
Math2033 Mathematical Analysis (Spring 2013-2014) Tutorial Note 0

Mathematical Induction and Inequalities

We need to know

• who is my TA;

• the standard procedure to go about mathematical induction;

• how to manipulate basic inequalities.

Key definitions and results

Mathematical Induction

Step 1. Show that P(1) is true.
Step 2. Let n be s.t. P(n) is true, then show that P(n+1) is true.
Then we can conclude that P(n) holds for each n ∈ N.

Variation of Mathematical Induction

Step 1. Show that P(1) is true.
Step 2. Let n be s.t. P(1), P(2), . . . , P(n) are true, then show that P(n+1) is true.
Then we can conclude that P(n) holds for each n ∈ N.

Remark. We can modify step 1 a little bit. If we prove P(j) is true instead of P(1), then
after we finish step 2, we can conclude P(j),P(j + 1),P(j + 2), . . . are true.

Rules (Inequalities). We need to keep the following in mind:

(a) If c < d, we have c+++ aaa < d+++ aaa and c−−− aaa < d−−− aaa for any a ∈ R.

(b) If p ≤ q and r < s, then p+r < q+ s. [Caution: We cannot subtract inequal-
ities arbitrarily, e.g., p−−− rrr < q−−− sss can be wrong.]

(c) If c < d, then aaac < aaad for any a > 0
and bbbc >>> bbbd for any b < 0.

Most importantly, when c < d, −−−c > −−−d.

(d) If x > y > 0, then 0 <
1
x
<

1
y

. [Caution: Given that a > b > 0 and c > d > 0,

we cannot divide inequalities, i.e.,
a
c
>

b
d

can be wrong. However, we can
multiply, i.e., ac > bd is true (note that positivity is crucial).]

(e) If x > y > 0, then
√

x >
√
y > 0.

[Actually we have learnt that when f : A→ B is strictly increasing and x, y ∈
A, then whenever x > y, f (x) > f (y). The above is the case that f (x) =

√
x.]

Example 1. Prove that for every n = 1,2,3, . . . , we have

n
ÿ

k=1

k2 = 12+22+ · · ·+ n2 =
n
6

(n+1)(2n+1).

Sol Let P(n) denote the statement “
řn

k=1 k2 = n
6 (n+1)(2n+1).”

Step 1 (Base Case). LHS = 12 = 1, RHS = 1
6 (1+1)(2+1) = 1, so P(1) holds.

Step 2 (Indutive Step). Assume P(n) holds, i.e., assume that

n
ÿ

k=1

k2 =
n
6

(n+1)(2n+1),

we try to show P(n+1) holds. By the way in this step the statmenet P(n) is called induction
hypothesis.

Indeed,

n+1
ÿ

k=1

k2 =

n
ÿ

k=1

k2 + (n+1)2

=
n
6

(n+1)(2n+1)+ (n+1)2 (by induction hypothesis)

= (n+1)
(n

6
(2n+1)+ n+1

)
=

n+1
6

(
(n+1)+1

)(
2(n+1)+1

)
,

therefore P(n+1) holds.

By MI, P(n) is true for each n ∈ N.



Example 2. Let x1 = 1 and xn+1 =
xn
2
+
√

xn for n = 1,2,3, . . . . Prove that 0 <
xn < xn+1 for n = 1,2,3, . . . .

Sol Step 1. When n = 1, we need to show 0 < x1 < x2.

Indeed,

x2 =
x1

2
+
√

x1 =
1
2
+
√

1 =
3
2
> 1 = x1,

so x2 > x1 > 0.

Step 2. Suppose that 0 < xn < xn+1, then we have

xn+2 =
xn+1

2
+
√

xn+1 >
xn
2
+
√

xn = xn+1 > 0,

so by MI we are done.

Example 3. Let x1 = 1 and xn+1 =
2− xn
3+ xn

. Prove that for all k = 1,2,3, . . . , we

have
0 < x2k < x2k+2 < x2k+1 < x2k−1.

Sol Step 1. Note that

xn+1 =
2− xn
3+ xn

=
5

3+ xn
−1,

and the first 4 terms are

x1 = 1, x2 =
1
4

, x3 =
7

13
and x4 =

19
46

.

Therefore the statement is true when k = 1.

Step 2. Suppose that
x2k < x2k+2 < x2k+1 < x2k−1, (∗)

we need to show x2k+2 < x2k+4 < x2k+3 < x2k+1. By (∗) we have

0 < 3+ x2k < 3+ x2k+2 < 3+ x2k+1 < 3+ x2k−1,

now we take reciprocal and mutiply by 5 to get

5
3+ x2k

>
5

3+ x2k+2
>

5
3+ x2k+1

>
5

3+ x2k−1
> 0,

subtracting every term by 1 above, we have

x2k+1 > x2k+3 > x2k+2 > x2k > 0.

