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Chapter 1

A Collection of Problems

Problem marked with is given a hint at the last section of this problem set. Problem
marked with ® is the problem that I can’t solve, but its technique is worth seeing once.

1.1 Inequality

1.1.1 Cauchy-Schwarz

This part is devoted to the use of Cauchy-Schwarz inequality. Next part (miscellaneous) may
require you to use additional inequalities that may or may not be mentioned in preceding
questions.

Problem 1. (a) Prove that (ac+ bd)? < (a® + b%)(c® + d?). When does equality hold?

(b) Hence, or otherwise (except differentiation), compute the maximum value of f(x) =
7—2x+ $V3+ 22 — 22, for all z € [—1,3], when does this mxima occur?

Problem 2. Let a,b, ¢, d be positive real numbers, prove that

a+b+c+d>
b+c¢c c¢c+d d+a a+b—

Problem 3. Let a,b,¢ > 0 and a + b+ ¢ = 1. Prove that

a . b L c >\/§
Vb+e Veta Va+b o V2
1
b

1

, prove that
a v

1 1
Problem 4. Let a,b,c,d >0anda+b+c+d=—-—+ -+ -+
a C

2a+b+ct+d) > Va2 +3+ V2 +3+ V2 +3+Vd?+3.
Problem 5. Let a,b,c > 0 be such that a? + b? + ¢? = 3, show that

3—a%2 3-bp* 3-¢
+ + >a+b+ec.
b+c c+a a+b

Problem 6. We would have encountered a famous inequality, the Nesbitt’s inequality (It
appears in Breakthrough algebra p.265, question 2(d)), ;i + ﬁ% + 5 2 3 similarly,
show that if abc = 1,

a? b2 2

b—|—c+c+a+a+b

>

N W
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Problem 7. If a,b,c < % and a + b+ ¢ = 1, show that

V1—3a2+1-3b2+/1- 3¢ < V6.

Problem 8. If a,b,c > 0 and abc = 1, show that

1 n 1 n 1 S §
at(b+c) b(c+a) Ab+a) 2

Problem 9. If a,b,c,d € R, a+b+c+d = 3 and a® + 2b + 3¢? +6d? = 5, find the extreme
values of a.

Problem 10. For any positive a, b, ¢, show that

a® BB a? b 2

§+§+2_?+—+—

(y +1)2 N (z+1)2
9 16

Problem 11. If z,y,z € RT, and =
2% +y+ 2 — 16.

=1, find the extreme values of

Problem 12. If a,b,c € R, find the minimum value of a? + b? + (2a — 3b — 4)2.

Problem 13. Let n be positive integer, {a;} be a sequence of positive real number and
S=ay+as+ -+ a,, show that

Z: falz 1 Z

i=1

n(n —1).

Problem 14. If a; > 0, where i = 1,2, ...,n, show that

n

ap+ag+---+an <Z ak
a1 +as+---+a, +1 k:lak+1

Problem 15. Suppose a,b,c > 0 and ab + bc + ca = %, show that

a n b n c S 1
a2 —bc+1 bV2—ca+1 c—ab+1 " a+b+c

n
1
Problem 16. Let z1,25,...,2, be positive real number satisfying E — = n. Find the
x
k=1

k=1
Problem 17. Let a,b,c > 0, prove that

ab n be n ca  _a n b n c
cle+a) ala+d) bb+ec) c+a a+b b+tc

Problem 18. Let a,b,c € (0,1], show
a b c

+ - > =
V(@ +02)(2+c2) 2P+ A) (A +a?) (A +a)(a®+b2) 2

Problem 19. Prove that all roots of the polynomial P(z) = 2" +a, 12" '+ -+ a1z + ap
lie in the open disk

I wo

{z: ]zl < VI+lanaP + -+ sl + laol*}.



1.1.

INEQUALITY

1.1.2 Miscellaneous

Problem 20
integersE]

Problem 21.

Problem 22.

Problem 23.

Problem 24.

Problem 25.

Problem 26.

Problem 27.

Problem 28.

Problem 29.
Problem 30.

Problem 31.
that abc > 8.

Problem 32

(a) Show that S +

Show that a™*™ + b™+" > a™b" + ¢"b™, where m and n are non-negative

Given that 0 < a,b,c <1 and a + b+ ¢ = 2. Prove that

abe
M—a-bi-a°"

Prove that for any a, b, c > 0, we always have
9a+b)(b+c)(c+a)>8(a+b+c)(ab+ be+ ca).
Let a;,b; > 0, show that

Yaias . ..a, + Vble b, < {L/(al +b1)(&2 +b2) A (an + bn)

1 1 1 1
Show that <
ow tha a3+b3—|—abc+b3+a3—|—abc+b3+c3+abc*

abe’

Given x,y,z € RT and xy + yz + zx > 3, show that

"y’ y' + 27 el
2y +aoy? Yz tyx? e doax? T
If 2,9,z € Rt, show that
22 Y2 22

>1
y2+22+yz+22+x2+zx+x2+y2+:ry -

Given cos? a 4 cos? B + cos?y = 1 and a, 3, are acute angle, show that

3
cot? a4+ cotzﬁ + cot27 > 7

If x,y, z are positive reals and 23 + y3 + 2> < 3, show that

1 1 1
Gt D) Gr)E T2 | eta)d T D)

3
> —.
— 4

If p,g > 0 and p® + ¢ = 2, show that p+ ¢ < 2.

If a,b,c > 0 and abc = 1, show that

e e e )=

1 1

S b ti b if ! + +
u ose a C are non-negative nuimpers, 1 =
pp » Yy g ) 1 +a 1 + b 1 Y

1 1
Suppose a,b >0, and — + - = 1.
a b
a
- > 2.
b2

(b) Hence, or otherwise, show that a + b > 4.

1You may find it helpful in certain questions.
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(¢) Prove by induction on n, or otherwise, that for all positive integer n,

(a+b>n —a" =" > 2271, _ 2n+1.

Problem 33. Show that if a,b,c > 0,
Vabe(va+ Vb4 Ve) + (a+ b+ ¢)? > 4y/3abe(a + b + ¢).

Problem 34. Let z; € R and x; + x; > x4, for all positive integers ¢ and j, show that

x1+ﬂ+ﬁ+...+ﬁ2xn,Vn€N-
2 3 n

Problem 35. Show that if >, p; = 1 and p;, z; > 0, then

In (i%%) > ipi In z;.
i=1 i=1

Problem 36. Suppose x >y >z >0 and a > b > ¢ > 0, show that
a2a2 b2y2 252
+ +
(by + cz)(bz+cy) (cz+ax)(cx +az) (azx+ by)(ay + bx

>3
) 4

Problem 37. For any real z;,y; > 0, show that

(&) =(54) ()

Problem 38. Given a, b, ¢ are positive, show that if a + b+ ¢ = 3, then

1 1 1
> 1.
1+2b2c+1+202a+1+2a2b_

Problem 39. Let a,b,c > 0, show that

Vad +3 VB +e3 V3 +ad S 6(ab + be + ca)
a? +b? b? +c2 2+a? T (a+b+e)/(a+b)b+c)(cta)

Problem 40. Let z1, 2o, ...,z, € RT, prove that

L1T2 " Tn < (1+$1)(1+$7L)
(z1+ 224+ +2p)" ~ (n+z1+T2+ - +Tp)"

Problem 41. Let a,b,c¢ > 0 and t € (0, 3]. Prove that
(3 —t) + t(abe)?t + a2 + b2 + 2 > 2(ab + be + ca).

Problem 42. For any positive a;,b;, i = 1,2,...,n, show that

1 1 1
Problem 43. Let z,y,z > 1 and — + — + — = 2. Show that
T Yy =z

Vitytz>Ve—1+y—1+vz—1
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Problem 44. Let x,y, z be three non-negative numbers satisfying xyz = 1, show that

VA+922 + A+ 92 + /44922 < V13(z +y + 2).

Problem 45. For any positive x,y, z, prove that

Ty Yz zx x y z
+ + > + + )
z(z+x) z(x+y) yly+z)  z+r rty y+=z

Problem 46. Let a, b, ¢ be positive real numbers satisfying the condition a+b+ ¢ = 3, prove

that
a*(b+1)  b*c+1) Ala+1) 5

a+b+ab b+c+bc cH+a+ca
Problem 47. Let a,b,c € RT be such that a + b+ ¢ > 2. Prove that

a? + b2 b? + ¢2 2+ a?
+ + > 3.
2c+a+b—2 2a+b+c—2 2b+c+a—2
Problem 48. If a,b,c > 1, show that

a(@®—1) bB*—-1) e(c3—-1) abc—1 [a*+b* +c*
+ + < .
a—1 b—1 c—1 Jabe — 1

Problem 49. (Generalization of Cauchy-Schwarz inequality) Let a;; > 0, i,j = 1,2,...,n.

Show that m
o) (5] (5e)- (£ =)
i=1 i=1 i=1 i=1

Problem 50. Let a,b,z,y > 0 be such that 1 > a'' +b'' and 1 > z'' + y'!, show that
1> a®z5 + %5,

abe

Problem 51. (Kyiv 2006) Let x,y, 2z > 0 be such that zy + yz + za = 1. Prove that

23 3 3 3
n y N z > (x+y+2)
14+9y2xz  1+92%2yx 149222y 18

Problem 52. Let a,b,c, m,n be positive real numbers. Prove that

a? b? 2 3

> .
b(ma + nb) * c¢(mb + nc) + a(lmc+na) — m+n

Problem 53. Let a,b,c > 0 be the sidelengths of a triangle. Prove that
a’b(a —b) + b?c(b — ¢) + c*a(c — a) > 0.
Problem 54. Let a,b,c > 0, show that
(a® + 1)1 +1)(c + 1) > (a®b+ 1) (b*c + 1)(c*a + 1).
Problem 55. If a,b,c > 0, prove that

a+\/(ﬁ—|—\3/abc<§,/a a+b a+b+c
3 - 2 3 '

Problem 56. Let a,b,c > 0, prove that

a® N be N o abe(a+b+c)
2+ 2+a?  a?+0b0% 2 '
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Problem 57. Let f be convex on [a,b]. If ¢,d € [a,b] with ¢ —a > b — d, prove that

2 (S50) < 0+ 1@ < Sl d=0) 4 10)

Problem 58. Let A, B, C be angles of a triangle. Prove that

sinA sinB sinC _ 9V3
+ + < :
A B C 2

Problem 59. Let x,y, z be non-negative integers with x + y + z = 1, prove that
7
0<2y+yz+z2zx—2zyz < bTa

Problem 60. Prove that for any a,b,c € R,

Jﬁ+&1—m?+JW+{1—@I+¢§441—@22§%2

Problem 61. (Mircea Lascu) Let a, b, ¢ be positive real numbers such that abc = 1. Prove

that
b+c¢c c+a a+b

va T T

Problem 62. Let a,b,c,z,y, z be positive real numbers such that x +y + z = 1. Prove that

> Va—+Vb+ e+ 3.

az 4 by + cz + 2/ (xy + yz + zx)(ab+ be + ca) < a+ b+ c.
Problem 63. Let x,y,z > 0 and x + y + z = 1, show that

T z 36xyz
+ 4 > W
zy+1 yz+1 zzx+1 13zyz + 1

Problem 64. Let z1,25,...,2, >0, mn €N, B1,52,...,8, € QT and B = B1+Ba2+- -+ Bn.

(a) Yioi i _ (zg_1x§>é _ (w)%

n - n n

(b)

n n m\ 1/m
Doic Ti < (Zi_l Ly )

n n

Z?:l ﬁzxz < (Z?—l ﬁixzm)l/m
B - B

One solution uses Jensen’s inequality, that certainly kills the problem in-
stantly. You can suppose yourself are merely aware of Cauchy-Schwarz inequal-
ity, as a challenge.

()

Problem 65. Let a,b,c > 0 and abc = 1. Prove that

a n b n c -1
a+b+1 b+c+1 c+a+1"7

Problem 66. Let x,y,z > 0 and  + y + z = 1. Prove that

\/z}Tﬁ\/g+\Eﬂwwyiwz)+\/<y+z>y<y+x> +\/<z+ac>z<z+y>)'
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Problem 67. When a + b+ ¢ =3, a,b,c > 0, prove that

a—+3 b+ 3 c+3 >3
3a+bc 3b+ca 3c+ab T

Problem 68. A length of sheet metal 27 inches wide is to be made into a water trough
by bending up two sides as shown in the accompanying figure. Find x and ¢ so that the
trapezoid-shaped cross section has a maximum area.

N5

27 -2z

Restriction: You cannot use differentiation, any elementary approach is fine.

Problem 69. Show that for any n > 2, if a1, as9,...,a, > 0, then

(af +1)(a3 +1) - (ay +1) > (afaz +1)(a3as +1) - (aqa1 + 1).

Problem 70. (Austrian Mathematical Olympiad 2008) Prove that the inequality
1

Val—apl-bel—c < 3 holds for all positive real numbers a, b, c with a +b+c = 1.

Moreover, try to generalize this inequality and argue that for any a; > 0,

artag+ - Fan ajaz - an 1/(n=1)
n = (allllag2 . ._a%n)l/z?zlai ’

Remark. This inequality is useful if we are given a condition on [[a;* (especially =1).

1 1 1
Problem 71. Let a,b,c > 0, <2+1> <b2+1) <2+1) =512 and k =a+b+c¢, find
a c

the minimum value of k.

Problem 72. Given a,b,c > 0. Prove that

a3—|—b3—|—03> a n b n c
2abc “b+c c+a a+d

Problem 73. Let x,y, z be real numbers greater than or equal to 1. Prove that
(22 — 22+ 2)(y? — 2y + 2)(2% — 22 + 2) < (zy2)? — 2xyz + 2.

Problem 74. Let ay,as,...,a, and by,bo,...,b, be positive reals and a = Z?:l a;,b =

>, bi. Prove that:
“~aib; ab
E < .
i=1 a; +b; a+b

Problem 75. Show that if a,b,c > 0, then

(a+b+c)(a® +b* + ¢*) + 9abe > 2(a+ b+ ¢)(ab + be + ca).
Problem 76. Let a,b,c > 0, deduce that
a? +b%+c2+2abc+1> 2(ab + be + ac).
Problem 77. Let a,b,c > 0, prove that

a® +b* +c +2abc+3 > (14 a)(1+b)(1+c).
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Problem 78. Let x,y,z > 0, prove that

$2+y2+222 y2+22+2z2 22+l’2+2y2_

>~ w

Problem 79. Let a,b,c¢ > 0 and abc = 1. Prove that

1 1 1
<1.
a+b2+c3+b+c2+a3+c+a2+b3 -

Problem 80. Let a; € [a, A] and b; € [b, B] with a,b > 0, prove that

" - 1 AB b
S <3 (Vi35 (See)

Problem 81. Let {a1,as,...,a,} = {1,2,...,n}. Prove that

1 2 n—1 a a Ay

et <71_|_72_|_..._|_ n—l1

2 3 n as  as an
1 1 1

Problem 82. Let a,b, ¢ be positive real numbers such that — + 7 + — = 1. Prove
a c

a? + 6%+ c? > 2a+2b+2c+9.
Problem 83. Let a,b, ¢ be non-negative numbers with a + b + ¢ = 3. Prove that

a n b " c >3
2+1 c2+1 a?2+1 2

Problem 84. Let x,y,z > 0 and zyz + xy + yz + zx + 2, prove that

\/E+\/§+\/2§§W.

1.2 Integration

Problem 85. Numerical answer is not allowed.

501100 1.6 _ a
(a) 5050 - fO —e) T de (h) / 5’:1 Y dz, here a € (0,b)
f (1 _ xso)lol dz 0 nx
1 z —z 1 1 b_ ..a
(b) (1 —2z)e” + (1 + 2z)e i Q) / sin <1n ) ot
0 (e +e7%)3 0 x Inx
/2 sinnx 2 -1
c __SWNT e VneZ ' Find/—dm
©) /ﬂ'/2 (2* 4+ 1)sinx ! W (22 +1)V1+ a2
() / " 511127% do,Vn € N (k) By using Poisson integral formula, find
(et 41
o ie _ stz :Ct 4 /2” 1 it & /27r 3¢5t cos(sin t) it
(e) / an (ﬁ:c)w— A o D—4cost o 5—4cos(t—?2)
0
*cosx—1 ™
(f) / = dr 1 / cosnz — cosna
0 zer 1) o COST —cosa z, @ € (0,m),n €
U tanla N
o) [ BT 4
V1 — a2



1.2. INTEGRATION 11

Problem 86. Let f be continuous. We say that f € LP(R) (1 < p < o0) if

/p
(/| |pda§) <oo, 1<p<oo,
1fllp ==

sup | f(z)| < oo, p=00
x€eR

is finite.

(a) (Young inequality) Let two functions f,g € LP(R) be continuous with 1 < p < oco.

Prove that

1 glly < 171+ ll9llp,
where the function f * g is the convolution of f and g defined by f x g(x / f(z
y)g(y) dy.

(b) (Sobolev inequality) Let f(z) be continuously differentiable (i.e., it has continuous
derivative) on R. Assume f, f € L*(R) and limj,|_,, f(x) = 0. Prove that

£ llee < V21£1321F 157

Problem 87. Suppose f(x) is an integrable function on [a, b], prove that the following are
equivalent.

d
) / f(z)dx = 0 for any [c,d] C [a,b].

b
) / (@) dz =0,

) / f(z)g(x) dx = 0 for any continuous function g(z).

b
) / f(z)g(x) dz = 0 for any integrable function g(x).

(e) f(x) =0 at continuous points.

Problem 88. If the function f(z) satisfies f(0) = 5 and f’(z) = 6z + V2 + 2Zsin? z, find
2

/ f(x)dx.
-2

Problem 89. Show that i i n(

=1k=1

Ler —q

1
dx.
(n+1)---(n+k) /0 z

3

Problem 90. Suppose f(x) is continuous on [a,b], differentiable on (a,b), f(a) = 0 and

0 < f'(z) < 1. Prove that
([ swraa)’ 2 [ sy e

Loop

Problem 91. Let f(z) be a integrable function continuous at 0, show that lim e f(x)dx

h—0t 0

Z10).
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Problem 92. Suppose f is an non-negative continuous function on [a, b], show that hm / f(z d:v

max f(x).

a<lx<b

1

4
Problem 93. Show that [1(1 — )" dx > ENGh vn € N.

Problem 94. Let [z] be the biggest integer < z. Let a > 0. Determine the convergence of

the improper integral
1
1
/ ({a} —a [}) dz.
0 x x

Problem 95. (A well-known integral without University knowledge)

(a) Prove that
1—m2§e_””2 when 0 <z <1

when x > 0.

A
(b) Hence show that lim e dr =

A—o0 Jo

%

Problem 96. Let f(x) be a differentiable function, f(0) = 0 and f(1) = 1, prove that

/|f (@) dr > -

1
Problem 97. Let f(x) be differentiable function, f(1) = 1 and f'(z) = 25 (@) for all
T T

x > 1. Show that lim f(z) exists and lim f(z) <1+ uN
T—00 T—00 4

b
Problem 98. Let f(z) be continuous and increasing on [a,b], prove that / zf(x)de >

(£4) [0

Problem 99. Suppose f(x) and g(z) are integrable on [a, b]. Prove that for any e > 0, there
is & > 0, such that for any partition P satisfying ||P|| < ¢ and choices =}, x* € [z;—1, 2],

we have
‘Z f@)g(zr)Ax; — / f@)g(x)dzx

Problem 100. Let f be integrable on [0, 1]. Suppose there is positive real numbers m and
M such that m < f(z) < M, for all z € [0, 1], then prove that

! b (m+ M)?
/Of(x)dx/o f(x)dxg VA

Problem 101. Let z(¢) be continuous on [0, a] satisfying

< €.

()] < M + & / ()| ds,

where M and k are positive constants, prove that |z(t)| < Me*, for t € [0, a).
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Problem 102. Let f be a continuous function on [—1, 1]. Suppose for any even function g

n [—1, 1], the integral
1
[ f@g()dz =0,
—1

then prove that f is an odd function on [—1,1].

Problem 103. Let f be continuous on [0, 7], n € N. Prove that

lim f( )| sinnz|dx = — / flx
n—oo
Problem 104. Let f be continuous real-valued function on [0,1] and f(0) = 0, f(1) = 1.
Find )
lim n/ f(z)z* d.

0

n— oo

n—oo

1
Problem 105. Find lim n? ( / Y1+ znde — 1).
0

k+1

1 2
Problem 106. Find nhﬁrr;o vy (Z k / zln ((z —k)(k+1—2)) da:).

k

Problem 107. Let f : [0,1] — R be differentiable on [0, 1] with f(1) = 0, show that

n—-+oo

lim n? /01 f(x)z" dz = —f'(1).

1.3 Evaluation of Limit

Problem 108. Evaluate the following limits

Vecos2x/cos3x - - - Ycosnx — 1

8l

142z +22)5 — (1422 — 22
(

(2) alzlg%) x? () ilg%) x
1% 4+2%+ ..+ n® 1
d) lim n —

(b) 1 V1I—-2z1-3z--- Y1 —nzx ()HHOO < notl a+1>

im

x—0 sinx a>1

Problem 109. Let a1, as,... be a sequence of positive real numbers. Prove that
lim an =0

n—00 (1 4+ al)(l + ag) s (1 + an)

by, by, Wb
Problem 110. Let lim a, = a, hm b, = b, prove that lim @10n + @20n—1 + " F Gnbr =
b n—o00 n—oo n

ab.

n
Problem 111. Let 1 =sinzg > 0, 41 = sinx,, n > 1, prove that lim §m" =1.
n—oo

Problem 112. Let a; =1 and ap+1 = a1 +as +ag + ... + an, for n > 0, find lim %.

n—oo N
n
Problem 113. Let n,k € N, ¢, > 0, Z tpe = 1 and lim t,, = 0. Suppose lim a, = a,
—1 n—oo n—00

let z,, = Z tnkag, prove that lim z, = a.
k—l n—oo
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) e
Problem 114. Let lim a, = a, prove that lim fa t+ 2a; +2 + M _ e
n—oo n—o0 n 2

1
Problem 115. Suppose f(x) has second order derivative at 0. Let lirr%) (1 + x4+ f(@) =
rT—r X
A
e

(a) Find f(0), f'(0) and f"(0).
(b) Find lim (1 + Jc(a:))
z—0 x
Problem 116. Discuss the continuity of the function

|2 [P[y|? ,
f(x,y) = (|‘T‘k + |y‘l)a(|17|m' + |y|n)[5 if ({177:[/) 7é (070)
0 if (z,y) = (0,0)

at (0,0). All parameters are positive.

