1, \ldots, 0)^{T}, i=1,2, \ldots, n$ denote the standard basis of \mathbb{R}^{n}.
Of course we must require $1 \leq k \leq n$, so there are just finitely many statements (or propositions) to be proved. Yet induction is still possible!

Let $A=\left[a_{i j}\right]_{n \times n}$ for clarity, now let's finish the standard 2-steps MI procedure.
We will find that naturally the variation of MI is very helpful.
Observation. Since A is upper triangular and invertible, we have

$$
\operatorname{det} A=a_{11} a_{22} \cdots a_{n n} \neq 0
$$

therefore $a_{11}, a_{22}, \ldots, a_{n n} \neq 0$.
Step 1 (Base Case). We now show that $A^{-1} e_{1} \in \operatorname{span}\left\{e_{1}\right\}$.
This case is simple! Since A is upper triangular, we have $A e_{1}=a_{11} e_{1}$, therefore

$$
\frac{1}{a_{11}} e_{1}=A^{-1} e_{1}
$$

and hence $A^{-1} e_{1} \in \operatorname{span}\left\{e_{1}\right\}$, as desired.
Step 2 (Inductive Step).
Unsuccessful MI. Let $k \in \mathbb{N}$ be s.t. $A^{-1} e_{k} \in \operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$.
Since $A=\left[a_{i j}\right]_{n \times n}$, we have

$$
\begin{aligned}
A e_{k+1} & =a_{1, k+1} e_{1}+a_{2, k+1} e_{2}+\cdots+a_{k, k+1} e_{k}+a_{k+1, k+1} e_{k+1} \\
& =\sum_{i=1}^{k} a_{i, k+1} e_{i}+a_{k+1, k+1} e_{k+1} .
\end{aligned}
$$

Now as in the base case we take A^{-1} on both sides to get

$$
\begin{equation*}
e_{k+1}=\sum_{i=1}^{k-1} a_{i, k+1} A^{-1} e_{i}+a_{k, k+1} A^{-1} e_{k}+a_{k+1, k+1} A^{-1} e_{k+1} \tag{1}
\end{equation*}
$$

The induction hypothesis provides us the information on $A^{-1} e_{k}$ but nothing on $A^{-1} e_{1}, \ldots, A^{-1} e_{k-1}$.
We are forced to stop here.

Successful MI. Recall that a variation of MI enables us to assume more!

To wit, let's, instead of just one statement, assume k statements:

$$
\begin{aligned}
& A^{-1} e_{1} \in \operatorname{span}\left\{e_{1}\right\} \\
& A^{-1} e_{2} \in \operatorname{span}\left\{e_{1}, e_{2}\right\} \\
& \quad \ldots \\
& A^{-1} e_{k} \in \operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{k}\right\} .
\end{aligned}
$$

Now (1) gives us

$$
a_{k+1, k+1} A^{-1} e_{k+1}=\underbrace{e_{k+1}-\underbrace{\sum_{i=1}^{k} a_{i, k+1} \overbrace{A^{-1} e_{i}}^{\in \operatorname{span}\left\{e_{1}, \ldots, e_{i}\right\}}}_{\in \operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}} .}_{\in \operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{k+1}\right\}}
$$

Since $a_{k+1, k+1} \neq 0$ (by the observation preceding our MI), so

$$
A^{-1} e_{k+1} \in \operatorname{span}\left\{e_{1}, \ldots, e_{k+1}\right\}
$$

thus by variation of MI, we are done.

Exercises

Exercise 1 to 3 below are assigned by Dr. Li.

1. Prove that for every positive integer $n, 1^{3}+2^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$.
2. Let $x_{1}=1$ and $x_{n+1}=1-\frac{1}{4 x_{n}}$ for all $n=1,2,3, \ldots$. Prove that for all $n=1,2,3, \ldots$, we have $x_{n}>x_{n+1}>\frac{1}{2}$.
3. Let $x_{1}=5$ and $x_{n+1}=3+\frac{4}{x_{n}}$ for all $n=1,2,3, \ldots$, prove that

$$
x_{2 k}<x_{2 k+2}<x_{2 k+1}<x_{2 k-1}
$$

$$
\text { for all } k=1,2,3, \ldots
$$

The following are extra for people who want to try more using M.I..
4. Show that for every $n=1,2,3, \ldots$,

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2 n-1}-\frac{1}{2 n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n} .
$$

Remark. Therefore $1-\frac{1}{2}+\frac{1}{3}-\cdots=\ln 2$ by the definition of Riemann sum!
5. Prove that for every $n=1,2,3, \ldots$ we have

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}} \geq \sqrt{n}
$$

Hint: In the inductive step the conclusion is not immediate after the induction hypothesis is used. Try to rewrite the inequality in another equivalent form.
6. Prove that for every $n=1,2,3, \ldots$ we have

$$
(1+x)^{n} \geq 1+n x \quad \text { for all } x \geq-1 .
$$

Remark. This simple convexity-like inequality can be used to show that the sequence $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}_{n=1}^{\infty}$ is increasing (hence converges!).
7. (Harder) Let a_{1}, a_{2}, \ldots be a sequence of real numbers such that $a_{i+j} \leq a_{i}+a_{j}$, for all integers $i, j \geq 1$. Prove that for each $n \geq 1$,

$$
a_{1}+\frac{a_{2}}{2}+\frac{a_{3}}{3}+\cdots+\frac{a_{n}}{n} \geq a_{n} .
$$

Hint: Use the variation of Mathematical Induction!