By repeating the above process all over again we have

0 < x2k+2 < x2k+4 < x2k+3 < x2k+1.

By MI we are done.



Example 4 (Finitely Many Propositions). Suppose an n× n upper triangular
matrix A is invertible, show that A−1 is also upper triangular.

Sol Let’s recall, that A−1 is upper triangular is the same as that

A−1ek ∈ span{e1, e2, . . . , ek }, for all k ∈ N,

here ei = (0, . . . ,1, . . . ,0)T , i = 1,2, . . . , n denote the standard basis of Rn .

Of course we must require 1 ≤ k ≤ n, so there are just finitely many statements (or
propositions) to be proved. Yet induction is still possible!

Let A = [ai j ]n×n for clarity, now let’s finish the standard 2-steps MI procedure.

We will find that naturally the variation of MI is very helpful.

Observation. Since A is upper triangular and invertible, we have

det A = a11a22 · · ·ann 6= 0,

therefore a11, a22, . . . , ann 6= 0.

Step 1 (Base Case). We now show that A−1e1 ∈ span{e1}.

This case is simple! Since A is upper triangular, we have Ae1 = a11e1, therefore

1
a11

e1 = A−1e1,

and hence A−1e1 ∈ span{e1}, as desired.

Step 2 (Inductive Step).
Unsuccessful MI. Let k ∈ N be s.t. A−1ek ∈ span{e1, e2, . . . , ek }.

Since A = [ai j ]n×n , we have

Aek+1 = a1,k+1e1 + a2,k+1e2 + · · ·+ ak ,k+1ek + ak+1,k+1ek+1

=

k
ÿ

i=1

ai,k+1ei + ak+1,k+1ek+1.

Now as in the base case we take A−1 on both sides to get

ek+1 =

k−1
ÿ

i=1

ai,k+1 A−1ei + ak ,k+1 A−1ek + ak+1,k+1 A−1ek+1. (1)

The induction hypothesis provides us the information on A−1ek but nothing on
A−1e1, . . . , A−1ek−1.

We are forced to stop here.

Successful MI. Recall that a variation of MI enables us to assume more!

To wit, let’s, instead of just one statement, assume k statements:

A−1e1 ∈ span{e1}

A−1e2 ∈ span{e1, e2}

· · ·

A−1ek ∈ span{e1, e2, . . . , ek }.

Now (1) gives us

ak+1,k+1 A−1ek+1 = ek+1 −

k
ÿ

i=1

ai,k+1

∈span{e1,...,ei }︷ ︸︸ ︷
A−1ei︸ ︷︷ ︸

∈span{e1,...,ek }︸ ︷︷ ︸
∈span{e1,e2,...,ek+1}

.

Since ak+1,k+1 6= 0 (by the observation preceding our MI), so

A−1ek+1 ∈ span{e1, . . . , ek+1},

thus by variation of MI, we are done.



Exercises

Exercise 1 to 3 below are assigned by Dr. Li.

1. Prove that for every positive integer n, 13+23+ · · ·+ n3 =
n2(n+1)2

4
.

2. Let x1 = 1 and xn+1 = 1−
1

4xn
for all n= 1,2,3, . . . . Prove that for all n= 1,2,3, . . . ,

we have xn > xn+1 >
1
2

.

3. Let x1 = 5 and xn+1 = 3+
4
xn

for all n = 1,2,3, . . . , prove that

x2k < x2k+2 < x2k+1 < x2k−1

for all k = 1,2,3, . . . .

The following are extra for people who want to try more using M.I..

4. Show that for every n = 1,2,3, . . . ,

1−
1
2
+

1
3
−

1
4
+ · · ·+

1
2n−1

−
1

2n
=

1
n+1

+
1

n+2
+ · · ·+

1
2n

.

Remark. Therefore 1− 1
2 + 1

3 −·· ·= ln2 by the definition of Riemann sum!

5. Prove that for every n = 1,2,3, . . . we have

1
√

1
+

1
√

2
+ · · ·+

1
√

n
≥
√

n.

Hint: In the inductive step the conclusion is not immediate after the induction hy-
pothesis is used. Try to rewrite the inequality in another equivalent form.

6. Prove that for every n = 1,2,3, . . . we have

(1+ x)n ≥ 1+ nx for all x ≥ −1.

Remark. This simple convexity-like inequality can be used to show that the sequence
{(1 + 1

n )n}∞n=1 is increasing (hence converges!).

7. (Harder) Let a1, a2, . . . be a sequence of real numbers such that ai+ j ≤ ai + a j ,
for all integers i, j ≥ 1. Prove that for each n ≥ 1,

a1+
a2

2
+

a3

3
+ · · ·+

an

n
≥ an .

Hint: Use the variation of Mathematical Induction!