Problem 117. Let p,q > 0. Study the continuity and differentiability of the function

2Pl
Fla,y) =<l + ly] f (z,y) # (0,0)

0 if (z,y) = (0,0)

at all the points on the plane.

1.4 Sequence and Series

Problem 118. Denote [z] the greatest integer not exceeding x.

100

(a) Calculate Z[, /k(k + 4) + 20]. (b) Express Z[\/E] in terms of n and a =
k=1 k=1
[v/nl.

) 23 b z  xt T z2  x°
P;oblem 119. Given that u = 1+§+a+--- , U= E+E+W+“' , W= 54—54—
% + .-, show that u3 + v3 + w3 — 3uvw = 1. Moreover, find the function that u converges
to.

n—1
, k
Problem 120. Show that E (—1)* cos™ <7T> = 2—711, for any positive integer n.
n n-
k=0

Problem 121. For any z; > —1, i € N.

oo o0 oo
(a) Prove that if Z Z, converges, then H(l + x,,) converges if and only if Z z2 con-

n=1 n=1 n=1
verges.

oo (oo} (oo}
(b) Prove that if Z x2 converges, then H(l + x,,) converges if and only if Z T, CON-

n=1 n=1 n=1
verges.

— 1
Problem 122. Evaluate f(z) = Z—tani (i.e. find f), where f is well-defined on its

own domain.
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2 e n
Problem 123. Show that if Z an, convereges, then we have lim Gt 2aat et ntn 0.

n—00 n

n=1

Problem 124. (Generalized version of the above question) Suppose {b,} is increasing with

- b b+ + anby
lim b, = co and Z an converges, show that lim G tadetota =0.
n—oo — n—o0 b,

a1+ 2as + -+ nay
n(n+1)

, show that Z b,

n=1

Problem 125. Suppose Zan converges, let b, =

n= 1

also converges. Moreover, E apn = E by, -

n=1

Problem 126. Does the following converge?

() i(;ﬁ—\/m”“) ) 2 n!/0HD 1)

n=1 =

2009
1
Problem 127. [2010 IMO prelim (held in 2009)] Evaluate tan (Z tan~! 2n2> .

n=1

Problem 128. Evaluate Z cot 1(n? +n+1).
n=0

Problem 129. Let a; =1, a,, = n(an—1 + 1), n =2,3,..., prove that H <1 + ) e.
Qnp

n=1

Problem 130. Find the function T'(z) satisfying T'(z) =T (g) +b-zlogz, T(1) =1 and

lim, o+ T'(x) exists.

= 1
Problem 131. Find all p € R such that Z Toglo converges.

log k
= (loglog k)vlos

Problem 132. Let 0 < 27 < 1 and define x,,11 = 2, (1 — x,). Show that the series > x,
diverges.

Problem 133. Let {a,} be a sequence of non-negative real numbers with the property that
for every sequence {b, > 0} with > 2 b2 < oo one has > -, anb, < oco. Prove that

Zn:l ‘a"‘Q < 0.

®Problem 134. Let ay,as,...,an € C, prove that

n
n
Z aj
j=1

Problem 135. Let a1,as,a3,... be a decreasing sequence of positive real numbers. Let
1

1/n

= max |a;|

lim
n—oo j=1,2,....M

S, = a1 +as +---+a, and b, =

— —, n > 1. Prove that if the sequence {s,} is
Ap41 Gnp
convergent then the sequence {b,} is unbounded.

Problem 136. Consider the sequence {ay},>1 such that a1 = a2 = 0 and ap41 = %(an +
%_1 +b), where 0 < b < 1. Prove that the sequence is convergent and evaluate lim,,—, o @y,.
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Problem 137. Consider a sequence of positive real numbers {a,}2; such that a,+1 —

1
=a, + —, for all n > 1. Compute

Ap41 G
. 1 (1 1 1)
Iim ——4+—+...+— .
n—00 /M \ A1 a9 Ay

Problem 138. Let {z,,} be a bounded sequence of real numbers such that

lim (zp41 —®,) =0, lim, . x,=a and lim, oz, =D>.
n—oo

Show that for every ¢ € [a, b], there exists a subsequence {x,, } of {z,} with lim; . 2,, = c.
Problem 139. Let ag # 0 and {a,} be a sequence of real numbers defined by

n(n+1)—£0(0+1)
mtDn+2) ™

Gpia = n>0,0eR\{0,2,4,6,...}.

Prove that the series ag + as + a4 + - - - diverges.

1.5 Binomial Identity

2009 2010

2009\ (—1)k 2010\ (—1)*
Problem 140. Sh thtg o011 k+2010°
roblem 140. Show ak_o(k>k+2011 kz_:o(k>k;+2010

(2
Problem 141. Show that when [4z| < 1, (1 —42)"/2 =" < n) o
n

n=0

=~ (2K (2n — 2k
Problem 142. Show th =4".
roblem Sowtatkz_o(k>(n_k>

Problem 143. Show thati# 2k 92n—2k _ 2n
' 12k \ k “\n)

n k
. n k
[int |problem 144. Prove that 1f a, = 3 (1)’“( )bk, then by = (1)l<l)az, where k =

k=1 k 1=1
1,2,...,n.

= 1 1
Problem 145. Prove that E (—1)’“*1% (Z) =1+2+4---4 —. Hence, or otherwise, show
n
k=1

Z:(_l)k(Z) (1+;+...+;> L

k

that

k _
Problem 146. (i) Give a combinatorial interpretation to the equality (Z) (m) = (:z) <Z B Z)

1, m=

(ii) Let m <n and 6y, = {O, " ; Z’ Prove that Z (—1)k (Z) (Z) = (=1)"0m.n-

k=m

(ifi) Prove by using (i) and (ii) that g(—nkkil (Z) (k ) i
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m—1m—i .
[Wint|pyoblem 147. Show that <m> (m - Z) (n—2)™"F = ™ 2 —1)™ 4 (n—2)™,
i)\ J

i=1 j=1

<.

likewise,

i=1 j=1 r=1

1.6 Basic Counting

Problem 148. In how many ways can we choose elements from {1,2,3,...,n} to form 2
disjoint subsets?

Problem 149. There are 6 distinct presents. In how many ways can we distribute the
presents to 3 people if everyone at least have one present?

Problem 150. There are 20 distinct presents. In how many ways can we distribute the
presents to 6 people if everyone at least have one present? You must give your numerical
answer in exact!

Problem 151. Suppose that a mathematical expression can only be formed by the following
symbols: 0,1,2,...,9, X, 4+, =. Some examples are “0+9”; “2+28”; “100+-546". Let a,
be the the number of such mathematical expression of length n (e.g. “0+9” is considered
of length 3). Find a recurrence relation for a,, and compute the closed form for a,.

Problem 152. Each of two fair dices is tossed 6 times, let a1, aso,...,as and by, bo, ..., bg
be the values shown in the first and second dice respectively. Find the probability that

Z?:l Q; 7é Z?:l bz

Problem 153. Let there be 10 people whose ages are ranged from 1 to 60 (with 1 and 60
included). Suppose their ages are pairwise distinct, show that there is a possible way to
divide these people into 2 groups such that, the sums of ages of each group are the same.

For example, if there are 1, 2, 3 year-old people out of 10 people, then the division {3}
and {1,2} are allowed since 3 =1+ 2 (no need to group all of 10 people).

Problem 154. If three tickets are chosen at random without replacement from a set of
6n tickets numbered respectively 1,2,...,6n, what is the probability that the sum of the
numbers on the numbers on the chosen tickets is 6n?

1.7 Function and Differentiation

1.7.1 Real-valued Function

Problem 155. Let G = {(z,sin 1) : z € (0,1]} and let S = {0} x [~1,1]. Define M = GUS.
Show that there cannot be any contlnuous path in M connecting point in G and point in S.
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Problem 156. Suppose f(z,y) is continuous on [0, 1]x[0, 1]. Prove that g(z) := max,c,1] f(, )
is also continuous.

Problem 157. Suppose f has continuous first and second order derivatives on (—1,1) and
f"(x) #0 for all z € (—1,1).

(a) Show that, for all nonzero € (—1,1), there exists a unique § = 6(z) € (0,1) such
that
f(@) = f(0) +af (z6(x)).
. 1
(b) Show that ilino O(x) = 3

Definition. Define C,(R) = {f € C(R) : exists a compact set K in R, f =0 on R\ K}. For

example,
Y Y
ﬂ\ and A

are functions in C.(R) (need not to share the same compact set). Such function is said to
have compact support. We then define Cf (R) = {f € C.(R) : f > 0}.

Problem 158. Given f,g € C(R), g # 0, show that there are a; > 0 and s; € R such that
flx) < Zajg(x —s;), VrxeR
j=1

Problem 159. Let f(x) be a function on the interval (a,b) that is strictly increasing and
concave with continuous derivative. Suppose that for all € (a,b) we have a < f(z) < x
and lim, 4+ f'(z) = 1. Define fi(z) = f(z) and fn(z) = fo-1(f(x)) for n > 2, so fu(z) is
the function f applied n-times on x.

Prove that for every = € (a,b)

lim Jni2(®) = fry1() _

n—oo fn+1(x) - fn(x)
Problem 160. Let f(z) and g(z) be two differentiable functions such that

d d

L) = —gla) and - (eg(e) = 2] (@)
(a) Show that between two consecutive roots of f(x), g(x) has a root.
(b) Show that between two consecutive roots of g(x), f(z) has a root.

Problem 161. Let f : R — R be twice differentiable on R. If f(0) = f(1) = 0 and
max{f(z) : x € [0,1]} = 2, then prove that there exists § € (0, 1) such that f”(0) < —16.

Problem 162. Let f : R — R be continuous and decreasing. Prove that there exists a
unique element (a,b,c) € R3 =R x R x R such that

a=f), b=f(c) and c=f(a).

Problem 163. Show that every bijection f : R — [0,+00) has infinitely many points of
discontinuity.

Problem 164. Suppose that f: R — {0,1} — R satisfies the equation f(z) + f <m — 1) =
x
1+ z, find f(x).
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Problem 165. Let X C R™ be compact (i.e. closed and bounded in Euclidean space). Let
f be continuous and injective on X. Prove that f=!: f(X) C R™ — X is also continuous.

Remark. There is a result in point-set topology which asserts that:

If X is compact and Y is Hausdorff, then any bijective
continuous map f: X — Y is a homeomorphism.

Problem 166. Let f : (0,00) — R be a uniformly continuous surjective map. Then prove
that

(a) for any a € R, there are infinitely many b ’s € (0,00) s.t. f(b) = a;

(b) such an f actually exists.

1
Problem 167. Let f(z) = ’1 -

,x>0,if 0 <a<band f(a) = f(b), then prove that we

must have ab > 1.

Problem 168. Let f be differentiable and f'(a) < f'(b), Vyo € (f'(a), f'(b)), prove that
Jdc € (a,b) such that f'(c) = yo.

(Note: Differentiability of f(x) cannot imply the continuity of f’(x), Intermediate Value
Theorem fails to work.)

Problem 169. Consider a continuous function f on [a, ], suppose for any a < 2 < b, there
is a <y < b, such that |f(y)| < 3|f(x)|. Prove that there is a ¢ € [a,b] such that f(c) =0.

Problem 170. Let f,g: (a,b) — R be differentiable such that f(x)g’(z) — f'(x)g(z) # 0 for
all € (a,b). If there exist xg,z1 such that a < xg < 1 < b and f(z¢) = f(z1) = 0, then
prove that there exists ¢ € (2o, 1) such that g(c) = 0.

Problem 171. For f € C?(R) (i.e. f’ and f” exist and are continuous on R), if f is bounded,
then prove that there exists zo such that f”(z¢) = 0.

Problem 172. Prove that there does not exist a differentiable function f on R such that
fof(x)=—-2®+22+1

1
Problem 173. Suppose that f : [0, 1] — R has continuous derivative and that / fl@)de =
0
1
<= "(z)].
< £ max [f/(a)

[ @) da] < § o

Problem 174. Let f : R — R, be a three times differentiable function. If f(z) and f"'(z)
are bounded functions on R, show that f’ and f” are also bounded functions on R.

0. Prove that for every a € (0, 1),

Problem 175. Let f be p times differentiable on R and let My, = sup{|f*)(z)| : z € R} < oo,
k=0,1,2,...,p and p > 2. Prove that

(a) M1 S \/2MOM2

k(p—k)  1—%k k

(b) M, <2z M, "My, fork=1,2,...,p—1.

27) —
Problem 176. Let f be continuous at z = 0, if lin%) w
T—r

= m, prove that f'(0) = m.

Problem 177. Let f : [0,00) — R with f(0) = —1 be a differentiable function so that
|f(z) — f'(z)| < 1, Vz > 0.

(a) Prove that f does have a limit that is infinite.

(b) Give an example of such a function.
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Problem 178. Let f : [0,1] — [0,1], g : [0,1] — [0, 1] be continuous and satisfy f o g(z) =
g o f(z). Prove that there is a w € [0, 1] such that f(w) = g(w).

Problem 179. Let f : R — R be twice differentiable and for all = € [0,1], |f”(x)| < 2010.
If there exists ¢ € (0,1) such that f(c) > f(0) and f(c) > f(1), then prove that

[F'(0)] + (1] < 2010.

Problem 180. P(x) is a polynomial of degree n such that for all w € {1,2,22 ...,2"} we
have p(w) = 1/w. Determine P(0) with proof.

Problem 181. Let ¢ be a real constant such that 1imO S = ¢. Find f(z) which satisfies
xrT—r X
flz+1y) < f(z)+ f(y), for all real numbers z, y.

Problem 182. Let Z denote the set of all integers. Determine (with proof) all functions
f :Z — Z such that for all z,y in Z, we have f(z + f(y)) = f(z) — y.

Problem 183. Suppose g : R — R is a function in a neighborhood J of 0 s.t. ¢(0) = 0
and ¢’(0) > 0. Prove that if ¢ has bounded second derivative in J, then the function
x

f(x) = / g(2°t) dt has a local minimum at 0.
0

Problem 184. Let f : R — R be continuous function such that

1
f <r+ n> = f(r),Vr € Q,¥n € N.
Prove that f is constant function.

T

Problem 185. Let f : [0,1] — R be continuous and |f(z)| < / f(t)dt, for all z € [0, 1].
0

Show that f is constantly zero on [0, 1].

Problem 186. Let P be a nonconstant polynomial with real coefficients and only real roots.
Prove that for each 7 € R, the polynomial Q,.(z) £ P(x) — rP’(x) has only real roots.

Problem 187. Let f: I — R be differentiable on the interval I. For a given a € I, suppose

for every sequences {x,}, {y,} satisfying lim z, = lim y, = a with z,, # y,, one has
n—oo n—oo
— f(z
lim Fn) = fn) _ f'(a). Prove that f’ is continuous at a.

n—oo yn — Ip

Problem 188. Let f: R — R be a continuous function. A point x is called a shadow point
if there exists a point y € R with y > x such that f(y) > f(x). Let a < b be real numbers
and suppose that

e All the points of the open interval I = (a,b) are shadow points;

e ¢ and b are not shadow points.
(a) Show that f(z) < f(b) for all x € (a,b).
(b) Show that f(a) = f(b).

1
Problem 189. Let f : R — R be a differentiable function so that |f(x) — sin (:v2)| < 1

for any x € R. Prove that there exists a sequence of real numbers {z,}>2 for which
lim f'(z,) = +o0 .

n—oo
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1.7.2 Complex-valued Function

Problem 190. Show that if f is holomorphic on {z : |z| < 1}, then there must be some

positive integer k such that
1 1
! (k:) ey

Problem 191. Suppose f is holomorphic on the annulus {z : 1 < |z| < 2}, |f(2)] < 1 for
|z| =1 and |f(2)] < 4 for |z| = 2. Prove that |f(z)| < |2|? throughout the annulus.

Problem 192. Let G be a open connected domain and f : G — C be continuous. If f2 is
holomorphic on G, show that f is holomorphic on G. [Hint: First show f is holomorphic at
z such that f(z) # 0, then consider the singularity type of roots of f.]

Problem 193. Let f be an entire function which is real on the real axis and imaginary on
the imaginary axis, show that f is an odd function, i.e. f(z) = —f(—=2).

Problem 194. Suppose f is a nonconstant holomorphic function on the closed annulus
A={z:1<|z| <2}. If f sends the boundary circles of A into the unit circle, show that f
must have a root in A.

Problem 195. Suppose f and g are holomorphic on the closed unit disk. Show that |f(z)|+
|g(2)| takes its maximum on the boundary. [Hint: Consider f(2)e'®+ g(z)e® for appropriate
a and B.]

Problem 196. Let H = {z : Rez > 0}. Suppose f : H — H is holomorphic and f(1) = 1.
Show that

1- 7@ < 5l +7@)

Problem 197. Let f and g be holomorphic on a domain U. If fg is holomorphic on U, show
that either f = 0 or ¢ is a constant function.

Problem 198. Find the maximum of |f(4)|, where f is holomorphic on D = {z : |2| < 2},
f(1) =0and |f(2)| <10, for z € D.

Problem 199. Let D be the open unit disk. If f: D — D is holomorphic with at least two
fixed points (i.e. points w such that f(w) = w), show that f(z) = z. [Hint: By composing
with a suitable M6bius mapping, one of the fixed points may be moved to the origin.]

Problem 200. Find all holomorphic function(s) f defined on the open unit disk B(0,1)
satisfying f(3) = 2 and f(z) = (2 — f(2)) f(22), for all z € B(0,1).

Problem 201. Let w and z be in the open unit disk B(0,1). If f : B(0,1) — B(0,1) is
1—|z|?

holomorphic and f(w) = z, prove that |f/(w)| < T Jw?’

Problem 202. If f is an entire function mapping the unit circle into the unit circle (i.e.
|f(2)] = 1 for |z| = 1), show that f(z) = €?2" for some # € R and some positive integer

S =1 for

n. [Hint: consider roots aj, s, ..., a, in the unit disk and recall that

— Q2

|z| = 1. Show that f(z) = e* H - 7& first.]
iz

Problem 203. (Generalized Maximum Principle) Let U C C be a bounded domain and
f : U — C be holomorphic. Assume that for every sequence 2, € U which converges to the
boundary of U, we have le |/ (zn)| < M. Prove that |f(z)| < M for every z € U.

n—oo
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Problem 204. (Generalized Schwarz Lemma) Let f : B(0,1) — B(0, 1) be holomorphic and

zZ — Zk

f(z) =0for z =z, 22,...,2,. Show that for all z € B(0,1), |f(2)] < H
k=1

1—722

Problem 205. Suppose f is an analytic function defined everywhere in C such that for each
oo
n

20 € C at least one coefficient in the expansion f(z) = Z en(z — 20)

n=0

is equal to 0. Prove
that f is a polynomial.

Problem 206. Suppose D is simply connected and f is nonconstant holomorphic function
on D. Show that there exists a holomorphic g on D such that f = g2 if and only if every
zero of f has even order.

Problem 207. Let f(z) =z + Zanz". Suppose Zn\an| <1.
n=2

n=2
(a) Prove that f is holomorphic on the open unit disk D.

(b) Prove that f is injective on D. [Hint: use Rouches’s theorem and consider the number
of roots of f(z) — f(zp) for each zy € D.]

Problem 208. Let n be a positive integer. For i = 1,2,...,n, let 2z; and w; be complex
numbers such that for all 2™ choices of €1, €a,...,€, € {1,—1}, we have

n

E €;24

=1

n

E € W; | -

=1

<

Prove that
n n
D laif® <D fwil®
i=1 i=1

Problem 209. Let {f,} be a sequence of functions holomorphic on B(0,1). Show that if
{fn} converges uniformly on every compact subset of B(0,1), sois {f,}.

1.8 Real Analysis

All functions here are extended real-valued. The set functions m and m* denote Lebesgue

”

measure and outer measure on R respectively. All integral on a measurable set F

E
denotes Lebesgue integral over E. A(I) denotes the length of bounded interval I.

Problem 210. Show that if a set E has positive outer measure, then there is a bounded
subset of E that also has positive outer measure.

Problem 211. Show that if F has finite measure and € > 0, then E is the disjoint union of
a finite number of measurable sets, each of which has measure at most e.

Problem 212. Show that a set is measurable if and only if for each ¢ > 0, there is a closed
set F' and open set O for which F C E C O and m*(O\ F) < e.

Remark. Recall the Outer Measure Property: E is measurable <= For each ¢ > 0,
there is an open set O containing E for which m*(O \ E) < ¢ <= There is a Gs set G
containing E for which m* (G \ E) = 0.

And the Inner Measure Property: E is measurable <= For each € > 0, there is a
closed set F' contained in E for which m*(E\ F) < e <= There is an F, set F contained
in E for which m*(E\ F) = 0.
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Problem 213. Suppose f and g are continuous functions on [a,b]. Show that if f = g a.e.
on [a,b], then, in fact, f = g on [a,b]. Is a similar assertion true if [a,b] is replaced by a
general measurable set E7

Problem 214. Let {E}}72, be a countable collection of measurable subsets of R for which
ey m(Ey) < oo.

(a) Show that

n— oo

{z € R: z lies in infinitely many of A;’s} = ﬂ U E, £ lim E,.
k=1n=k

(b) Hence show that almost all 2 € R belong to at most finitely many of the Ej’s.

Problem 215 (Dini's theorem). Let {f,,} be an increasing sequence of continuous functions
on [a, b] which converges pointwise on [a, b] to the continuous function f on [a,b]. Show that
the convergence is uniform on [a, b]. [Hint: For € > 0 and for each natural number n, show
that {E,} defined by E,, = {x € [a,b] : f(z) — fn(x) < €} is an open cover of [a, b].]

Problem 216. It is known that if f is measurable, then f~1(c) is measurable for any ¢ € R (if
c & range of f, then f~!(c) = 0)). How about the converse? That is, suppose f is a function
on R such that f~!(c) is measurable for each number ¢ € R. Is f necessarily measurable?

Problem 217. Let I be a compact interval and E a measurable subset of I. Let € > 0, show
that there is a step function h on I and a measurable subset F' of I for which

h=xgonF and m(I\F)<e.
[Hint: Use the first principle.]

Problem 218. Let I be a compact interval and v a simple function defined on I. Let € > 0.
Show that there is a step function h on I and a measurable subset F' of I for which

h=v%onF and m(I\F)<e.

If m <1 < M, then we can take h so that m < h < M. That is to say, each simple function
on F is “nearly” a step function.

Problem 219. Let I be a compact interval and f a bounded measurable function defined
on I. Let € > 0. Show that there is a step function i on I and a measurable subset F' of I
for which

|f —h|<e and m(I\F)<e.

[Recall that step function ¢ on [a, b] has a canonical representation ¢ = > | a;xr,, where
I; are bounded interval.]

Problem 220. Let F have finite measure and f be a measurable function that is finite a.e..
Prove that given € > 0, there is a subset F' of E such that

fis bounded on F' and m(E\F) <e.

That is to say, each measurable function on a set of finite measure is “nearly” a bounded
measurable function.

Definition. Let {f,} be a sequence of measurable functions on E and f a measurable
function on E for which f and each f, is finite a.e. on E. The sequence {f,} is said to
converge in measure on E to f (denoted by f,, = f,) provided for each n > 0,

Jim m{z € E:|fy(a) - (@) >n} =0,
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Problem 221. Let f,, (n > 1), f and g be measurable functions on E that is finite a.e. on
E. Assume f, = f, show that

fn3g < f=gae onkFE.

Problem 222. Let E have finite measure. Assume f, — f and g, — ¢ on E, where fp, gn, f
and g are measurable and finite a.e. on E. Prove that for every constants «, 8 € R,

|l B 1fls afn+Bgn D af+Bg and f-gn = fg.

Problem 223. Assume E has finite measure. Let {f,} be a sequence of measurable functions
on F and f a measurable function on F for which f and each f,, is finite a.e. on E. Prove
that

Every subsequence of {f,} has in turn a further subsequence

m
— <~ . .
fn= 1 that converges to f pointwise a.e. on E.

Problem 224. Assume m(E) < oo. For two measurable functions g and h on E, define

lg — A
Jh) = —~———— . Show that
p(g,h) /ElJr\gfh|

fo 5 = lim p(fa, f) = 0.

Problem 225. Let f be a bounded measurable function on £ C R. Assume that there are
constants C' > 0 and 0 < o < 1 such that

m{er:|f(x)\>€}<6%

for every e > 0. Show that [, [f] < oc.

Problem 226. Let E be a measurable subset of R, m(E) < oo and {f,} be a sequence
of measurable functions on E. Let {a,} be a sequence of positive numbers such that
Yoo m{z € E:|fn(x)| > an} < co. Prove that

1< tm @) g @)

n—oo Qp N0 Qp

<1

for almost all x € E.
Problem 227. Let f(x) be a positive integrable function on [a,b], {E,} a collection of

measurable subsets of [a,b]. Show that

lim f(z) =0 = lim m(E,)=0.

n—oo En n—roo

Problem 228 (General Lebesgue Dominated Convergence Theorem). Let {f,} be a sequence
of measurable functions on F that converges pointwise a.e. on E to f. Suppose there is a
sequence {g,} of nonnegative measurable functions on F that converges pointwise a.e. on
E to g and dominates {f,} on E in the sense that

|fnl < gn on E for all n.
Show that
lim gn:/g<OO:> lim fn:/f.
n—oo [p E n—oo [p E

[hint: just imitate the proof of Lebesgue dominated convergence theorem, how can we apply
Fatou’s lemma?]
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Problem 229. Let f be integrable (tacitly assumed measurable) over R and € > 0. Establish
the following three approximation properties.

(a) There is a simple function 7 on R which has finite support and [, [f — 7| < e. (do it
for non-negative function first)

(b) There is a step function s on R which vanishes outside a closed, bounded interval and

Jelf—sl<e

(¢) There is a continuous function g on R which vanishes outside a bounded set and

fR f—gl<e
Remark. Now the result can be extended to integration over any measurable subset of R.
Problem 230. Let f be integrable over (—oo, 00).
(a) Show that for each ¢,
oo oo
/ f(x)dx:/ f(z+1t)de.
[hint: density of step functions]

(b) Let g be a bounded measurable function on R. Show that

(oo}

lim g(x) - (f(z) — flxz+1))dz = 0.

t—=0 J_ o

[hint: density of continuous functions]

Problem 231. Show that a set E of real numbers has measure zero if and only if there is a
countable collection of open intervals {I;}¢° ; for which each point in E belongs to infinitely
many of the I},’s and Y, A1) < oo.

Problem 232 (Riesz-Nagy). Let E be a set of measure zero contained in the open interval
(a,b). According to the preceding problem, there is a countable collection of open tervals
contained in (a,b), {(ck,dr)}3>,, for which each point in E belongs to infinitely many
intervals in the collection and Y, (dy — ¢x) < oo. Define

f(x) =" M(er, di) N (=00, )
k=1
for all z € (a,b). Show that f is increasing and fails to be differentiable at each point in E.

Problem 233. Let f be of bounded variation on [a,b] and define v(z) = TV (fj44)) for all
x € [a,b].

(a) Show that |f’| <’ a.e. on [a,b], and infer from this that
b
[ir=tva,

(b) Show that the above is an equality if and only if f is absolutely continuous on [a, b].

Problem 234. Let f: R — R be Lipschitz, that is, there is a constant L such that |f(z) —
f(@)| < Lz — y| for any z,y € R, prove that for any A C R, one has

m* (f(A)) < Im"(A).

Then prove that a Lipschitz function takes bounded measurable subsets to bounded mea-
surable subsets, does it take any measurable set to measurable set?
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Problem 235. Let f,g > 0 be integrable extended real-valued functions on measurable F
such that fg > 1 and m(E) = 1. Prove that

/Ef/Eng-

Problem 236. Complete the proof of Lusin’s theorem.

Problem 237. Suppose f is Lebesgue integrable function on R, prove that

lim / f(z)cosnzdm(x) = lim [ f(z)sinnzdm(xz)=0.
R

n—-+oo n—oo R
And in general, if g is bounded integrable function with period T' > 0, then

. 1
lim /Rf(x)g(tx) dm(z) = T/[O’T]g(x) dm/Rf(x) dm.

t—+oo

Problem 238. Let f : [a,b] — R be bounded and continuous m—a.eﬂ on [a.b], here m
denotes Lebesgue measure on R.

(a) Let {P,}n>1 be any sequence of partitions of [a, b] such that each P,,4; refines P, and
| Pn]l = 0. Let ¢, and 9y, (¢n < f < 1)y,) be defined as in theorem ??. Let = € (a,b)
be a point of continuity of f, show that

lim ¢, (z) = f(z) = lim ¢y (z).

n— oo n—oo

(b) Using (a) and the dominated convergence theorem, deduce that

/ fdm = lim pndm = lim Py dm.
[a,b]

n— oo [a,b] n— oo [a,b]

(¢) Show that f is Riemann integrable on [a, b] and

/[a,b] Fdm = /abf(x) dz.

1.9 Fourier Analysis

e Let both fQ o fQ o(x) dx denote the Lebesgue integral over Q).

e For any two functions f,g € L%(Q), we denote the inner product of f and g by
(f,9) = fQ /g

e For n € N and an orthonormal collection {e,(2)}22, on Q, f(n) := (f,en) = fQ fen.
We say {e,} is complete or a basis of L2(Q) if for any f € L*(Q), f = 0%, f(n)en
in the sense of L? distance.

e Any function in this section is complex-valued function on  C R whose real and
imaginary part are both measurable functions.

e A collection {e,} is indexed by n € N or n € Z when one of them is convenient.

e For two vectors (or sequences) a = (a1, az,as,...),b = (by,ba,b3,...) € (%, we define

(a,b) = Zn21 Anbp,.

2Some property P holds p-a.e. means P holds except a set of y-measure zero.
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e Define the “circle” to be S = R/Z, i.e. [0,1) with 0 and 1 identified. Henceforth
functions defined on S! are l-periodic functions (another useful convention is T =
R/277Z).

Problem 239. Check that for any orthonormal collection and any f € L?(Q),

o0

Yo <P

k=1

and conclude that {e,}52 is a basis if and only if the Plancherel identity holds:

oI =117
k=

8

for every f € L*(Q).

Problem 240. Let e, : n > 1 be any orthonormal collection in L?(Q). Then for any
f € L*(Q), any n > 1, and any complex numbers c1, ..., c,,

Hf =3 f(k)ex F=crer
k=1 k=1

The lower bound on the LHS is attained if and only if ¢, = f(k), Vk < n.

Problem 241. Show that L?(Q) is infinite dimensional.

Problem 242. Check that the map f — f = (f(1), f(2), f(3),...) preserves inner products:

(f1, f2) /f1f2 (fi, f2) = Zf(n)fz(”)
n=1

Definition (for problem [243] ton Let A C L?(Q) be a closed subspace, by closed we mean
limit points of A are still in A. Define the annihilator of A, AL, to be the class of functions
from L?(Q) that are “perpendicular” to every function from A.

Problem 243. Check that AL is a closed subspace, what if A is not closed?

Problem 244. For any f € L?(Q), there is a point Pf in A which is closest to f, i.e.

If =PI <If—gll, VgeA

[Hint: Pick g, € A so as to make lim,, ||f — gnl| = infgea ||f — ¢||. Then apply the
Gram-Schmidt recipe to convert g, : n > 1 into an orthonormal sequence e, : n > 1 and

put Pf = Z(f7 en)en‘]

Problem 245. Prove that f — Pf € A+ and that f = Pf + (f — Pf) is the only way of
splitting f into a piece from A and a piece from B. That is,

LX(Q)=A& AL,

[Hint: Pick g € A, then k(e) := || f — Pf +eg||? is a polynomial of degree 2, consider its least
value.]

Problem 246. The so-called projection f — Pf in problem is a linear map of L?(Q)
into itself, check it. Besides, verify that:
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(i) P?=P; (iii) 1Pl < 15
(ii) (Pf1, f2) = (f1, Pf2); (vi) P=1id on A and 0 on A*.

Problem 247. Show that the family f, : n > 1 spans L?(Q) if and only if (f, f,,) = 0 for all
n > 1 implies f = 0.

Problem 248. Show that any linear map T of L?(Q) into the complex numbers which is
bounded in the sense that
T(f) < constant x || f]l,

where the constant is independent of f, can be expressed as an inner product:

T(f)=(f.9)

for some g € L?(Q). This is the so-called Riesz representation theorem.
[Hint: Suppose T' # 0 and let A = kerT. Check that AL is of dimension 1 and find a
function g € L?(Q) so that T(f) =0 <= (f,g) =0. Then

T(f) = llgl~*T(9)(f, 9) = constant x (f,g).

]
Problem 249. The orthonormal collection
en(x) =¥ nel

is a basis for L?(S1), that is, any function f € L?(S') can be expanded into a fourier series
f= Z f(n)en
ne”Z

while the limit is taken in the sense of L? distance, with coefficients

1 1
f(n) = (f; en) = /0 fein = /0 f(ﬂ?)eiQﬂ'inz dx.

[Hint: The space C'*(S?) is dense in L?(S!).]

Remark. Hence for any function f € L?(Q), completeness of {€2™"*},,cz implies we always
have the Plancherel identity:

Ti& :/O I12 =S 1) = 11

neZ

Definition (for all of later problems). Until further notice, the orthonormal collection e,, will
always mean e>™"* and “Fourier series” will refer to this particular collection.

Problem 250. Check that f € C>(S!) if and only if f is rapidly decreasing in the sense
that n? f(n) approaches 0 as |n| — 400, for every p < 0o, separately.

[Hint: For rapidly decreasing f, > f(n)e, converges uniformly to a periodic function fi,
and

/0 fi=3Fo) / ¢, =3 f(m)len(x) — en(0)] = £(z) — £(0).



1.10. NUMBER THEORY 29

Problem 251. Show that any linear map T : L'(Q) — C subject to |T'(f)| < constant x || f]],
with a constant independent of f, can be expressed as T(f) = fQ fg for some bounded
measurable function g.

[Hint: L*(Q) C L'(Q) if Q is bounded. Now apply problem to find such a function
g € L?(Q) and check that

b
/ lg| < constant x (b — a),
a
for any interval a < z < b.]

Definition. For f,g € L'(S'), we define convolution of f and g, denoted by f * g, to be
the “product”

1
frg= / flz=y)g(y) dy.
0
Problem 252. Check that the convolution defined above makes sense, that is, check that
fxge LY(Sh).

Problem 253. Check that L?(S) is an ideal in L'(S'). This means that f x g € L?(S!) as
soon as one of the factors does.

Problem 254. Check that L'(S') does not have a multiplicative identity.
[Hint: A multiplicative identity e would satisfy e x f = f. Now look at é(n) keeping the
Riemann-Lebesgue lemma in mind.]

1.10 Number Theory

Let ¢(k) be the number of positive integers less than or equal to k that are relatively prime
to k, i.e. the Euler-¢ function.

Problem 255. Let n be an odd number greater than 1, let ay,as,...,a4(n) be a reduced
é(n) ap 1
" o g : : . _
residue system modulo n (all a;’s are relatively prime to n), prove that kUl cos | = 200

Problem 256. Let a,b € N, show that if 4ab — 1|(4a® — 1), then a = b.
Problem 257. Let z,vy € N, find all the integral solution of 3% = 2% + 7.

Problem 258. For every positive integer n, let a,, = 2" + 3" + 6™ — 1. Prove that for every
prime number p > 5, there exists a positive integer n such that p divides a,, (this can be
done by Fermat’s little theorem).

Problem 259. Let m and n be positive integers such that m¢(m) = n¢(n), then prove that
m=n. (Note: ¢(n) itself is oscillating)

Problem 260. Prove that there is a bijection f : N — N such that for every positive integer
kE, f(1) + f(2) +--- + f(k) is divisible by & (this can be done by the Chinese remainder
theorem).

Problem 261. Determine all positive integers = and y such that 2z* + 1 = 3.
Problem 262. Determine all positive integers n such that n? — 1 divides 2™ — 1.
Problem 263. Let 2,y € N, find all the ordered pair(s) (z,y) satisfying

Yy —(r+1)2" =1

with proof. (hint given: There is only one solution)
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Problem 264. Find all values of n such that ¢(n) = %
Definition. Let (a,m) = 1, denote ord,,(a) the smallest integer k such that a* 1

(mod m). Such k must exist as at least a®™) =1 (mod m). If further ord,,(a) = ¢(m) (i.e.
a?™ =1 (mod m), ¢(m) is least possible), we call a the primitive root of m.

Some basic fact we have already known:
e ord,,(a) =p = ord,,(a?) =p/(p,q). e If " =1 (mod m), then ord,,(a) |h.
e If g is a primitive root, then {[g], [¢%],...,[¢?"™)]} = (Z/mZ)* (the complete reduced
residue class), here [k] = k * (mZ) = k + mZ, the coset of mZ.
Problem 265. Let p be an odd prime. Prove that ord,(a) = 2 if and only if a = —1 (mod p).

Problem 266. (a) If ord,,(a) = h, prove that no two of a,a?, ..., a" are congruent modulo
m.

(b) Let g be a primitive root modulo p, p is an odd prime. Show that (by using the known
fact)

p(p—1)

p—D'=g-g°--g"'=g 7  (modp).

Use this to give a proof of Wilson’s congruence that

(p—1D!'=-1 (mod p).

(c¢) Show that if g and ¢’ are primitive roots modulo an odd prime p, then gg’ is not a
primitive root of p (you can use other fact that is not given in this question).

Problem 267. If ged (ord,,(a), ord,, (b)) = 1, show that
ord,, (ab) = ord,,(a) ord,, (b) .
Remark. If “co-primeness” is dropped, one can argue that

hk
(h, k) -
Inspired from the fact that ordy,(a) = p = ordy,(a?) = p/(p,q) (here pq/(p,q) is LCM!),

one may conjecture “|” above can be replaced by “=”. Unfortunately equality cannot hold in
general.

Problem 268. Give an example that ord,,(ab) # [ord,,(a), ord,, (b)].

ord,, (ab) |[h, k] =

Problem 269. Let D not be a perfect square. Assume that 22> — Dy? = —1 has integer
solution, and let x1,y; be its smallest positive solution. Prove that

(a) 2,ys defined by
i) + yg\/ﬁ = (131 + yl\/5)2

is the smallest positive integer solution of z? — Dy? = 1.
(b) All solutions of 22 — Dy? = —1 are given by (z,,y,), where
Ty + yn VD = (21 +yﬂ/5)”, n=1,3,5,...,
and that all solutions of 22 — Dy? = 1 are given by (2,,,y,), with n = 2,4,6,....
Problem 270. n? + (n + 1)? is a perfect square for infinitely many values of n.

Problem 271. Let n be a natural number such that the equation a™ + b = ¢, where a,b
and ¢ are prime numbers, has at least one solution. Find the maximal possible value of n.
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1.11 Metric Spaces

Problem 272. Show that a sequence is totally bounded in (5, d) if and only if every sequence
in S has a Cauchy subsequence.

Problem 273. Let f : R — R be infinitely differentiable. If for every w € R, there exists
a positive integer k£ such that the k-th derivative f(k)(w) = 0, then prove that on some
non-empty open interval (a,b), f is a polynomial.

Definition. A F, set in M is a union of a countable number of closed sets in M. A Gy set
in M is an intersection of a coutable number of open set in M.

Problem 274. For ) C A C M, define d(x, A) = inf{d(z,y) : y € A}. Prove that d(z, A) = 0
if and only if x € A. Prove that every closed set in M is a G5 set in M. (Then by de Morgan’s
law, every open set in M is a F,, set in M.)

Problem 275. (a) Let C]0, 1] denote the set of all continuous real-valued function on [0, 1].
For f,g € C0,1], define doo (f, g) = sup{|f(z) — g(z)| : = € [0,1]}. Prove that d is a
metric for C[0, 1].

(b) Prove that C[0,1] is complete with sup-norm ||f|lcc = sup{|f(z)| : € [0,1]} by
checking the completeness criterion.

(c) Prove that there is a unique continuous real-valued function f(z) on [0, 1] such that

b fy)

f(z) =sinx + e

0

Problem 276. Prove the Lebesgue Covering Theorem: Let M be a compact metric space
and U be an open covering of M. Prove that there exists » > 0 such that for every = € M,
there is at least one U € U satisfying B(z,7) C U. The constant r is called a Lebesgue
number for the covering U.

Problem 277. Let X be a compact metric space with d as the metric. If f : X — X satisfies
d(f(z), f(y)) < d(x,y) for all distinct z,y € X, then prove that f has a fixed point.

Problem 278. Let Wy, Wa, W3, ... be closed sets in R and W7, W3, W, ... be their interiors
in R respectively. If R = W; UWyUW3U..., then prove that S =W UW3UWZ U--- is
dense in R.

Definition. Let f be a real (or extended-real) valued function on a metric space X. If
{r e X: f(z) > a}
is open for every real «, f is said to be lower semicontinuous.

Remark. When X is any topological space, the notion of lower semicontinuity is defined in
the same way. The simple example for such a function is the characteristic function of a
open set in X.

Problem 279. Suppose that X is a metric space, with metric d, and that f : X — [0, o]
is lower semicontinuous, f(p) < oo for at least one p € X. For n = 1,2,3,... and z € X,
define

gn(z) = inf{f(p) + nd(x,p) : p € X}.
Prove that:
(1) lgn(®) = gnly)| < nd(z,y);

(i) 0<g1 <ga<-+- < fand
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(iil) limy,— 00 gn(z) = f(2), for all z € X.

Definition. Let X be a metric space and A a set of real numbers. A collection of open
subsets of X {Ox}xea is said to be normally ascending provided for any A1, g € A,

O)q - O,\2 when \; < Ag.

Problem 280. Let A be a dense subset of (a,b), where a,b € R, and {O)}xea & normally
ascending collection of open subsets of a metric space X. Define the function f: X — R by
setting f = b on X \ UneaOy and otherwise setting

flz)=inf{A e A:x € O,}.

Show that f : X — [a,b] is continuous.

1.12 Linear Algebra

Denote L(U, V) a collection of linear maps from U to V. Define L(V) = L(V, V). Here V is
a finite dimensional vector space (unless otherwise specified) over F (F is C or R).

Problem 281. Suppose T € L(V) and dimrangeT = k. Prove that T has at most k + 1
distinct eigenvalues.

Problem 282. Suppose S,T € L(V). Prove that ST and T'S have the same eigenvalues.

Problem 283. Suppose T € L(V) is such that every vector in V is an eigenvector of T.
Prove that T is a scalar multiple of the identity operator.

Problem 284. Let S,T € L(V), prove that ST = I if and only if T'S = I.

Problem 285. Let S,T € L(V), prove that T is a scalar multiple of the identity if and only
if ST =TS8, for every S € L(V).

Problem 286. Suppose u,v € V. Prove that (u,v) = 0 if and only if
[lu]l < |lw+ av]|, for all a € F.

Definition. Let T' € L(V). Let U be a subspace of V. We say that U is invariant under
T or U is an invariant subspace of T if and only if for every w € U, Tu € U. In short,
T|U € E(U)

Problem 287. Suppose T' € L(V) is such that every subspace of V' with dimension dim V' —1
is invariant under T. Prove that T is a scalar multiple of the identity operator.

Problem 288. Suppose P € L(V) and P2 = P. Prove that V = null P @ range P.

Problem 289. Let U and V be finite dimensional vector spaces, S € L(V,W), T € L(U,V),
prove that
dimnull ST < dimnull S + dimnull 7'

Problem 290. Prove that if P € £(V) is such that P? = P and
[Pl < [|v]
for every v € V, then P is an orthogonal projection.

Problem 291. Suppose V is a real inner-product space and (v1, ..., vy,) is a linearly inde-
pendent list of vectors in V. Prove that there exist exactly 2™ orthonormal lists (eq, ..., epm)
of vectors in V such that

span(vy,...,v;) = span(ei, ..., ;)

for all j € {1,...,m}.



1.12. LINEAR ALGEBRA 33

Problem 292. Find a polynomial ¢ € P»(R) (a collection of polynomial of degree two with
real coefficients) such that

/01 p(z) cosmx dr = /01 p(z)g(z) dx

for every p € P»(R).
Definition. Let T denote the adjoint of T

Problem 293. Suppose 7' € L(V') and A € F. Prove that ) is an eigenvalue of T if and only
if \ is an eigenvalue of T™.

Problem 294. (a) Prove that if dimrangeT = dimrange T2, then range T NnullT = {0}.
Prove also that V = nullT @ rangeT'.

(b) Prove that for any T € L(V), there is a positive integer k such that
V =range T% @ null T*.

Problem 295. Let A be an m X n matrix. Show that rank QAP = rank A for any invertible
m X m matrix ) and any invertible n x n matrix P.

Problem 296. Let A be an m x n matrix. Show that rank AT A = rank A.

Problem 297. Let S be a skew-symmetric matrix (i.e. ST = —S), prove that I + S is
invertible.

Definition. For an n x n matrix A (or an operator T' € L(V')) we define the spectrum of
A, as follows:
o(A) :={\ € C:A— X\ is not invertible}.

We also define p(A) = max{|\| : A € (A)} to be the spectral radius of A.

Problem 298. Let A be an n X n matrix, then

lim A" =0 < p(4) < 1.

n—0o0

Here lim,, ,oc A™ = 0 means that lim,,_,, A"x = 0 for each x € C".

Problem 299. Let A, B be Hermitian matrices that commute. Prove that there is a unitary
matrix P such that P*AP and P*BP are both diagonal.

Problem 300. Define A = (a;;)1<i,j<n and Ay = (aij)1<ij<k, aij € R and AT = A. Prove
that A is positive definite if and only if det A, > 0 for k =1,2,...,n.

Problem 301. Let b € C™ and A € C™*" be fixed. The following are equivalent:

(i) o solves the least square problem (LSP) in the sense that
b — Azo||2 = inf{||b — Az||2 : x € C"}.
(ii) b— Az € (range A)*.
(ili) A*Axy = A*b.

Moreover, such xg is unique <= A has full rank.



34 CHAPTER 1. A COLLECTION OF PROBLEMS

Definition. Let X,Y be normed vector space, that is, X and Y are endowed with the norms
Il llx, |l - |ly respectively. Let L(X,Y) denote the collection of all continuous linear maps
from X to Y. For each T' € L(X,Y’), we can define

IT|| = sup{[[Tz[y : = € X, [lz] x = 1},

|l - || defined above turns out to be a norm on L(X,Y), called operator norm. When X
and Y are Euclidean spaces, L(X,Y) is the collection of matrices, and the operator norm
in this special case is called induced matrix norm.

Let v € F", write x as (21, 22,...,2"), i.e., 2 denotes its ith component. This notation
is not ambiguous as long as z is a vector. Recall that |z|, = (31, [2'[")V/?, ||z]le =
max{|z’| :i=1,2,...,n} and z* = (z7).

For each p > 1 and a matrix A over some scalar field, it is a convention to define
|All, := sup{||Az]||, : « in domain, ||z|, = 1}.

Clearly it is a special case of operator norm, with the norms of domain and range being fixed
to be p-norm. It is also a convention to denote R™*™ and C"*" the collection of m x n real
and complex matrices respectively.

Problem 302. Let a;’s be column vectors, show that:

(a) fA=[ai |- [an ], [[Alh = maxicj<n [laj]1;
aj

(b) A= | : |, then [|A]o = maxi<ic, [lal]]r.
a*

n

In words, ||Al|; is the maximum (absolute) column sum, while || Al is the maximum (ab-
solute) row sum.

Problem 303. Let D be the diagonal matrix

dq
da

show that || D]z = max{|d;| : i =1,2,...,n}.

Problem 304. Vector and matrix p-norms are related by various inequalities, often involving
dimensions m or n. For each of the following, verify the inequality and give an example of a
nonzero vector of matrix (for general m,n) for which equality is achieved (so that the bound
in optimal). In the problem x is an m-vector and A is an m X n matrix.

(@) [[z]loo < llz[l2 (©) [lAllee < v/nllAll2
(b) flzll2 < vmll]leo (@) [[Allz < vVmllAllo

Problem 305. Let A be an m x n matrix and let B be a submatrix of A, that is, a u x v
matrix (u < m,v < n) obtained by selecting certain rows and columns of A (not necessarily
consecutive rows and columns!)

(a) Explain how B can be obtained by multiplying A by certain matrices.

(b) Using the result in (a), show that || B||, < ||A||, for any p with 1 < p < cc.



1.12. LINEAR ALGEBRA 35

Problem 306. In this problem we are going to prove part (i) of the following theorem.
Whereas part (ii) (which we don’t go through in this problem!) requires the definition of
singular vectors, which motivates part (i) of the theorem.

Theorem.

(i) Every matrix A € C™*™ has a SVD:

UeC™™ s unitary
A=UXV" V e CY™™™ s unitary
e R™x™ s “diagonal”

Furthermore, the singular values o;’s, 01 > 03 2 -+ 2 Omin{mn} = 0,
are uniquely determined.

(i1) If A is square and o;’s are distinct, the left and right singular vectors
{u;} and {v;} are unique up to a multiplicative constant with modulus 1.

The theorem is simple when m = 1 or n = 1, so in the following we are going to assume
m,n > 2.

(a) Show that there is v, € C™ with ||v1|l2 = 1 such that ||Avi]|2 = [|4|2 =: 01.
(b) Show that for unitary matrix U € C™*™, |[UA|2 = || 4|2

(c) Define u; = Avi/||Av1]| € C™, then Avy = oju;. Extend w; to an o.n. basis
{u1,...,up} of C™ and vy to an o.n. basis {v1,...,v,} of C". Let U; be the matrix
with columns u; and V; be that with columns v;, then

Avy Avg Av,
w o1 | w*(to be proved O)
uz
viAvi =g = Bi=[A] (42,0 yttm) = 8.
(v2,...,un)

Um

Show that w = 0 € C"~! by considering HS ((;1) H > o +wrw.

Remark. Note that we have x 1. vi = Ax 1 Avy, and the only assumption to derive
this result is || Avy |2 = || All2, with ||vi||2 = 1. We extract this as a technical corollary.

Corollary. Let A € C™*™, v € C™ with |v|2 = 1. Then if ||Av|lz = || Al|2,
wlv = Aw 1 Av.

The same is true when C is replaced by R.

Explain why B = [A](uz,...,um)

(v2,..0n)

@) (o8
-

Prove the existence part of SVD by induction on k, where m + n = k.

(f) Note, however, that if the choices of {us,...,u,} and {va,...,v,} change, the “¥”
may also be changed. Show that the resulting ¥ in the existence part of the SVD is
independent of such choices. So the uniqueness part is completed.

We have thereby proved the existence of SVD for any complex matrix.
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Problem 307. Show that part (i) of the theorem quoted in problem [306|is also true if C are
changed to R, i.e., A € R™*"™ U € R™*™ and V € R"*".

Problem 308. Two matrices A, B € C"™*™ are unitarily equivalent if A = QBQ*, for some
unitary @ € C™*™. Is it true or false that A and B are uniarily equivalent if and only if
they have the same singular values (i.e., same ¥ in their SVDs)?

Problem 309. Using the SVD, prove that any matrix in C™*™ is the limit of a sequence
of matrices of full rank. In other words, prove that the set of full-rank matrices is a dense
subset of C™*™,

Problem 310. By considering the SVD of A € C"™*™ say, A = UXV*. Find an eigenvalue
decomposition of the 2m x 2m hermitian matrix

0 A

A 0)°
Here to find an eigenvalue decomposition is the same as to find an invertible matrix X such
that X 1AX is diagonal.

Definition. Let P € F"*". We say that P is a projector iff P> = P. Note that for each
x € F", © = Px + (x — Px), Px € range P while © — Pz € null P. So whenever a matrix P
is a projector, F" = range P 4+ null P. We say that P is orthogonal iff range P and null P
are orthogonal.

Problem 311. Show that a projector P is orthogonal if and only if P = P*.

Problem 312. Let P € C™*™ be a nonzero projector. Show that ||P||s > 1, with equality
holds if and only if P is an orthogonal projector.

Problem 313. By considering QR factorization, show that if A = [ a1 ‘ ‘ ay, ], where
a; € F™ is column vector for each ¢, one has

|det A] < [ llail

i=1

1.13 Algebra

Problem 314. Show that any group G cannot be a union of two proper subgroups.

Problem 315. Count the elements contained in the following sets.

(a) {o €85 :|o| =2} (b) {o €8, :|o] =2} (c) {o €8, :|o|l=p},p<

Problem 316. If H and K are normal subgroups of a group G with HK = G, prove that
G/(HNK)~(G/H) x (G/K).

Problem 317. Let G be a group of order p*m, where p is prime, p { m. Let H < G with
order p* and K < G with order p', 0 <t < s and K ¢ H, show that HK £ G.

|A||B|
|[AnB|

Problem 318. Let A, B be two finite subgroups of G. Show that |AB| =

Problem 319. Prove that every even permutation in S, is a product of cycles of length 3.
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Problem 320. Let G be a finite group. For a given a € G, let
So ={z € G :zax™! = a?}.
If @ has order n, prove that |S,| is a multiple of n.

Problem 321. Let G be a group, if every element in G has order 2, show that G must be
abelian.

Problem 322. Let N be a given positive integer with N > 3, and let ay, a9, ..., a,, be the
full list of integers such that 1 < a; < N —1 and a; is relatively prime to N (so m = ¢(N)).

(a) Prove that a; +as + -+ + a,, is a multiple of N.
b) If k is relatively prime to m, prove that a® + a% + - - + aF is a multiple of N.
1 2 m

Problem 323. Let G be a finite group with |G| = p™, where p is a prime. Suppose G acts
on a finite set X. Let B be the set of fixed points, that is,

B={xe€ X :gz=uforall g e G}.
Prove that | X| — |B] is a multiple of p.

Problem 324. Let F' = {aj,a2,...,a,} be a finite field with n elements. If n > 3, prove
that
ai +a3+---+a, =0 and Z a;a; = 0.
1<i<j<n

Problem 325. Suppose R is a commutative ring with 1, let a,b, z,y € R satisfy ax+by = 1.
(a) Prove that there exist ¢,d € R such that cz?%% + dy?09 = 1.
(b) Let I be an ideal such that 22°%% € I and y?°% € I, prove that I = R.

Problem 326. Let F be a finite field and |F| = n > 2. Let aj,as,...,a, be the list of all

elements in F'.

(a) For a non-zero element b € F', prove that the list a1b, asb, ..., a,b is a permutation of
a1,az,...,0n.

(b) Prove that ay +az+---+a, = 0.
(c) Prove that for an arbitrary positive integer k, a} + a% + -+ + a¥ is either 0 or —1.

Problem 327. (a) Let H, with order 2, be a normal subgroup of G, prove that H is in
the center of G.

(b) Let H be a normal subgroup of prime order p in a finite group G. Suppose that p is
the smallest prime dividing |G|. Prove that H is in the center Z(G).

Problem 328. (a) Show that if G/Z(G) is cyclic, then G is abelian.

(b) Show that a nonabelian group G of order pq, where p, g are primes, has (only) a trivial
center.

Problem 329. Let d,l; be two linearly independent vectors in R2. Prove that every other
pair of vectors @', b’ such that
Za+ 7b = Za + 7Zb

-

must be of the form (a,b) = (@, )P, where P is a 2 X 2 integer matrix with determinant
+1.
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Problem 330. We say that A is dense in B if any element of B is either an element of A or
a limit (or called accumulation) point of A.

(a) Prove that a subgroup I of (R, +) is either dense in R or else of the form Za, for some
a> 0.

(b) Show that Z + Z+/2 is dense in R. Generalize the result to Zq + Zr for rational ¢ and
irrational 7.

(c) Let H be a subgroup of the group G of rotations in R2. Prove that H is either a cyclic
subgroup of G or else dense in G.

Problem 331. Let F be a field and F* = F'\ {0} be the multiplicative group of F.
(a) Prove that every finite subgroup of F'* is cyclic.

(b) Prove that for each positive integer n, F'* contains at most one subgroup of order n.
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1.14 Hint

e Problem Suppose that Y 7 | a? = oo, consider the partition of N into consecutive
finite segments Ey, Ea, B3, ... such that 7 . a? > 1. Define a sequence {b,} by
setting b,, = cra,, for n € E;. Choose suitable ¢i to get contradiction.

ko0 k
e Problem Show that Z Z Qrp = Z Z Grp.

=1r=1 r=1 ¢=r
e Problem Count all possibilities of picking out m numbers with replacement from

{1,2,...,n}, moreover, these possibilities must contain two specified numbers (say
1,2), also note to get RHS, we need inclusion-exclusion.
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Solutions

Beforehand two symbols are introduced here for simplicity. Z, Z or Z means to

cyc  cyc cyclic
take the cyclic summation about known variables Z fla,b,¢) = f(a,b,c) + f(b,c,a) +
cyclic
f(c,a,b). A symmetric sum is denoted by Z or 27 and it is seldom written as Z
sym sym symmetric

The symmetric sum takes over all permutations about a,b,c in f(a,b,c), there are 3! = 6
such terms, that is

Zf(a,b,c) = f(a,b,¢) + f(a,c,b) + f(b,a,c) + f(b,c,a) + f(c,a,b) + f(c,b,a).

sym

For example, (z +y + 2)% = Z 343 Z 22y + 6xyz = Z (23 + 32%(y + 2) + 2xy2).

cyclic sym cyclic

2.1 Inequality

1. (a) Direct consequence of Cauchy-Schwarz inequality, equality holds if and only if their

corresponding ratios are equal, i.e. & = % or ad = bc.

(b) Making a transform before using the result, we have
f(x) =7—2x+4 1v/3+ 2z — 22
=5+2(1—=z)+3V3+ 2z — 22
<54+ /(4 +1/22)(1 — 22 + 22+ 34 22 — 22)

=5+ VI1T.
8
Equality holds if and only if 24/3 + 2z — 22 =L(1—-2)orz=1—- —.
quality y if 2/ 3 ( ) it

2. Z a(b+c) ﬁ > (a+ b+ c+ d)?, now observe that
cyc

cyc

Za(b—l—c)zab+ac+ad+bc+bd—|—cd+ac+bd
cyc

a?+ 2+ b2+ d?
2

< ab+ ac+ ad + be + bd + cd +

_(a+b+c+ad)?
2

41
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so the result follows.
3. To be added.
4. Consider (3_,,,.va* + +3)2 = (D eye Var/a+ 3/a)? Doy 0 yela+3/a) =403, . a a)®.

5. Summing up these two inequalities, we are done.

2

b2
Z(b+c)zm>(a+b+c and Zb—kcz > (a+b+c)
cyc cyc cyc cyc
6. Cauchy
a2 02
(b+c+c+a+a+b)< + ) a+b+c)?
b+c c+a a+b
a? n b2 n 2 >a+b+c §
b+c c+a a+b— 2 -2
2 b
Another method, we try to show that Z a > atote first, since two sides of the
cyclicb+c 2

inequality are homogeneous, we can normalise (which means we “set” a condition that is
more favourable) to a + b+ ¢ = 1 such that

at+b+c a2 1
> <— > —.
DR 2 1525

cyclic cyclic

This can be easily proved by Cauchy-Schwarz inequality, another way to show is to let

fz) = “’j — f(z) =

1 it shows that f is strictly convex on (0,1) and hence

=127 (5) (- 3)+(3)
5 1 1
:4(:U—3)+6

where right hand side is the tangent on f at (%, f(

a 5 3 1
> 2 —) 4=z,
Zl_a_4(a+b+c )+6 5

cyclic

7. Since (3)(a®? + 0% + ) > (a + b+ c)? = 1, it follows that

(V1—=3a2+ V1302 +v1—-3c2)2 < (3)(3—3(a® + b> + 2))

)2 < (
< 6.

8. By Cauchy-Schwarz inequality

1 11 1\
Za(b—i_c)za‘?(b—i—c)><a+b+c>

cyclic cyclic

we haveE

1 1434
2 >
ad(b+c) 2

cyclic

1Z:cyclic a(b+ C) =2 (% + % + %)
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ol

SHE
S| =

Or, you may find this questions is similar to Q2. Replacing a, b, ¢ respectively by

)

you find they are exactly the same!
Or, by AM-GM inequality, we have

a? 2a
> 7
b — k

Tl =

where a, b, k are positive reals. Now

1 (b2 21 1+
Zcv”’(lH—c):C « 1 ZC§C( E k2 )

cyclic yclic ¢

Q=
=

IS

We take k = 2 such that 1/k — 1/k* =1/4

1 1/1 1 1 1 3
—_— > 2 - -—=]>26|-——= | ==.
> w2t (iw) 2o (i m) =3
cyclic cyclic
We eliminate 2, 3 and 6 in the expression 2b% 4 3¢ + 6d2, that gives
2 1,11 2 2 2
b+c+d) < §+§+6 (2b° + 3¢® + 6d°)
(3—a)?<5—a?
(a—1)(a—2) <0
1<a<2.

We use Cauchy-Schwarz inequality twice, having

(S0 (£5)=(2%) = (29)(£9)=(z)-

combining these two, we are done.

Refer to question 5, note that when taking square root on both sides, we should add a “+”
sign as we concern all reals, in such way we can find maxima and minima.

Cauchy-Schwarz inequality applies to a set of reals not all zero, this fact enables us to cancel
out terms by multiplying a negative factor.

(@® +b* + (2a — 3b + 4)*)((—2)? + 3% + 1) > (—2a + 3b+ 2a — 3b+4)* = 16

16 8
2, 12 _ N2> 2%
a®+b*+ (2a —3b+4) 2=

(a) We apply Cauchy-Schwarz ineqaulity to eliminate the undesired factors.

while since

it follows that

n—1 9 a; 2 a; n
> = > .
( n )SZSai_S ZSfai_nfl

i=1
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(b) By (1)

while since

S o (Sow 1) - Sotons - @ygigﬁﬂx

k=1 k=1

this implies
Zak (Zak + 1) > Zak ak + ].
k=1

the result follows.

15. The denominator of each fraction is obviously positive, for example, a? — bc + 1 = a? — be +
3(ab+bc+ ca), which has no negative term. Observe that Z Z(a2 —be+1)a >
c(

a
a? —bc+1
yc cyc
’ 2
(E a) :E a2+§,wehave

cyc cyc

Z a chc a2 + 2 chc CL2 + % 1

> = .
a?—bc+1 a3—|—b3—|—c3—3abc+zcw chca(zcyccﬂ—%—f—l) at+b+c

cyc
16. Method 1. We observe that for all z > 0, the inequality 2* > k(x — 1) + 1 holds for
ke{l,2,...,n}. So

n

I P YL M

k=1 k=1 k=1 k=1

equality holds when 1 =29 =--- =2, = 1.
Finally by Cauchy-Schwarz inequality (or AM-GM as in method 2), n >~} _, zx = > p_; i Sor T >
n? = Y 1_ T >n,so

w\H
e

S, z
k=1 k=1 k=1

Method 2. Weighted AM-GM inequality states that if w; > 0, >, w; = 1, then for

a; >0,
n n
> wia; > [ af",
=1 =1
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hence

7. n 1
k=1 k k=1 k k=1 Z:kzl & k=1 k=1

the last inequality follows from

Vajas ... ap > ————————
Vv 4162 n_1+%++

3=

Copy from the Internet (not sure to be correct).................................

n n
Tiers _ Tk 1 . :
Lagrange multipliers. Define L(z1,...,2z,) = Z = + A <Z o n) Its partial
) k=1 k=1
derivative with respect to xy is xz_l — A—5, equaled to zero yields x’,j"’l = ) for all
x
k
k. But the polynomial zF*!' — XA = 0 can only have one positive real root, so all x;

are equal, clearly to 1 - and this is the only critical point, which easily is seen to be a
n

minimum. So the sought after minimum is Z % ~ lnn.
k=1
If x; are allowed to be negative also, the result stays when k is even, but the

discussion becomes complicated for k odd, since then we have to check all cases when
the moduli |zy| are equal.

17. We observe that

(Zc(caﬁa)> - \/Ey: b(bcic) czy;c(ca—ia) >§y:\/ﬁ(cia> (1)

cyce
? / t
a c+a a c+0 a
< , 2
(Zcha) _§ c+b(c+a>§ c+a ((‘,+(l)7 (2)

cyc

now

but if we consider the rightmost factor,

2
(ﬁ+b a (Z(C+b) a
<
<Czy; c+a (c—l—a)) - Czy; (C+a)2 Zc—i—a’

cyc

b
it is enough to prove that Z ale+b) < Z , thereafter combining inequality (2) and
cyce

(c+a)? “cta

then (1), we are done.

a(c+b) a ab a?
DTy < PEEGAN LAY J)
Z(c+a)2_§c+a %;(c-ka)z_%;(c—kaﬁ

cyc

ab 1 a® b2 a
However, Czy;m S 2<Z (C—|—a,)2 + Z (C—|—a)2> S Zm We cannot as-

cyc cyc cyc
call it S
sume WLOG a > b > c as the original inequality varies when either two are interchanged.
But the inequality holds true because S itself is always a reverse sum, no matter a > b > ¢,
a > ¢ > b, whatever, so by rearrangement inequality, we have proved our claim.
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a a
>2) ——,
V@ PP+ )~ G e a +

18. By AM-GM inequality, one get Z

cyc

by Cauchy-
cyc
Schwarz inequality,

9 Z a >9 (chc a)2 >9 (chc a’)2
. chc a? + v chc a chc a? + chc ab* — chc a chc a+ chc ab
2
vy (a0

T (e )+ 3(E )
3
o8

19. Let a be the root of P(z). If |a| < 1, we are done. Suppose that |a| > 1, then

la™| = |CL,L_1CL’“1 +ap_oa" 24+ ag|
<lan-1llal®™" + |an—alla[" %] - + |ao|

< Va1 +lan—2 + - +lao?v/(la]"=1)% + (Ja]"=2)2 + - -~ + 1

a2n —1
= \/‘a/n—1|2 +lan_2|?+ -+ |ag|? ||a||2_1

squaring both sides, multiplying both sides by ||aa||;+_11 and adding both sides by 1, we deduce
that

|a|2 -1 _ |a|2n+2 _

a7 =1 a1

la* < |a* + <1+ |an—1]® + |an—a|> + -+ |aol*.

20. @™ £ B @M — @™ = (¢ — ™) (a" — b") > 0.

21. Let (x,y,2) = (1—a,1—b,1—¢), then 2 +y+2z = 1, and the inequality to prove is equivalent

to

cyc cyc

Remark. This inequality is equivalent to Z a® + 3abe > Z a’b.

cyc sym

22. Note that (a + b)(b+ ¢)(c + a) + abec = (ab + be + ca)(a + b + ¢), it suffices to prove that
$(a+b)(b+ c)(c+a) > abe, which is obvious.

23. This inequality is trivially true if either one of a;, b; is zero. Suppose no one of them can be
zero, then by dividing both sides {/b1bs - - - b,, and setting x; = %, it suffices to show that

(Vxizg T+ )" < (14 z1)(1+22) - (1 + ).
We expand RHS,

(Ltz)(Ltag) - (Ltan) =1+ ) @i+ Y mizj+-+a12g- -2y,
i i<j

n n
=t <1> Varzy - an + (2>("xlffz---wn)2+~-+(“wlxz---wn)" (why?)
— (14 Ymmm)"
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25.

26.

27.

28.

29.

30.
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By previous result, we have

a3+ b3+ abe ~ a?b+b2a +abc  abc(a+b+c)  abc

cyclic cyclic

By previous result,

7 7 5,2 5,.2
' +y 7yt +ycxt 2.2
D R

cyclic cyclic cyclic

2

E x7>gg L>1 what happens??
‘Y422 by T3 Ay 2 T ppens:
cyclic cyclic

Let a = cos?a,b=cos?B,c =cos?, thena+b+c=1

a2

cot? a + cot? B + cot? y = Z

cyclic

1—a?

7a+ bJr c
T b4+c c+a a+bd

we are doneﬂ If you want to apply Cauchy-Schwarz inequality here, then consider two sets

1 1 1
of numbers {b+ ¢,c+ a,a + b} and { }

b+c'c+a ' a+b

1 1 1 1
[ — > = -
Z (1- + y)((E2 + y2) Z 3 + £Ey2 + ny + y3 -9 Z 3 + y3

cyclic cyclic cyclic
9
T4z +yd + 23)
>3
!

The difficulty can be eased by homogenising two sides.
ptqg<2
= (p+q)’ <40’ +¢°)
= 30°+¢ —p*a—ps®) >0
= P’ +¢ >+

the particular case of previous result 1, as each step is reversible, we are done.

Since abc =1, let a = f’ b= y, c= E, the original inequality becomes
Y z x
(@+y—2)(y+z—2)(z+z—y) <ayz

However, it follows from the following inequality
2

[[Te+ry—2| = [[@+y—2)c-y+2)

cyclic cyclic

=[] @* - (-2 < (ay2)*.

cyclic

2Nesbitt’s inequality!
3Nesbitt’s inequality!!
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31. Let a = tan® a, b = tan? 3, ¢ = tan? 7, where «, 3, v are acute angle, then the given condition
becomes cos? o + cos? B + cos? v = 1, and hence

2

abe — H 1—cos’a H COS2B+COS2’7.

L cos? L cos? o
cyclic cyclic

It is equivalent to prove

this follows from AM-GM inequality
(x+y)(y+ 2)(z + z) > 8/zyyzzx = 8zry=.

32. (a) Straightforward.
(b) Straightforward, otherwise by Cauchy-Schwarz inequality, we have

1 1
=(=+= > 2% =4,
a+b <a+b>(a+b)_

(¢) The statement is true of n = 1. Suppose the statements holds for n =k, i.e
ak +bk S (a+b)k _ 22k +2k+1
Now for n =k + 1,

(a +b)FTt — ghtl — pht!

= (a+ b+ (a+b) (@ + 0571 — (a + b)(aF +0F)

> (a+b)(aP™ 4 P 4 22k okt (induction assumption)
at b\ !

> (a+1b) (2 ( 5 ) 4 2%k 2k+1> (convexity of function y = ™)

> 22(2k 4 2% _ ok+1) (result of part b)

— 22(k+1) + 2k+2.

33. Since the inequality is homogeneous on both sides, we are free to set abc = 1,a +b+ ¢ =
1,ab + bc + ca = 1, whatever. Here we set abc = 1 such that the inequality becomes

Va+Vbh+e+ (a+b+ce)?>4V3Va+b+e

It can be shown by applying AM-GM inequality twice, that

a+btc)?
2 _ . Vot Vb et o ()
12

3/2
> 12 <a+§+c>

_4V3la+b+e)Va+b+c
- 3
>4V3Va+b+ec

Va+Vbh+e+ (a+b+c)




34. Tt is trivially true when n = 1, suppose the proposition holds for n = 1,2, ...

35.
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1 < 27;

T2
I2§$1+?§

T2 z3
r3 <x1+ — + —;
3 > 41 2 37

Z2 ;
$k§$1+?+"'+*~

We sum up all assumptions, this gives

and hence i
Z& > (x1+xk)+($2—|—xk71)—|— +($k +fL'1) k$k+1
i=1 L k+1 ~ k +1
or
k+1
i
> Tpi1

thus the proposition is true of n = k + 1.

Method 1. We let p;, = (I;Ti’
HZ:l,kyéi br and S = H?:l b;, then

2%21 — a1A1 +a2ls+---+a, 4, =S.
i=1 ¢

It follows that

pr o alA1$1 + GQAQIL'Q + -4 anAna:n
o a1 Ay +agAs+ - +an Ay

i=1

n n
> H:cini/S = Hscp’.
— 1 7
=1 7

1

49

where a;,b; are integers with a; < b;, we also let A; =

Method 2. Induction on n is more simple, suppose the statement holds for n = k, now for

n =k 4+ 1, we have

k+1

Zpixi =(1—pr41) Z ( bi > Ti + Dh+1Tk+1
i=1 ;

1—
im1 Pk+1
k

> (1 — pk+1) (H l»i)i/(lpk+1)> + Pl 1Zht1
k+1

i=1
Pi
> |I$L )

i=1

here the second row has used the result of n = 2 (which is not yet proved in our proof).

Remark. [t is one of the simple ways to prove AM-GM inequality.
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What’s more, this inequality is just a particular case (p(z) = —Inx) of the following in-
equality.
Theorem (Jensen’s Inequality). Suppose x1,a,...,2, € I, ¢ is conver on I, \; > 0 and

Z)‘i =1, then
i=1
i=1 i=1
Cauchy-Schwarz inequality yields the following,
(by + c2)(bz + cy) < (b* + *)(y? + 2°),

so we have a neat expression

2.2 2 2

Z(bercaz)szJrcy) Zz<b2ic2)<y2izz)- (*)

cyc cyc

Now we are given that a > b > ¢, it follows that

1>1>1:>a2>b2>02
b2+62_a2+62_a2+b2 b2+62_a2+62_a2+b2’

a? >0 > and

2 2 2

, so by Chebychef’s inequality, from (*
Y2422 T a2 422 T a? 4y Y Y Anatty )

a? x> 2 2
Coe (75 (#5) o Loy BrE e Pz (3)° 1
3 =73 3 - 3

thus we are done.

Remark. The last inequality follows from a well-known inequality chc e 2 %

We just prove the case when x;,y; > 0, once this case is proved, we can see that the inequality
is also true for x;,y; < 0. By Cauchy-Schwarz inequality, we have

n 2 n n

i=1 i=1 =1

n 3 n n n n 3/2 n 3/2
(zxiyi) Yy (zy) - <Zx?> (&3) .
i=1 i=1 =1 i=1 i=1

i=1

3/2

By Jensen’s inequality, since ¢(x) = x*/2 is convex, we have with a; + a2 +---+a, = 1 and

a; > 07
¢ (Z aﬂi) < aip(w),
i=1 =1

,1=1,2,...,n, then

S|

in particular, we take a; =
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It follows that

Alternatively,

(22 uyi>4 < (; M)z (i(uym/z)z X:L::cy (Z 1> 3 iyf’

i=1

1 2(1 — b%c)
38. Z T 2% >0 Z 0T 20%) > 0. Removing all denominator, we have

> (1 =b7e)(1+ 2ca)(1 + 2a%D) > 0

cyc

Making good use of the symbol of cyclic summation, we are able to expand it effectively.
On direct expansion, we get

a?b+b2c+cFa+1
4

a?b+b%c+cFa+1
4

(abc)3/4 (abc)?,

> (abc)?.

We know that by AM-GM inequality, > (abc)3/ 4. We also claim that

but it is equivalent to
abe(l — (abe)®) >0 <= abe <1,

the last inequality follows from the identity a + b+ ¢ = 3, so we are done.
39. By Cauchy-Schwarz inequality, we have
VETE Vath | J@IPP 1
a2+ Va+b T (a2+0)Vat+b Va+bd
hence the original cyclic sum will have a neat lower bound,

vad + b3
Sy

a® + b2
cyc cye

vt

now we try to expand it, while due to the homogeneity of the original inequality, we normalize
to ab + bc + ca = 1, thus it becomes

Z chc\/ch\/m (aerJrC)ZCyC\/lJric2
o \/a+ /T.,.(a+b) (@+b+¢)/TLyela+b)

From the direct expansion and AM-GM inequality, we have (a + b+ ¢)? > 3(ab + bc + ca),
thus we have a + b+ ¢ > /3. Moreover, we observe that

V1+a2> L@ —1/v3)+2/V3,
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thus
-1, PRI B A _ 6
§\/1+c 22( +b+ \[) 72 2(\f V3) +6/V3 \[
it follows that
Z\/m <+b+c>zcyc\/1+7 6

pv a2 +b2 ~ (a+b+¢) /] (a+b+c) Hcyc(a—&—b)’

we are done.

. To be added.

. To be added.

. Let \; = 27263 and let z; = b—z in the inequality Z iz | < Z 3.
i=1Yi i i=1 i=1

-1
. Observe that Z r/- 1, we have
T

cyc

1) > <Z\/m—1> — ViFyTe> Y Veol

cyc

THy+z= (Zm) (Zx

cyc cyc cyc

. We see that 4 + 922 = (3 + 2+ 2v/3z) (32 + 2 — 21/3x). Cauchy-Schwarz inequality gives us

D VA4 922 < (Z(3x+2+2\/§)> (Z(3x+2—2\/§)>

cyc cyc cyc

- (3237—1—6)2— (2@2@)2

cyc cyc

= 9(2:,:) +12-3+24) "z —24) /3y

cyc cyc cyc

By the fact that xyz = 1, we have Z Vry > 3, we also let u = x + y + 2, and hence

cyc

9(2}:) +12-34+24) z—-24) 1y

cyc cyc cyc

< \/9u2+122,ﬁzy+24u24z,@

cyc cyc

= \/9u2 +24u—12)  \/ay

cyc

9u? + 24u — 36.

It suffices to show that 9u? + 24u — 36 < 13u?, this inequality is equivalent to (u — 3)? > 0,
this is indeed true for any u, and hence we are done.
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The original inequality is equivalent to Zx3y3 + Zx2y4 > Zz yz? + ZzQ 222, By

cyc cyc cyc cyc

Muirhead Inequality, 3 > 2,34+3>2+4+2,3+3+0=2+2+ 2, yielding.

Zx3y3>zx222z>zm3y3>zw222

sym sym cyc cyc

2
We are left to show that Z 22yt > Z 23yz? = Z % > Z L By AM-GM inequality,

cyc cyc cyc cyc

1
we have 3 Z z > 1, while by Cauchy-Schwarz inequality, we have

cyc
!
yoei(x) ey
cyc cyc cyc

e
+b—|—ab*

2b+1 b
Observe that ;_i_( b—:— a)b =a— p— Z b thus the inequality is equivalent to Z

1. By AM-HM inequality, we have
ab 1 3 1
- - <z 1 b) =1
O EIET R Ier e S DO

By Cauchy-Schwarz, we have

2 2
Cch2c—|—a+b—2 ﬂcyc\/2c+a+b*2

Method 1. For every s > 2, observe that

sS—x >—3$+1+23
Vst+ax—2 2V/s—1

s —

x
\/s+x—2’

F'(D(xz—1)+ f(1), letting s = x + y + z and summing them up, we have

this inequality follows from the convexity of f(x) = and the fact that f(z) >

Z s4a I.M_i.s_;m > 3
\f Vs+a—2 \/5 2\/8—1_\/§ Vs—1 7

the last inequality follows from AM-GM inequality.

cyc

1 a+b 1 s—c
Method 2. Let s =a+ b+ ¢, then — _— = —. Wi
\[% 2c+a+b—2 ﬂ;m

see that Z Vs—2+4c(s—c) Z e > 452, on the other hand,

cyc cyc Vs —2+c
(Z\/s—2+cs—c> <Zs—c s—2—|—c)Z(s—c)
cyc cyc cyc

352 — 65+ 25 — Z a2> (29)

cyc

IN

I
SN N

1
35% — 4s — 352) (29)

= —5(25% — 3s).

w
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_ 25343
LZ s—c > \/gs _ V3 5 > 3.
V2 Vs—24+¢c  V/25—3 V2s—3

cyc

As a result,

We first let (a,b,c) = (a®,b3,¢3). By direct expansion and cancel out all denominator, we
have

Za12b3c3 n Za9b303 " Za6b303 < ZaMbQCQ i Zalgbc—i- 2@12.

sym sym sym sym sym sym

Comparing the sums of the like power on both sides and applying Muirhead Inequality, we
are done.

We divide both sides by (kiks . ..k,)™, then

" al " a " am "L a1, as, A, "
. o R E > g N i .
et I L [T 5 k T\ 4 k1 ko km
i=1 1 i=1 "2 =1 i=1

a;.
We let k; = ﬂq/a?f +al +---+a and let x;; = k—z: such that

EE

33

m m m
Ty, oy, ety =1

o g g =1

m m m
Ty + Ty + 0+ Ty, = 1,

and the inequality is equivalent to

n
E T1,%9; ~ Ty, < 1.
i=1

But from AM-GM inequality, we have

n

n n m m m m n m n m
Ty, T Ty, + Ty, Zi:1 Ty, + Zi:1 Ty, + o+ Zi:1 Lo,
T1.29, T, < =
1;42; m; m m
=1

= ]_7
=1

we are done.

5 6
Observe that Za5x6 = Za55/11x66/11 <y <Z a“) (Z xll) <L

cyc cyc cyc cyc

By the extended Cauchy-Schwarz inequality, we have

3 3 b3 3 b 3
DDA S S B PRI R LA Chl ki
x x oy oz 3x+y+=z)
cyc cyc  cyc
applying this inequality once, we have
3 3
Z x < (z+y+2)

1+ y2rz ~ 3(34 9zyz(z+y+2))
It remains to show that

34+9yz(z+y+2) <6 < 3ayz(r+y+2) <1 < 3zyz(z+y+2) < (zy+yz+ 2x)?

the last one holds as we know that (a + b+ ¢)? > 3(ab + bc + ca), hence we are done.
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Although there is no any term with power 3 in numerator, extended Cauchy-Schwarz in-
equality also gives us a nice lower bound,

a? a? (@a+0b+c)?
—_— > = > .
%; b(ma + nb) ; ab Z(ma—l—nb) = (a+bte) ; b(ma +nb) ~ (ab+ bc+ ca)(m + n)

cyc

It suffices to show that (a + b+ ¢)? > 3(ab + bc + ca), this is indeed true.

We use the usual substitution, (a,b,¢) = (x +y,z + z,y + 2), x,y,z > 0, then the original
inequality is equivalent to 23y + %2 + 232 > 2yz(x + y + 2). Finally, the last inequality is
2
easy enough to see by noting that =3y + y3z + 2%z = zyz r + L + Z), we are done.
z x Yy
Note that (a® + 1)(a® + 1)(b% + 1) > (a®b + 1)3, we are done (you can see what happens
when (a,b) = (b,¢) and (a,b) = (¢, a)

~—

We see that

3
a+ba+b+c a a a\{fa a+b b a b ¢ a slabla+b)  Vabc
. i e e I Z e a2 ) > 2
3 3 <3+3+3)<3+ 6 +3>(3+3+3><3+ 2.3 * 3

b
Finally, % > Vab does solve the problem.

Use Y & (a+b+0)” h lower bound 3y —%— i > Ly,
se — ) once, we nave a new lower poun a C
pycx_3x+y+z) p” +c2 76

since (a? +b? +¢?)? > (ab+bc+ ca)? > 3(abbe + beca + caab) = 3abe(a+b+ ), we are done.

The left inequality is obviously true. To go through right inequality, we first determine
the position of a,b,¢,d and ¢ + d — b. Observe that the inequality will change nothing
if we interchange ¢ and d, so without loss of generality, we assume that ¢ < d, finally
c+d—b<c¢c < d<bweknowthata<c+d—-b<c<d<h.

Since f(c) + f(d) < fle+d—b) + f(b) = TS [ =Fflerd=b)

b—c ~ d—(c+d—-b)
equivalent inequality is obvious by convexity.

. T 1 \/g
ST 32 o _E 37\/§
x S( (5)2 )(33 3)+ o

Well T havent rigorously check its validity (one variable case is simple, differentiation!), at
least it is true for = € (0, 7) with the aid of graph plotting, hence replacing = by respectively
a, b, c and adding them up, we get desired result.

We observe the ineqality

Define h(x,y, z) = xy +yz + zx — 2zyz = z(x + y) + (1 — 22)zy. Without loss of generality,
assume x >y > z,since l — 2z =z 4+y+z—-2z=x+y—2z>0, h(z,y,z) > 0. Now
define f(z,y) = h(z,y,z), we first keep z fixed and let z,y to be variable. In this way
since x +y + 2z = 1 x + y is also fixed, but zy can still be varied. Let two constants
A=z(x+y),B=1-2z then

2
f(x,y):A+Ba;y§A+B<x;’y>

The equality holds if and only if x = y, we now force = and y to be equal and move z, i.e.
find the maximum of F(z,y,2) = f(z,y). By  +y+ 2z = 1, we have z = 1 — 2z, then
F(z,y,2) = g(z) = 423 — 522 + 22. Now ¢ =0 = z = % or £, g"(3) < 0, we have
9(x) < g(3) = 5
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S V@ @ =Y a

cyc

cyc

‘/1+(1;b)22§a<\2 <T)1)+¢§> =

CHAPTER 2. SOLUTIONS

3v2
2

——, here

we have used an inequality v1 + z? > %(m ~1)+v2.

b b
By rearrangement inequality, Z % > Va+ Vb + Ve+3- M > \/a+ Vb +
Ve + 3.

We use Cauchy-Schwarz inequality twice,

cyc

LHS <

cyc cyc cyc

cyc

ZaQZ:ﬂQ—i— Zamey—i— Zamey

cyc cyc

IN

cyc cyc cyc

(Za2+zab+zab

) (Zaz2+2xy+zmy>

cyc cyc cyc

Vie+tb+e2(z+y+2)2=a+b+ec

9 9

x
By Cauchy-Schwarz inequality, > = , it suffices
Lhl 2 Ty Iy
9 36xyz .. .
to show that [ Tutuate > Bryz +17 this is equivalent to 9zyz + 1 > 4ny =
Ty cyc

4 Z xy(x+y+z)=4 Z 22y +12ryz <= 1>4 Z 2%y + 3xyz, finally by using the fact

cyc

sym

sym

that 1 = (z +y + 2)3, the last inequality is equivalent to

Z 3 + 3zyz > Z z2y,

this is true by Schur’s inequality, >

cyc

cyc

We denote Y =7 .

(a)

By wusing Cauchy-Schwarz inequality
once, we get

sym

x(x—y)(x—2z)>0.

Recall that z; > 0,i = 1,2,...,n, we

have

2
(222)? = (Sl ®?) < Swiyad,
*)
Again, by Cauchy-Schwarz inequality,

in S \/ﬁ 21’37

plugging in this into (*), we are done.

Sy

m k—1 m k—2
. Zzz < in
Zmi

5% <1l
k=2 2. jop 2T

Sat?
< Zx;ﬂ ==
2

that implies uma™ ™ <
uma;
ging in this into (**), we complete the

We prove by inducting m. Suppose the < .
induction.

statement holds when m is replaced by

m— 1, i.e.
1/(m—1) (c) Replace 8; by ¥ and multiply both nu-
Z?:l T < Z?:l x?fl merator and denominator a scale L =
no n ' lem(by, b, ..., b,) on both sides of in-

equality, we can note that every f; is
replaced by a L($*) € N. Hence with-
out loss of generality, we can assume
< b2 wkihat B; € N. Then by using part (b),

(**)

In exactly the same way, we have

(S 1) = (Sl /207
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we have
Bis Bis 1/m
e N ——
Z?:1$i+..-+a?i< Z:L:lx:n++x:n
g - 8

65. We see that the original inequality becomes
a’b+bc+cta>a+btc = (a®b+b%c+Fa)® > (a+b+c)d(abe)?,

by simplifying this inequality, we get

Z a®b® + 2 Z a®b*c? + 3 Z a*b*c > 6 Z a*b>?.

sym sym sym sym

66. First the original inequality is equivalent to

Yyz 1
Lo erera Sy
’ 1
y—z TYZ - -
<Z <“y><$+z>> SR M )

finally we simplify it to

and we see that

1 1
xyzzm <71 Bryz < (x4 y)(y + 2)(z + ).

cyc

67. We see that 3_, . Sflj;‘zc >3 <= > ,.(a+3)(3b+ca)(3c+ab) > 3[]

3u=a-+b+c, 3v2 = ab+ bc+ ca, w? = abe, then the inequality becomes

(3a + bc). We let

cyc

Aw® + B(u,v) > 3u® 4+ C(u,v) <= f(w®)= 3w’ + Aw® + B—-C >0,

here A is a constant, B and C are two functions independent of w. Since f is concave, it
remains to prove that f > 0 when w? is maximal or minimal, both happen when either
a =b (two of them are equal) or ¢ = 0 (one of them is zero), up to permutation.

In case if a =b ==z, let c =y # 0 (if a = b, then we exclude the case ¢ = 0 as they are
mutually exclusive events), then the inequality becomes

z+3 y+3 x 2
2 >3 <= |——-1| >0.
3x+xy+3y+a:2_ (y ) -

18
In case if ¢ = 0 (then a + b = 3), the inequality becomes ab < - this is true because

ab < § i < g
~—\2 T
68. Denote the area A(x, ), one can show that the expression of A is

A= %((27 — 2z 4 2z cos ¢) + (27 — 22))xsin g = (272 — (2 — cos ¢)z°) sin ¢.
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For fixed ¢, A attains maximum when

27

v 2(2 —cos @)’ ®)

sin ¢
2—cos ¢

use differentiation to find the maximum of the latter factor, but we stick on “elementary”
way. Observe that

1 - 2 u= COS 1 - - 2
sm¢ cos _u=2-cos¢_ / (u 14 4 _3 7
— cos gb — cos (;5

2?;‘0? 3 becomes a quadratic polynomial of %, by completing square again, maximum is

attained when % = %, this means u = % =2—cos¢p = ¢ = 60°, plugging in this into (*),
we get x = 9.

this results from completing square. It follows that A < % ( ) One may intend to

. By Hélder’s inequality, we have (af +1)(a$+1)(a?,; +1) > (a?a;41+1)3. Define ap 41 = ay,
taking the product [];—, on both sides, we are done.

. - . 1 d? 1 z+1
. The inequality is equivalent to Z(l —a)ln o >1n9. As el (I1-2)n )= e
cyc

conclude that

chc(l_a’)ln% a+b+c 1 1
32(1 3 >ln a+§+c <:>Z(lfa)lna21n9.

cyc

In general, for a; +as + - -+ a, = 1, 1 g 1 @ .. glman < replacing a; by

npn—1)/2

we get desired inequality.

_ %
D ai
. Method 1. We first make a usual substitution (a, b, ¢) = (cot «, cot 3, cot ), where «, 3,7~ €
(0,7/2), then by the fact that tan®z + 1 = sec? z,

1 1
H <a2 + 1) =512 <= Hcosa: 2073
cyc cyc
The Cauchy-Schwarz inequality tells us

2
Zsmaxk—ZsmaZZﬁj_ (Z\/cosa> > ,

cyc cyc cyc

©
»&S
o

on the other hand,
AM GM 3 63 V126
(%;sina) <3§sln 04—3<3 ;y;cos oz) < 3(3—8):8 B CycsinaﬁT.

Combing all results together, we get

V126
4

9v/2 9 3
xkEZSinaxk’Zl—[ = k>

w2 3
T V126 VT

cyc

the equality can hold, it is whena =b=c= (not necessarily the only case).

Sl
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Method 2.(From my net friend) Since

1 1 1 11 1 1 1 1 !
512—<1+a2) <1+b2> <1+62)_1+<a2+b2+02>+(a’2b2+b262+02a2)+a2b262

3 3 1 LY L)
S (abc)3 " (abc)s - (abe)? <1+W)C)§> - <1+(1§)2> |

it follows that

3
9 37

Method 1. Observe that from holder’s inequality,

a? 2 a+b a ’
<Z(b+c)2> > — Z<Cycb+c> '

cyc cyc

Recall that a® + b3 > ab(a + b). Now observe other two inequalities

2

Deye @ a+b 1Yo d® a
gy > d = > .
abc ~ zy; e MY UTae T Z (b+c)?

cyc

Combining all above, we are done.

Method 2. By direct expansion we know that the inequality is equivalent to
Z a’b + Z atb? > Z a’b’c + 6a2b202,
sym sym sym
so by Muirhead’s inequality, we are done.
To be added.
It is enough to prove the case when n = 2, we see that

x x 1+ + x2y2 + x3y?
1Y1 T 2Y2 _( 1 2) (y1 + 12) <0 1Y2 2Y1 > w122y s

rT1t+y1 T2ty 1 tatyrty2 2

Direct consequence of Schur’s inequality.

2abc + 1
Use % > (abc)g/ 3 then use Schur’s inequality and muirhead inequality once.

Since both sides are symmetric polynomial of degree less than 5, by uvw method, it suffices
to prove that the cases a = band ¢ = 0. If a = b, let a = b = x and ¢ = y, then the
inequality becomes

22+ 0242+ 22y +y > 2(x +y) + 22y,

this is obviously true. The case of ¢ = 0 is similar.

Since

zy Sl @ty 1 a? y?
l‘2+y2+22274$2+y2+22274 $2+Z2 y2+22 ’

2 2 2
M§£+y—. This is
a+b a b

a useful upper bound, by general holder we can show similar inequality of higher degree,

the last inequality follows from Cauchy-Schwarz of the form
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so feel free to use AM-GM to get upper bound! We can always do something thereafter.

Finally we note that
1 x2 y? 3
4Z(z2+z2+y2+22 Ty

cyc

this is from direct expansion and the identity (a +b)(b+c)(c+a) =Y.  a%b+ 2abc (for

simplicity we let (a,b,c) = (22,92, 2?) first).

sym

1 at+1+ ¢ a+1+ ¢
We see that _ = £ < —<—_ Denote
;a—l—bQ—l—c?’ Czy;(a+b2+c3)(a+1+%) - czy;(a—l—b—i—c)2
S =a+b+c, we know that S > 3, now
1 Seela+1+1) 1 S+S+1s2 1 2
< = = _—_(3+58 < ——3— =—- 4+ 2 <1
Czy;a+b2+c3— 52 A +Czy;“)— 52 375°
. . . Q; A
By the given inequality we know that — < 7 < 5 50

A A
on simplification, a? + (BZ) b? < (; + b) a;b;. Having taken summation on both sides,

we apply AM-GM inequality once, then

the result follows from some algebra.
Consider 1 <2< ---<n—1land 1/n<1/(n—1) <---<1/2, and argue a little bit more.

Think about the tangent line a®> > 6(a —3) +9, or consider the inequality a? + a? + % > 3a.

ab? 3

By subtracting a+b+c on both sides, the original inequality is equivalent to Z — < -,
p b2+1 7~ 2

this is easy to prove since LHS < - # = %chc ab, finally the inequality (3_,,. a)? >

32 eye ab will do.

Observe that chc VT = chc NGTR %7

T[S _ [apr2p
Zﬁg nyzy_\/ Y2 _\/ ryz

cyc cyc cyc

—9)2
Let u = zyz, it is enough to show that M
u

3
< 5\/@ this is equivalent to

4
4u—2)2 <9u? <= 5u+16u—16>0 < (u+4)bu—4) >0 — uz ¢

)

recall that u = ayz =2y +yz+20+2>2 > %, we are done (in fact no equality).
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2.2 Integration

85. (a)

1
Let I,, = / (1 — 2°%)™ dz, then integrate by parts, we have
0

1

1
L,=0—2". 2| — n/ z(1 — 2°°)""1(=50 - 219) dx = —50n1,, + 5001, 1,
0

0

hence a recurrence relation arises,

I, ([ 50n
I,_1 \50n+1)"

Now substitute n = 101, the answer will be 5051.

1 _

1—2x)e” 1+2 v

Let I = / ( z)e + (1+ 2z)e dx, substitute x = —u in the first integral,
0 (eac + e—ac)?) (eac + e—a:)?)

we have

1 . 1 2 1
1+2 . 1+2 1
I:/ (1+2zx)e e da::/ ﬂdx:f / (14 2z)d(e** +1)72.

_1 (em 4 e—7)3 . ¢32 1 (22 41)3 4/,

Integrate it by parts, we have I =

4 — 2 _ -2 1 1 de”
dz3¢ —e” / ¢ finally by the

4 *3 _yem(e2r +1)27
1 1 T T

x(x2+1)2:x_x2+1_(x2+1)2’

formula

we have

e2

T (2 + 1)
Having seen that the answer is such simple, we may guess alternative that is more
simple would have eixsted.

/“/2 sin N /”/2 2%(—sin nJC) (—dz)
—ry2 (27 4+ 1) sinz x2 2%(27% +1)(—sinz)
/”/2 si%lnx dx/ﬂm Asinn:c' d
—r/2 Sinx —r/2 (27 +1)sinz
I = /”/2 sinnx. d — /”/2 si?nx dr.
—rj2 (2* +1)sinz 0 sin z

w/2
I():O and 11:/ dr =
0

thus we have

Carefully seeing that the pattern can be further simplified, we try to produce a term
that can cancel out sinx in the denominator, for n > 2, we have

/2 — 1)z -si 2 2
I,—1, 2= 2/ cos(n - Jo sinz dx = sin ((n - 1)Z> =— cos (nl) .
0 sinx n—1 2 n—1 2

When n is odd, we put n = 2p — 1, where p > 2, and then

™
ITL:]épfl:IprS:"':Il:i.
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When n is even, we put n = 2p, where p > 1 such that

2(-1)P*
Ioy — Iy, o = ————
2p 2p—2 2p 1
2 2 (—1)pH
In=3 (lp—Tp2) =) 1
p=1 p=1 P—3

If n is negative, it can be seen that the integrand is an odd function, we are done.

o . . ™ sin® na .
By the substitution x = —u, we get an equivalent integral, I,, = —— dz. Again,
0 ST
our aim is to get rid of the nuisance, sin z, in the denominator, we do so as follows

Jo—1, 1., :/ sin(2n — 1)z .
0

sinx

We repeat this process,
Jp — Jp_1 = 2/ cos(2n — 2)xdx =0,
0

and consequently J, = J,,_1 =--- = foﬂ dx =, thus I, = (n — 1) + I; = nm.
Method 1. Define

® tan~ 7z —tan"lx 1 >
I:/ T dx:/+/ =T+ Jo.
0 T 0 1

here the results follow from integration by parts

1
1
R A (e e e K

and

o 1
Jo = IILH;O Inz(tan™! 7z — tan" ' 2) — /1 Inx (1 n ?7"37)2 15 m2> dzx.

Since from Jq,

lim Inz(tan™! 7z — tan~' 2) = lim = Inx(7 — 1)z = 0,
z—0 z—0

and from Js,

1 1
lim Inz(tan ! 7z —tan™'z) = lim Inx | cos™! ——— — cos ! ——
z—00 z—00 (rx)? +1 z2+1

. 1 1
= lim 1nx(—> =0,
T—00 T T

we have

i 1 T
I= = 1 — d
Ji+ Jo /0 nx(1+x2 1—|—(7rx)2> x,

it can be solved by substitution z = tanf and z = tanf/m respectively, yielding
7T
I=—Inm.

This method is clumsy, however, calculation can be further simplified by the following
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method.
Method 2.

*® arctan rx — arctanx >
dr =
0 0

T
s 1/00 1 T
= — 7dxdy:/ —
/1 v Jo (1/y)?+a2? 1y?

1
z/ Ly
2y

T
—Inmw

2

yeYy

o 1 _ 00 :2
/ 1 COSydy:Q/ sin®(y/2) dy
0

0 yey
o0 1 1 9
=2 —/ d (sin“(ty/2)) dy
o ye¥ Jo (sin(t9/2)

1 oo
= / / e Ysin(ty) dy dt.
0o Jo

The inner integral can be computed by integration by parts twice, thus

/Ool—cosacd%:/1 275 dt:ln—Q.
0 re® 0o t°+1 2

(g) Similarly,

L tan~lz Lot dx
I=| —f/—dr= d(tan™! B
/oxm ! /0/0 (tan ™) A=

:/01/01 (1+(yx)i)mdxdy.

Substitute x = sinf, we get an equivalent integral

1 /2 1
I=2 dzx dy.
/0 /0 24 y? — y?cos 2x vy

We next substitute t(x) = tan x, note that ¢ is bijective on the interval [0, 7/2), a unique

3r 5
pre-image is to be obtained in the computation (It is, for example, tan™'(c0) = g, but not g, ?ﬂ’ e ) .
We get another form of the integral

1 [eS) 1 1 1 00 1
1= —————dzd =/ / dx dy.
/0 /0 @+ 02 YT ey (PR e

From integration table, we get

I /1 ! fan~! x ) d 7r/1 Ly
= — | tan”T T —Y—— Y= —dz.
0o Vy2+1 1/(y*+1)], 2 Jo Vaz+1

Finally the substitution = = tan 6 suffices to compute this integral

w/4
I:I/ sec@d&zzln(ﬁ—i—l).
2 o 2
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(h) To be added.
(i) To be added.

(j) The substitution & = tan 6 can reduce the integral into one we are extremely familiar,

/ 2 -1 w—tan 0 tanZ6 — 1 B sm 0 — cos? 0 &0
(

—  dr—/— | ——df =
22+ 1)V1+ a2t V1+tantd V'sin® 0 + cost 0

(1—cos 29)7(1+COS 20)

- Vi 2<%2 !

(sin? @ + cos? 6)2

B \/5/ cos 26 1 d(sin 26)
V2 — sin? 26 V2 \/2—sin229'

The formula of the type [ \/% can be found in integration table, yielding

/ z?—1 dp — s — (sin(2 arctan x)) Lo
(22 +1)vV1+ 2t V2 V2 '

(k) To be added.

(1) Define a, = [, sni=cosna gy, By writing cosnaz = cos[(n — 1)z + x|, one gets the
following:

cosnxT — cosna
= cos((n — 1)z)(cosx — cosa) + cos alcos(n — 1)z — cos(n — 1)a]

— [sin(n — 1)z sinz — sin(n — 1)asina].

Divide both sides by cosz — cosa and integrate w.r.t x over [0, x|, the first term on
RHS vanishes,

G = COBG Gy 1 {(2) /7r sin(n — 1)z sinz — sin(n — 1)asina de
2 0 COST — COS a

1
=cosa-an_1+ §(an —ap—2),

7 sin(n—1)z sin z—sin(n— l)asmad
0 cosa: cosa

this easily follows from the identity cosz — cosy = —2sin Ler sin Z5¥. We transpose
terms to get a, — 2cosa - ap—1 + an—o = 0. Fortunately thls recurrence relation is
nice cno_ugh. It is a routine calculation to solve it with ag = 0 and a; = 7, so we get
an = e,

here we have used the observation that a, —a,—o = (—2)

86. By AM-GM inequality, it is not hard to show

[[ [ia@lae= ([ 1n@ne - fwpr) (2.9

We prove it as follows: If one of [ |fi(z)|dz = oo, the inequality is trivial. Let’s assume
fi € L*(R) for all 4, we then fix an € > 0, set a;(x) = |fi(2)|/([g | fi(x)| dz+ €) and integrate

LS L ai(z) > (172, ai(z))'/™ both sides over R, we then get:

L flfilde (T 1A de
n = Jelfilde e ™ (T (f Ifil de + )"

(1>)
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and (| can be proved by setting € — 0. In the proof the term € is to avoid the case that
Je | fl \ )| dx = 0. Its useful discrete analogue (whose proof is exactly the same) is:

n n
H (ZaU) = (Z A15Q25 - Anj Un) )
=1 >j=1 =1

where n, k > 1.

(a) Let p € [1,00) be given. If [.|f(z)|dx = oo, the inequality is trivial. Assume now
f € L*(R), by applying (2.2)) once:

</Rg(y)||f(:c— |dy> /Ig Wf(x -y |dy</|fx_ |dy>

= | / 1”W)I1f ( — )] d,

-1

and since || f * g[|? < [p (Je lgIIf(x - )|dy)p dr,

% gllP p—1 p _ - Pl glIP
1+ gl < 711 / / P —y)| dyde = | FI2] ]2,

here the change of order is valid by Fubini’s Theorem (which can be done if one of
[[1f(z,y)|dady and [[|f(x,y)|dydz is finite), so we are done.

When p = oo, one has

1 * (@) < /R £ — 9)g()| dy < /R £ — )l dyllglloe = 1 F11l19ll oo,
as it is true for all z € R,

1] * glloo =2 sup [f * g(x)| < [[f]l1]lglloc-
z€R

(b) As |z| = oo, |f(z)| — 0, there must be zo € R such that f(zo) = sup,cg|f(z)],
this can be shown as follows: If f = 0, done. Assume there is 1 € R, |f(x1)| > 0,
then there is ¢ > 0 so that |z| > ¢ = |f(z)| < |f(z1)| (clearly |z1] < 0), and
sup f([—6,6]) = max f([=0,0]) = | f(z0)| = [|f]|oc, for some zo € [0, J].

Now the problem is readily solved. Let |f(z0)| = sup |f(R)|. Set n = 2 in (2.2), the
celebrated Cauchy-Schwarz inequality, with f; = fQX[J;o,oo) and fo = f' 2X[x07oo), then

TP [ @R = [ (pde [ 1f)de
[, e | [intas |
> (/m f(w)lf’(w)ldw)Q

> (" s dx)2

Al
4 bl

oo
and of course [, - > fIO -, we are done.

87. To be added.
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Integrate f'(t) = 6t + /2 + t2sin®t from t = 0 to t = x, we have f(x) = 5 + 32 +
ngE V2 + t2sin® t dt. Since the last integral is an odd function in z, it follows that

—2

2 2 2 T
/ f(x)dx:/ (5+3x2)dx+/ (/ \/2+t231n2tdt)dx—20+24+()—36.
92 -2 0

The series converges since

1 < 1
nn+1)---(n+k)  n2(k-—1)2

We let m = Zf:o %_;7_7 then 1 = 25:0 (073 HOSJSk (x +])7 for all x € R. By
T
1y (k
choosing suitable  we can deduce that 1 = a,(—=1)"rl(k — r)! < a, = %, which
implies

1 1 k k\ (1)
TR S RecEa RE DM (b o

r=

Since desired answer is an integral, for this end by binomial expansion and integration,

Zk: <f> % = (=" /01(1 +a)fa ! da, 2)

r=0

Combining (1) and (2), we have

n=1k=1 n=1k=1 r=0
[eS) oS -1 1
Yy [ gt
n=1 k=1"0
(@) n e 1 k,.n—1
=) (-1) Zy(l—kx) " dx
n=1 k=1""
1
—Z/ (e —1)(1 —z)" dx
n=170
() e T n—1
(e =11 —a)" " dx
0 n=1
1 kn—1
(*) is true because % < ik To see (**) is true, it is natural to consider the

inequality e* > 1+ = e * > 1 — z. Before we can take reciprocal, we make sure
that right hand side is positive, so we choose x € [0,1), then a very nice upper bound

e’ —1< 1 T i obtained, for € [0,1), so

— X

X

(e =11 —z)" ' < (1—z)" ' =21 —2)""% vz e0,1).

1—=z

We note that this inequality is also true for x = 1, so the above inequality holds for all
z €0,1].
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Let f(z) =Y p_ (" —1)(1 — 2)*~1, clearly f,(0) =0 and when z # 0, we have

(@)l = D (e = 1)1 —2)* "+ (" ~1)
k=2
< ix(l — )" 4 le — 1
k=2

This shows that {f,} is uniformly bounded by e and lim,_, f exists for each = (point-
wise convergence is justified), so from bounded convergence theorem (which will be
mentioned latter on in measure theory),

1 1
lim ; fn(ac)dx:/o lim f,(z)dz,

n—oo n—r oo

that is equivalent to saying that
n 1 . 1 et — 1
li (1 —2)de = :
Vlirgo];/o (e Y1 —x)" da /0 . dx

. Define g(z (f f@) ) - faw f(t)3 dt, differentiate once, we have

24() [ 10t~ (0
= 1) (2 [ e~ [“ae)
—2((@) [ 500 - f @)

Since f'(z) >0 — f(x) > f(a) = 0, we have ¢/(z) > 0, and hence

g(x) > g(a) = 0.

Thus the inequality follows.

. Splitting the integral into two parts, we have

[ sttos ([ +) o

For any e > 0, there exists a ¢ such that |z — 0] <0 = |f(z) — f(0)| < =. We now fix
2
this 4, it follows that

[ iwa [t row) < [t e [ -
o W24 a2 T a2 e = e T R 2™

Also there is o > h > 0,

s
h ™ o
7o . o d —_ = — t -1 o .
[ it O de = 510 = 0] frant - 5 <
Since integrable functions are bounded, so there is ¢’ > h > 0,
1
h h(1 - 6)
72y g2 @ de <3 sup |f sup |f(x)|dr < e.
/5 h? + 2 we[01] |[f()l| = 52 ze[0,1]| ()]
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So adding these 3 inequalities when h < min{o, o'}, we have
1
h T
" de — =
[ @iz =3 10)
&

h * h
S’/ w0 [ a0

92. We prove this by Sandwich Theorem, since Now we fix this 6 and find that
f(z) is continuous on [a,b], it must attend

its maximum value in this interval, we de- b . " et N " L
note this value as M, then / f@)"dz ) > / f@)"da | > (M—e€)(26).

-5
(**)
Combining (*) and (**) and letting n — oo,

b *
(/ f(a:)”d:z:) <M(b—a)v. (*) we have

+ < 3e.

5 - 1
/ h f(0>d$—2f(0)+’/6 #Jc(@dﬂ?

0 h2+f1;2

On the other hand, there exists at least one n—o00
¢ € [a,b] such that f(c) = M. As f(x) is N

continuous at ¢, for any given ¢ > 0, there . b "
- lim fl)"dz] —M|<e
a

b o
M —e< lim (/ f(x)”dx) <M< M+e

exists a & > 0 such that 0o
|z —c| <0 = |f(z) — M| <e. we are done.

93. Forany a > —1 and n € N, we have (14-a)™ > 1+na. We can prove this by induction on n or
by the fact that f(x) = (1+2)™ is convex when n > 2 such that f(z) > f(0)+ f'(0)(z—0) =
1+ nzx. It follows that

/1(1—1;2)”de/1(1—nx2)dx2/ﬁ (1-na®)de = .

1 1 —

94,
[z] <z <[z]+1 = alz] < ax < alz] +a,

[az] < ax < [azx] +1 = —[az] — 1 < —az < —[ax],

sum up these two, we have
alz] —laz] =1 <0 < —[az] + alz] + a
= —1< [ax] —alz] < q,

1
hence for any = > 0, we have |[az] — a[z]| < max{l, a} = b. By the substitution z = —,
u

[ (e[t oo

o0 1 *°  dx
/1 |[a3n]—a[:1c]|ﬁdat</1 b'ﬁ’

(oo}

since

* dx
the convergence of / b- — implies the convergence of /
1 x 1

|[ax] — alx]| dx, thus /100([aa?]—

alx]) dx converges.
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95. (a) The inequalities e=*" > 1 — 22 and e >1+22 = e < T2
x

Since lim;_, o I(t) exists, the sequence I(n) also converges to the same limit (this can
be proved by simple e-N reasoning). Now

are obvious.

n*f/ 7(fz dI>\/>/ 1713 _x=sin6 \/>/ 2n+10d9

integration by parts n ) 1 (2%)” 2 (*)
2n+1 2n+1\(2n—-11/) "~

In:f/ ~(vna)* dx<f/ 1+ (D — dx
A

z=tan 6 /2 2m—9 n (2n — 3)!! 2 T
"29 49 = o — 1) (TN T e
[ \/ﬁ/o o8 1= <(2n - 2)!!) > 9

When n — oo, combining (*) and (**) and by Wallis’s formula, we have

A
@ < lim e_”“'2 dz < @
2 A—00 0 2

96. In solving first order ODE, we are introduced a tool, integrating factor, we now bring this

tool into play, having
1
/ d (e_””f(x))‘ =e
0

1
o d
/|f |d$—/oe dr

97. Since both 22 and f(z)? are positive, we have f’(x) > 0, this shows that f(x) is strictly
increasing and hence we are left to show that f(z) is bounded. In other words, showing

d

4 (e f(x))‘ dr >

(e_$f(x))‘ dx > /01

lim f(z) <1+ % implies the first stuff we are asked to prove.
Tr—r0o0

The fact that f’(z) > 0 implies the fact that f(z) > f(1) = 1, it follows that f'(z) <

PO integrating both sides, we have

N

R R e R e
) — — ———ay = - —
1 yr+1 Y 1 yr+l Y73
transposing terms, we get

flx )<1+ Vo >a = lim f(z) <1+ >

T—r 00 4

98. In exactly the same way we are able to deduce that for any (integrable) decreasing function

f(@),9(x) €R,
b b b
| ra@dn = o [ s [ g@)a.

applying this once, we have
b b
) do = (“; )/ f(z)dz

b 1
/a () (~F @) dn >
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Note that > f(z7)g(zi*)Ax; = Z/ 1 fx))g(zf*) dx, we have

‘Z resrery| ' f@)gla) o
<Y [ irhoter) - St de
<Y [ et - fa)ato)] + eate) = (o)) de
=2 / Dllgar = g@)| + lg@I1f () — f(@)]) da
<Y [ et @It (Dlato))

The fact that f(x) and g(z) are integrable implies that there exist M and N such that
[f(z)] <M and |g(z)| <N,

and for any € > 0, there exists a § such that

€
|IP| <6 = Zw[ziﬂml AxZ,Zwrl L (9) Az < W N

Hence, we conclude that

b
‘Zf(xf)g(x?*)A%—/ f(x)g(z)dx| <

For any z € [0, 1], we see that

(M+N)=e

M+ N

o M fl@) M
=10 (55~ ) 20 = = A

integrate both sides from 0 to 1, and use AM-GM inequality on right hand side once, we are
done.

Define f(t) fo |x(w)| du, since x(t) is continuous = |z(t)| is continuous, thus the integral
defined in f makes sense. By the continuity of |z(u)|, we have f'(t) = x(t), thus
d

Ft) S M+Efit) <= — (e Ff(t) < Me™ ™ = kf(t) < M(e* - 1),

dt

it follows that
lz(t)] < M+ kf(t) < MeM.

1
Since / f(@)g(z)de = (/ / > x) dz, by the change of variable y = —x to the

former mtegral we have
[ @+ oy a =
0
for any g such that the integral makes sense.
For the sake of contradiction, suppose there is an a € [0,1] such that f(a) + f(—a) # 0,

it is no loss of generality to suppose that f(a) + f(—a) > 0, then due to continuity of
f(z) + f(—=x), there exists a § > 0 such that

z€la—d,a+0] = f(z)+ f(-x)>0
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Now g(x) is arbitrary if it doesn’t affect integrability (that means it can’t be too crazy), we
are free to take g(x) satisfying

>0 xz€la—0d,a+ 4]
>0 z€]0,1] —[a—0d,a+ 0]

(f(@) + f(=2))g(x) {

then
a+d

/0 (f(@) + f(~2))g(x) dz > / (F(@) + f(~2))g(x) dz > 0,

-5
a contradiction, thus f(—z) = f(z), for all z € [0,1].
Remark. Any funny setting of g(x) is fine once you can derive any contradiction. For
example, we can take g(x) > 0 when x € [a—4, a+0] and g(x) = 0 when z € [0,1]—[a—§, a+7].

Then the integral will also be bigger than zero, same contradiction arises.

Simple computation gives us ff’w | sinx| dz = 2 and we observe that

g . 01 x  km\, .
/0 f(x)|smnxdx—/_ﬂnk2_:1f <n+n> | sinz| de,

this can be shown by the change of variable z = y/n and breaking the integral fom =
S J: (’;::1)#' Finally, we shift the integrand and the function to the left by km unit.

1 & k I, (k !
Now we can “feel” that — E f (z + —7T> ~ — E f (—W> = / f(am) dz when n is large,
n n_ n n n 0
k=1 \ , k=1 \ ,

Tn Yn
we expect

04 k 0 1 9 7
nan;o/_WE;f(g+%>|sinx|dm~/_ﬂ</0 f(mﬂ')d:c>|sinx|dm:;/o f(z)dx

“__»

We now prove that “~” is actually a

Since f is continuous on a closed bounded interval (a compact set), it is uniformly

continuous. For any € > 0, there is a 0 such that |zx — yx| <d = |f(zr) — f(yr)| < 2i
7r
||

We see that |z, — yi| = —. So for large enough Ny,
n

€
n>N = |z -yl <d = |f($lc)—f(yk)|<1

As a result, when n > Ny,

[ 33 stsnstan= [ 25 stwisinelas) <5 [ 23 lsnalar= £ )
.’L'k; sinz|dz yk sinz|dz 4 _ﬂnk:l sinx (17—2

On the other hand, as continuity implies integrability on a closed bounded interval, so

€
<Z,SO

1 ¢ !
for any € > 0, there is a Ny such that n > Ny — |— Zf(yk) —/ f(z)dz
n 0

when n > No,
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0 n 0
/wi;f(yk)sinﬂd:c— [w (/01 f(zm) d:c) | sin x| dx:

Adding inequalities (1) and (2) and applying triangle inequality once, we have

0
<i[w|sinx|dz:§. (2)

0 .n 0 1
n > max{Ny, No} = / %Zf(xkﬂsinaﬂdx—/ (/ f(mr)dac) |sinz|dz| < e.
0

T k=1 _T

T 2 ™
:/0 f(z)|sinnz| dx :;/0 fx) dx

104. Let ¢ € [0,1), |f(x)] < M for all z € [0, ¢], then

¢ 2n ¢ 2n _ n 2n+1
dx| < nM de = —M
n/o flz)x*"dx| <n /033 v =g Me ,
hence .
lim n/ f(z)z*" dx = 0,Yc € [0,1). (*)
n—oo 0

Finally, for any € > 0, there a § such that 1 —§d <2 <1 = |f(x) — f(1)] < 2¢. Now

1

n+1

n f(l)‘
n o) dy — =2
- (x) )
! 2n ! 2n ! 2n f(]')‘
<In f@)z="dx —n fz*" dz| + |n fa*" de — ——
1-6 1-6 1-6 2
<21 (1—(1=8)>") + ‘an : (1— (1=t — ;‘ f(1)

now we take n — oo on both sides, having

. ! 2n f() ok
lim n f(z)x dm—2’<e. (**)

We see that by (*) and (**),

([ o

<0+ e€=cF,

but € is arbitrarily small, we must have

f(1)

1
lim n/ f(x)z®" dx =
0 2

n—oo
1
105. Denote I,, = n2/ (V1+am —1)dx, let y = 2™, then
0

1
Y1 -1
I, = n/ iy% dy.
0 Yy
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Now by the fact that for each fixed y there is a ¢,

1 between 0 and % such that (Taylor
series of (1 4 y)* with remainder term, 3 terms in total)

0<n(Y1+y—1)=In(l+y)=(1+y)" 7 (In1+ y))Q%,

we have
1 1 1
In(1 1 1 14+ y)» (In(1+ 1
In—/ n(1+y) dy‘</( y)" (In(1 +y)) Jh dy
0 2n Jy Y
<1/1(1+ yryntld
=2 y)ry Y
1 (/1
< o <y+1 y» Ty
2n Jo \n
1 /1 !
§(+1>/ y=dy
2n \n 0
on+1
- 2n(2n+1)’

here we have used the fact that In(1 +y) < y and (1 + y)» < Ly 41 (then do direct
integration).

Finally we can prove that

1ln1+ 1 11n1—|— 1 1 1
/ Myndy_/ (y)dy’S/(l_yn)dy: ,
0 0 Y 0

Y n+1

then by adding the two inequalies, we get

1
In(1 1 1
In—/  Clut) I L T
0 2n(2n+1) n+1

this inequality shows that lim,, ., I, exists and the limit is f ! In(1+y) dy. The evaluation of

0 Y
1 In(1 . . .
fo w dy makes use of uniform convergence. Here is a sketch, first express In z in power

series, do termwise integration, the resulting series has a well-known limit.

We first deal with the integral, by geometric fact,

k+1 1
/ :L‘ln((x—k)(k—l—l—:b))dw:/(m—%—i—k—l—%)ln(m(l—x))dx.
k 0

1 1/2
Observing that / (z—3n(z(l—2))de = / zlog(3 — 2%) dx = 0, we have
0 —1/2

k+1 1
/ xln((x—k)(k—i—l—m))dx:(k—i—%)/ In (z(1 — )) da.
k 0

We can evaluate the last integral by first finding its anti-derivative and taking limit, but we
have an aha! way to compute this instead of mundane method. Note that any function is
symmetric about y = x with its inverse function. In our case, we need the inverse function
of f(z) = Inx, namely, f~1(x) = €, hence

1 1 0
/ ln(a:(lfa:))dz:2/ lnxda::—Q/ e’ dr = —2.
0 0 —o0
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Plugging in all results in the original sum, and by the particular partition of Riemann sum,
we have

j.—
g5
——
3
YRS
()=
x5
N
—
>
+
[a
8
—
=]
—
8
|
x5
S—
—
ol
+
—
|
&
Nt
o,
3]
~
——

107. To be added.

2.3 Evaluation of Limit

108. (a) We mainly use the fact that f(x) = T, (z) + o((x — x9)™). Consider

n

y= H(coskx)%,

k=2
then when z close to 0, we have

2
cosz=1— > 4 o(z?) and log(l4z) =z + o(x)

2!
and hence
- "1 k222 9
logy—zklogcoskxzzk(— 5 o(x ))
k=2 k=2
"\ —ka? 1,
= Z 5 + Z %0(33 )
k=2 k=2
=3 =5 o),
2
k=2
SO

1 < o(x?)
- _§Zk+ 22

k=2

-1 1L . o(@?)  (n+2)(1—n)
gllg%) 2 5;_2/6—&-91% 2 4 '

n
(b) Since [[ V/1 — kx is continuous at 0 and hence the limit is of % type, L hospital rule
k=2
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can be applied.

ﬁ\k/‘l—kx—l i—%n(l—k@)%

. k=2 . r=2 (1 - TI) " k#r
lim ——— = lim
z—0 sSinx x—0 COST
n
-3
r=2
=1—n

(¢) To be added.

(d) We use Taylor expansion with remainder term (just showing the order of infinitesimal).

n*(a+1) Tk

1% 429 + ...+ n® 1 (a+1)(1% + -+ +n%) —nott  h,
I,=n — =
notl a+1

7 = Ahy (a+1)n® —nott 4 (n — 1)o+t _ (@+1)—n+(1-2)2(n-1)
tAk (@D - -1)0) (a+DI- (-5

Recall that (1 +2)* =1+ az + %xz + o(z?), note that we also have

i 0 g s (0o (L) <o (1),

n—oo

hence

a+ C¥(0é271) nT_l + O(l%) o+ (o) 1 Stolz theorem

lim J, = lim —=— = 2 = ——— lim [,.

n—oo n—00 (OL + 1) (Oé + @) (Ol + 1)(0&) 2 n—roo

109. Define p,, = (1 +a1)(1 4+ a2)--- (1 + ay), then
An, _(a’ﬂ—’—l)_l_p‘:i’:l_l_ 1 _i
(I+a)(l+az) - (1+am) Pn Pn Pn-1  Pn
We see that

i an ! 1
—(l+ta)lta) - (I+a) p1 Pm

Since pn, = (1 4+ apn)pn—1 > Pn—1 = {pn} is strictly increasing, we have only two possibil-
ities

(@) Jim pn =400 (e TE2L0+ 2)

(b) lim p, < +oo (eg. [, (1+ 7).

oo
an,
In both cases, we can conclude that converges, thus
;(1+a1)(1+a2)~-~(1+an) &
lim In =0

n— 00 (1 + Cll)(l + Clg) ce (1 + an)
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110. We see that

albn+~~~+anb1
n

N
Zk:1 agbp_j41 —ab
n

— ab‘

n

1
+ = Z larbn—k+1 — abn—ky1 + abp_jy1 — abl

k=N-+1

N
Zk:1 agbp_41 —ab
n

-N
n ZZ:N+1 bn—k+1llar — al I Z:N+1 albp—k+1 — b n ZZ:WNH albp—k+1 — b
n n n

Now N is suitably chosen such that

N
> (arbn—g+1 —ab)| < e

k=1
n>N — jan —al <e
|bn, — b| < €
1 n
=Y albpgpr b <€
N g=n—N+1

Morever, {b,} converges implies that {b,} is a bounded sequence, suppose that |b,| < M,
for any b € N, then it follows that

Gbn b o gl e PN ey ” ae+e < (M +a+2)e
n n

111. To be added.

112. Notice that a, =+/T+as+ -+ an_1 > 1, for all n > 2, 80 ap41 > +/n, thus lim,_, a, =
co. Note that the recurrence relation can be written as a?,; = a2 + a,, so foil 1, and
by Stolz theorem,

. Gn+1 — Ap . 1 1 . Qg
lim ———— = lim ——%— = - = lim —.
n—o00 (’rL —+ ]_) —-n n—oo | + ntl 2 Nn—=00 (U,

113. Let N € N such that
|tnk‘ < €

n>N —
lan, —al < e

Since {a,, } is a convergent sequence, there exists a positive M such that |a, —a| < M,¥n € N.
Then

_a|

N n

=3 b = |<z+ 5 )tnkmk o
k=1 k=N+1

< Z |tnk|lar — al + Z |tnk|lax — al

k=N+1
<MN€—|—6:(MN+ 1)e.

114. Observe that

>t ka _

n
Dk=n+1ka _a
n2 2 '

‘Zk N+1 ( —9)| .,

[\

Since each term on right hand side is arbitrarily small. we are done.
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On the other hand, we can show the result by stolz theorem, since {n?} is strictly
increasing and unbounded, we have

lim (a1 +2a+---+nay,) — (a1 +2a2 +---+(n—1a,—1) . 1 n _a
n— o0 n? —(n—1)>2 nooo2p— 1T

that shows desired result.

To be added.
By equivalence of norm, there exist two non-zero constants dy, do such that di ||z]|s < [|z] <
d2||x]| 0o, in other words, there exists two constants cj, ¢y such that ¢; j|:|(i5||’y) < fhx_zny) <
Z|| o z
czf(_g,:’y), hence
1] o
lim qf(x_z y) =0 < lim qf(_a):,y) =0.
@y)—0 7] (@)—0 [[Z]loo
The original limit exists and equals to 0 if and only if
) e lyl )
im ok T = 0.
(a.9)—0 max{|z[, [y[9/*}o* max{|x], |y[*/m}
Now we try to study the limit case by case.
j|Ply|a=t >0 [y fyE > o
—ak— . 1k
. [y PRyl ] >y ()
(wy)—0 max{|z], [y|a/F} ok max{[a|, [y[r/myPm o g p=fmiglasle i [yn/m < g) < fylm

[P F|y| TP y[E < ] <y ™

Combining all results, we have quite a number of possibilities.

i) ép+q—la—nﬂ>0 iv) p—ak—ﬂm+%q>0 vii) X (p—ak)+q—np >0
ii) Zp+q—Ila—nB >0 v) p—pBm+ 2 (q—la) >0
iii) p—ak—Bm+2¢>0 vi) t(p—Bm)+q—Ila>0 vii) p—ak+%(g—nB) >0

To be added.

2.4 Sequence and Series

(a) First note that /k(k +4) +20 = (k+2)\/1+ (4/(k + 2))2, it conveys us some mes-
sages. As k increases, we have \/k(k +4) + 20 = k+ 2+ f(k), where f(k) > 0 as k —
oo. But only the integral part deserves our concern, so if k42 < /k(k +4) + 20 < k+3,
then everything goes smooth and we have [\/k(k +4) + 20] = k + 2. But when does

this inequality hold? Just solve the inequality we have k > 5.5, so the inequality is true
of k£ > 6 and thus the value should be 5+5+6+74+8+8+9+10+--- 4+ 102 = 5256.

a j2—1 n a

(b) zn:[\/%] = Z Z [VE] + Z [VE] = 2(2.7 —1)(j — 1) + (n — a® + 1)a. Finally
= )2

k=1 j=1k=(j—1 k=a? j=1
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n P n . n(n+1) .
we make use of the formulas jglj = g(n +1)(2n+1) and jg,lj == having
- 1
E Vk] = 6@(—2{12 —3a+5+ 6n).

k=1

119. Denote f(z) = u® + v3 + w? — 3uvw, to show that f(z) = 1, we first show that f/'(z) = 0,
then show that f(x) = f(0) = 1.

We know that f(0) = 1, it suffices to show that f’(z) = 0. Differentiating f once, we

have
f(z) = 3Zu2u’ - 3Zu’vw = 3Zu’(u2 —vw).

cyc cyc cyc

We also observe that v/ = w, v/ = u, w’ = v, it follows that

Zu’(u2 —ow) = Zw(u2 —vw) = Z(u2w —vw?) = szv - vaQ =0.

cyc cyc cyc cyc cyc
oo
From complex analysis, we know that e* = > z"/nl,Vz € C. Now for any real z, we
n=0
have
S z"
T __ i P
Dbl HD DI D D D DI -
n=0 n=0(mod 3) n=1(mod 3) n=2(mod 3)
" 1 " 3 z"
wr\ __ -z o= — - x
Re(e*) = >, =3 2 + 2 |w=3 2 at<
n=0 (mod 3) n=1(mod 3) n=2(mod 3) n=0 (mod 3)

here w is the cube root of unity. Transposing terms, we have

- In o 1 z 2 —(I)/2 \/gx
U= _O(ng)”! —36 +3e CoS 5
T —iz
120. Recall the fact that cosx = %, we have
n—1 n—1 P i n
Lk eszr/n _|_e—lk7r/n
Z(—l)k cos” () =) (-1) ( )
k=0 n k=0 2
1 n—1 n
_ 27 (71)]6 (n> (76i7r(72r)/n)
k=0 r=0 r
n—1

121. (a), (b) By taylor expansion together with the remainder, we have

1
2.%% , for some ¢,, between 0 and z,,. (*)

|z —log(1 4+ z,)| = ’M
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Since e* > 1+ x, for any = € R, we have x,, — log(1 4+ x,,) > 0, for any x,,. Moreover, either
one of convergences of > x, and > 2 implies that lim z,, = 0. Hence for given ¢ > 0,

n— o0
there exists NV € N such that
n>N = |z, <e = || <€

We require € < 1, then from (*), we have for n > N,

1 2 1 2
=22 <y —log(l+ ) < a2
S aztn < On—log(l+an) < 55w

This inequality is just enough to prove the statements by comparison test.

Method 1. Integration goes some way to attacking this problem. A series > u, () is inte-
b
grable and its anti-derivative converges to » / tn(x) dz if Y uy () is uniformly convergent
a
on [a, b].

Now since for any «x, excluding the points at which f(z) is not defined, lim tan 21 0,
n—oo

hence there exists an NV such that

1

< SiFT

tan

1 T
By comparison test, > 1/2¢*! converges implies Z—ntan2—n converges absolutely, and
1 x
hence Y 50 tan on converges uniformly.

o0

1 . sinz
,;Qk/o tan Zlncos =—In (H coS — ) =—In (Jl_}ﬂ(;lo 2718111271)
. : sy —1
I [(smx) <lim sin(x/2 )) 1 7 7
x n—oo /2" sin x

1 t 1 x

Now since Z tan — ok dt converges and, as proved, Z tan on converges uniformly,
k=12" Jo

we differentiate both sides, yielding

oo .
Z 1 T sinx — rcosx 1
T il

= ———— = — —cotux.
rsinx T
k=1
Method 2. Observe that
tanx — cot x = —2 cot 2z,
replace x by 5 and divide both sides by 2k that gives
1 z 1 T 1 T
oF tan oF = ok cot oF — SF 1 cot SE T
it follows that
o0 n
1 T 1 1 T o
ZQ—ktan = = nh_moz <2k ot oF 91 cot ok 1> = nh_{réo (zCOS2"s1n”” — cotm) = ——cotzx
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We use summation by parts,

n n—1 k n
E - kay, — E i—1 Qi
k=1 — _Lek=1 2ui=1 Yy 2 : a;.
n n -

We also know that lim a, =L = lim a1 +as+ - +ay

n—oo n—o0 n
n n—1 k n
. _1 kag . 1 Qi i .on—1 .
lim D@# — | lim M lim 4+ lim E a; = 0.
n—o00 n n— o0 n—1 n—oo N n—00 4 1
1=

We also use summation by parts,

Srparbr S b ai(be — begr) + 0 S0

bn, bn

= L, thus

n—1
We rewrite b, as > (bg+1 — bg) + b1, we have

k=1
n n— k n
Zk=1 ayby, _ k:ll(zizl a; — Zi=1 a;)(br — bry1) n b1 Zz 1 Qi
by by by '
hence we have
ZPI 012 =1 %

‘ZZ_l arby

N n—1
<z+ 5 )zaz e i)
k=1 k=N+1

i=k

For given € > 0, there exists an integer N € N such that

n

N
>3 ai(by = bra)

k=1i=k

<

1 €
|bn | 3

m,n >N —

m
> o
k=n

n

oy
a3 a;
b

moi=1

here we do not mention the petty details that how to choose such integer N. Altogether,

<e
3

< £
3

we get
> peq arby € by—byni1€e € bp —byi1 €
== < -t — -+ =1+ —+1) - <e
‘ 5t 5, 373 to, )3
1 1 o _ :
We obseve that ————— = — — —— then it is reminiscent of the formular of summation

n+l) n n+1
by parts! Write

1 1

k

write s, = > ia;, by = 1/k, then
i=1

n—1

b Sn—I-Zbk Z k_bk—H +b Sp = Zkakbk Zak
=1

k=1
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or
n n ) . n
S
n
k=1 k=1
2 ce n . . .
since we have shown that lim 2 e Sl sl N 0, by the arithmetic rule of operation
n— o0 n
of limit, we are done.
(a) To be added.
(b) To be added.
The result directly follows from tan~? 1 tan ! LI tan™! b if you reall
Y m? o — 1 m+1 Y Y

want how to derive this identity, please contact me.

One can also evaluate this by putting n = 1,2, ... and guess the value.

Having known the way to derive above identity, then this question is also solved directly.

Since
n+1 an n 1
11 :(n+1)!H(1+>7
g k-1 k=1 Ok
we have
- 1 an 1 an 1 1
H<1+>: +1':7'+7':"':7|+"'+7'+17
Pt a (n+1)! n!  nl n! 2!

by the definition of e, we are done.

Replacing z by 5%, we have T (2%) =T (Qkﬂl) =b- 5z log 5t. Now taking summation from

k=0 tok = n, we have T(z) = T(gﬁrl) + bx Y %log%, when n — oo, T(z) =
k=0

o0
T(0) 4 bz Y 3¢ log 3. We are left to evaluate the infinite series whose convergence is a

direct consequence of ratio test.

Note that log2x = 2logz — log 5, we replace x by 5% and divide both sides by 2k,
having

=1 T > 1 T 1 x T
ZQ’CIOngZé‘:Z(Qk-ﬁ-l 10g2k+1 _2k+2 10g2k+2) :210g§7
k=0 k=0

hence T'(z) = T'(0) + 2bx log 7, the initial condition tells us 7'(0), yielding

T(x)=1+2b <log2+wlog§>.

Observe that (loglog k)P1o8¥% = eplosklogloglosk _ (ppylogloglogk the question can be easily
2

solved. When p < 0, it diverges obviously. For p > 0, since k > e = plogloglogk > 2.

3

o0 o0
e 1 1
Take N = |e¢ ] +1, EN: TrlogTogTogk < kéN =k right hand side converges, and so does

left hand side.

It can be shown by induction that x, € (0,1) and hence z,4+1 = x,(1 — 2,) < z,. So
{z,} is decreasing and bounded below by 0, lim, . 2, = a € [0, i] To show a series
diverges, it suffices to compare 3 x, with other divergent series. For this end, we tend to

use comparison test or limit comparison test. Recall that % diverges, and the computation

n— 00 n n— 00 Tn n— oo

1 1
of limit lim :cn/ = lim n/ — = lim (1 —x,) = 1 — a is extremely easy by Stolz’s

theorem. thus the divergence of Yz, follows from that of 3 1.
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Easy job!
To be added.
1 . 1 .
Suppose b, < M, then — — < nM, it follows that a,y1 > ———. Since
Ont1  On nM + ;-
lim ! =MeR", >} di tradicti
nl—>ngo E M = 5 k=1 aj diverges, a contradiction.

The only nontrivial stuff is convergence of the sequence. It can be seen that since a; =
as =0 <1, s0 a, <1 by induction on n. Since it’s bounded above, we hope to prove it’s

2
. . . b
monotonically increasing. Observe that a,y1 — ap, = % (a"; — an>, SO Gp41 = Gn =

(ap—1)2>1-b < 1—a, >V1—-b < a, <1—+/1—b. This is true obviously when
n = 1,2. Suppose that’s true for n = k, k + 1, then

1
aryo = = (app1 + a2 +b) <

3 1-—VI-b+1—-V1-02+b)=1-+v1—-0.

Wl

The above equality (right one) also reveal that the limit is 1 — /1 —b.

1

Qp+1
an — a1+ & = Sy =+ 2k o Let’s define S, = >7¢_, 2L, then we get an equality

an—al—l—i =S5,+Sn_1.
Now by Stolz theorem,
) 1 1 1 1 ) S2
lm ——+—+...+— ) = lim {/—
a

n—00 n

Since ap41 —ag = i + , it is tempting to do a summation Zz;ll on both sides, yielding

2 2
if RHS exists lim Sn —Sh—1
n—o00 1

1
. anp —ay + a1
= hm _—.
n— o0 ap

So it suffices to know the behavier of a,,, it is clear that {a,} is increasing since ap+1 —a, =
= 1“ + ai > 0. Then next question is “is it bounded?”. Suppose it were bounded, then
there would be an M such that a,, < M for all n > 1, so agr1 — ax = aklﬂ + é > %, but
this is already a contradiction since this inequality also implies a,, — a; > %, ie. {an}
unbounded.

We get the limit 1.

Assume on the contrary there is ¢ € (a, b) such that none of subsequence of {z,, } can converge
to c. Then in particular, there is € > 0 such that {z, : n € N} N ((c —€e,c+¢€)\ {c}) = 0.
Since there are at most finitely many x,, = ¢, and hence there is a K € N,

n>K = x, & (c—¢,c+e).

Let L = [a,c — €], R = [c + €, b]. Each number in {z,, : n > K} lies either in L or R.

(i) If there are infinitely many n > K such that x, € L = x,41 € R, then {z,, — 2,11}
cannot converge to 0, impossible, hence there are finitely many n > K such that
Tp € L = z,41 € R. In other words, there is an N > K such that for all n > N,
Tp € L = z,41 € L.
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(ii) Similarly the above argument works when R and L are interchanged, and we can
conclude there is N’ > K such that when n > N’ 2, € R = x,.1 € R.

Now consider two possibilities of {xy, }n>xk, firstly, if there are infinitely many z,’s lying
on L, then there must be n’ > N, x,, € L, then (i) implies z,, € L for all n > n/, in this
case lim,,_,oo T, = b is impossible. Secondly, if there are infinitely many x,’s lying on R,
then (ii) implies there is an n” > N’ so that n > n” = =z, € R, and lim T, = a
becomes impossible.

Nn—r 00

(2—=2)(2j—1)—£(¢+1)
2j(25—-1)

139. The recursive relation tells us as,, = ag H?:l , none of a,, = 0 (due to the

range of £). We expand a bit:

n 27)(25—1)—(2(25—1)+£(4+1 n £(0+1 n
azn = a0 [[j . )2j((2(j£1) FAED = g, Ilj= (1_@ + 2J’E2j7)1)) ) = ao [[;-1(1=b;).
N————
I:bj

As b; — 0, there is an N such that j > N = 1—5b; > 0. For n > N, we have

ITj_ (1= b5) = exp ([T (1 = b)) = exp (S In(1 = b)) (2.3)

Asz — 0, In(1 4 2) = z — 322 + o(2?) (where o(z?)/z? — 0), so there is § > 0 such that

lz| <6 = |o(x?)| < 2®. We may assume N is large enough so that |b;| < J for all j > N.

Thus from ([2.3),

H?:N(l - bj)

exp (Y n(=b; = 303 + 0(2)))
= exp (E?:N (—% - % - %b? + O(b?)))
Xp (— Z?:N % + An)

exp (= X7y 1) exp(4n),

I
o

where A,, := Z?:N(*zfgéjﬂ) — 3b2 + 0(b3)). It is clear that A, is convergent, so e is
bounded below by a constant C' > 0, n > N. And by considering the graph of y = 1,
YNt < Jyoisde=Inn—In(N - 1),

H;'L:N(l _ b]) > Cexp (7 Z?:N %) > Celnn‘H»ln(Nfl) =C(N - 1);_

- n

Finally

= ‘ZnZN ap va:_ll(l — by) H?:NO B bj)’
= Joo TL5' (1= 0] [ L (1 =)

> Jao TS (1= )| [aw COV = )2

= —'—007

‘anN A2n

this proves the divergence.
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84
2.5 Binomial Identity

2010 2010 /2009
By the fact that ( ) = (

k E \k—-1

2010

k=1

2009
1 2010
= —1)kt 1 — _—
2010 (kz—o (k+ 1)( A ) + 2010

By infinite binomial series,

o0 71 o0
(1—41:)1/2:;(”) =3
=, @2n—11
:;2 n! v

-3 ()

3 2010\ (—1) _”20:9 2009\ (-1)F
k) k+2010 £\ k k+2011

2009

CHAPTER 2. SOLUTIONS

n!

2009\ (—1)* /2010
g%(k:>k+2m1<k+1+1)
(1/2)( 3/2)-~(71/2—n+1)(_4)n$n

>. We subtract right hand side by left hand side,

L1
2010

We use diagonal arrangement to arrange the terms formed by multiplication of two series,

i.e.

() (20)-

On the other hand,

1

(1= 4a) 7)==

thus, we have

k=0
To be added.
If we do direct expansion, then
1=1 1=1 r=1

The first term vanishes since

iii;i;(lﬂ+r(§) (i)briiilfr(1y+r<f) <

S-S5 ()0

=3 (4w)
=0

()
- () ECR) - SEE

[eS)
— E 22nzn’
n=0

) — 2271.

2n — 2k

n—=k

)-

=(+(=1)* "
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n n—1
1/n 1/n 1
_ k+1 e _ k+11 1yl L
Let a, = E (-1) k(k)’ write it as a, = g (-1) k(k) +n+ (-1 = then
k=1 k=2
—1 —1 -
combining the identities (Z) = (n f > + (Z B 1)7 (Z) = %(Z:}) and E (fl)k (Z) =0,

k=0

1 n
we have a, = ap—1+ —, 80 a, =Y ;4 %
n

The last equality follows from problem

(a) If we count the number of ways to form a group of k people with m of them being
leaders, this is easily counted as (Z) ( 7’; ) On the other way round, we first choose
people to be leaders, then choose remaining people to form a group of k& people, this
will be (1) (27,

(b) To be added.

(c) To be added.

To be added.
2.6 Basic Counting
We denote 2 disjoint sets respectively A and B. For each number in [n] = {1,2,...,n}, they

have only 3 destinies. Either to be abandoned, either to be assigned to A or to be assigned
to B, hence in general we have 3" — 1 choice to put them into A and B. However, none of A
and B can be empty, we have 3" —1 — (2" — 1) — (2" — 1). Finally, since grouping C to A
and Cs to B is the same as grouping C; to B and Cs to A, where C and C’gnare two disjoint

-1
—2" 4+ 1.

subsets of [n]. We have to divide the number by 2!, hence the number is

Define s,, be number of way of distribution if tributed, it turns out to be an easy problem.

exactly n people have present(s), then With some basic counting technique, we can
6! 6! !
n—1 have — x 3+ — + — x 3! = 540.
| 3 191
= (b1 Y (n) i 41 23 312!
i—0 Alternatively, we define

setting ¢ = 1,2 and defining sy = 1, one can

n—1
have that s, =nb — Z (Z) Sk

So = 1, k=1
s1=20—1, . . .

6 G Setting n = 1,2,3 to get 3 linear equations,
sg=3" =227 +1, solving them we have s3 = 36—3—-3(26-2) =
s3=45-374+3.26 —1=2100. 540. I think this particular case can help un-

derstand how I defined such recurrence rela-
In case that all presents must be dis- tion.

We first define a symbol
a, = n people has at least 1 prize (n < 20).

Then our desired number is as.

To distribute one prize to n people, we have n+1 arrangements, that is, either distributing
to n people or abandoning this prize, so distributing 20 prize to them can be in (n + 1)2°
ways, including the possibilities that some of them may not have prize.
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But everyone must be awarded, we now construct an identity

an = (n+ 1) — N(exactly n — 1 people have prize) — N (exactly n — 2 people have prize)
—-+- — N(exactly 0 people have prize)

o et (e

with the convention that ag = 1,

when n =1, a; = 2% — 1,
when n = 2, ay = 3%° — 2a; — 1,
when n = 3, az = 4?° — 3a9 — 3a; — 1,

as you can see if we continue this process, since as is expressed in terms of a1, ag, a3, aq
and these four numbers can be found, we can obtain the expression of a5 after tedious works,

as = 620 — 21 x 520 + 64 x 420 — 81 x 320 — 48 x 220 — 11.

You would find that first 3 questions in this section are intrinsically the same! The
s
number ?2 is actually the number in the first question. For n different numbers, they are

assigned to 2 different groups, giving sg = 1, 51 = 2" — 1, 59 = 3" — 59— 257 = 3" —2"T1 41,

s 3 -1
Since each possible partition is counted twice, we have 2—2' =—3 - 2" 4+ 1. In general,
s !
the number —% is the number of ways to form k groups from n people.

k!

Let a,, be such required number. Define a'?) to be the string with length n ending up with

a number, we also let aﬁf) be a string with length n ending up with an operator. Then

an 2 a#)
=10 x a®, +10 x a0,

= 10a,—1 + 10(3 x agff)z) (a number must precede or follow the operator)

= 10an,1 + 300%72.
Finally the closed form is a routine calculation, with a; = 10, a2 = 10 x 10 = 100.
We first find the probability that Z?:l(ai —b;) = 0. In other words, if we let a;’s be positive

and b;’s be negative, the probability is same as finding the constant term in the following
expression (0 exponent)

1 ¢ /1 ¢
(6(x+x2+x3+x4+m5+x6)> (6(90_1+x_2+x_3+x_4+x_5+x_6)> ,

using the property that some function (e.g. (1 — 2)7%) is analytic for |x| < 1, one can find
36210119

the constant term by special trick. To save time, we use computer to get ——————, so the
36210119 544195584
bability of 2% a; 6 hiis1— """ ~(.93346.
probability of Y~ ja; # >, b; is FIA105584

As a simple case, we consider the constant term in

1 211 2
<6(x+x2+x3+x4+x5+m6)> <6(x1+x2+x3+x4+x5+x6)> ,
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73
this will be the probability that a; + as = by + bs. By direct expansion, we get 618 If we
count the probability directly, this will be

i # of possibility that a1 + as = k = b1 + ba (counting permutation)

64
k=2
:@(1—&—22+32+42+52+62+52+42+32+22+1)
73
=i

153. Let the collection of ages of these 10 people be C, define the set

S={xi+zo+ - Frp—(Tpt1+ - +an) i, €Cli#j = z; #x;,1 <k <n2<n<10}

n — k ages

Our aim is to prove 0 € S.

Suppose S does not contain {0}, then clearly since max S < 52+53+---4+60—1 = 503
and min S > 1 — (52 + 53+ - - + 60) = —503, | S| < 2 x 503 = 1006 and

1+ 2o+ T F Tpg1 + T2 + 00+ T, (*)

where z;’s are distinct and 1 < k <n,2 <n < 10.

Let x = min C, next define

Aj={z1+z2+ - +z;—2>0:2, € C\{z},h #k = z, # a1},
. 9 .
where j =1,2,...,9, then |A;| = ( _ |, because if there are
J

{a; e C\{z}:i=1,2...,5,h#k = ap #ax} and {b;e C\{x}:i=1,2...,5,h#k = by # by}
such that
a1+...+aj_$:b1_|_..._|_bj_x — a1+...+aj:b1+...+bj7 (**)

then (*) tells us {a; : i =1,...,5} = {b; : ¢ = 1,...,j}. Otherwise by cancelling possibly
the same term on both sides of (**), we would get a contradiction to (*). That is to say,
one combination of j elements in C gives us a unique value.

For h # k, A, N Ax = 0 due to the same reason (we don’t bother to write down the
detail that is messy). We also see that A; C S, so the number of “positive” difference is

= () () e+ (=3 () =2 1=

k=0

9
Likewise, we have negative difference —A; £ {—a:a € A;} C S, s0 S D |_| ((—Ap) U Ayg),
k=1

i.e.
9

1022 =2 x 511 =Y (| = Ax| + |Ag]) < |S]| < 1006,
k=1
a contradiction.
("3 -3(Bn-D-1) -1 3n*-3n+1
31(%) 2n (3n — 1) (6n — 1)

154. The total possible outcome is
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2.7 Function and Differentiation

Assume there is continuous 7 : [0,1] — M with (0) = (0,0) and (1) = (1,sin1). Let
v(t) = (x(t),y(t)), then continuity of v implies both = and y are continuous on [0,1].
Consider the closed set 271(0) := {t € [0,1] : @(t) = 0}, then tg := supz~*(0) < 1 (since
tg € l‘_l(O)).

Now x(tp) = 0 and z(1) = 1, and since ty is the only point inside [tg, 1] such that
x(tp) = 0, one has by intermediate value theorem,

a(to, 1] = (0, 1. (2.4)

For each a € [0, 1], there is a sequence t, > 0 such that ¢, — 0 and sin ti — a. By 1)
for each n there is s, > tg, so that z(s,) = t,, and hence

(sn) = (m(sn),sin @) — (tn,sin ;n) .

Now lim,, o0 2(s,) = 0, but {s,} has a convergent subsequence {s,, }, lim s,, = s for some
s > tg. Hence 0 = lim,, o0 2(8,) = limz(s,, ) = z(s). Since s € x71(0), s < to, we conclude
s = to, and y(to) = y(s) = limg y(sp,) = limy 00 y(sn) = limy, 00 sin% = «a. But ais
arbitrary, a contradiction.

Since [0, 1] x [0,1] is compact, f is uniformly continuous on it. Hence for any fixed € > 0
there is § such that |z — /|, |y — ¢¥'| <d = |f(z,y) — f(2',¥)| <e.

For any xayvx/7y/a
fzy) —g(2) < fla,y) = f@,y).
Hence if we pick y =y, s.t. f(z,y.) = g(z), then for all z,z’,y’,
9(z) — g(') < f(@,92) — (&, 9).

So we can now choose y' = y.,

9(x) — g9(z) < f(2,y:) = (@', ya)-
Similarly, from f(2',y") —g(z) < f(2',y') — f(z,y) for all x,y, 2, y’, one can choose y' = y,
(as defined above) and y = y,+ so that
g(ZL'/) - g((E) < f(x/a yl”) - f(xvya:’)
These two inequalities say that when |x — 2| < 4, |g(z) — g(2')| < e.
(a) To be added
(b) To be added
Let K be a compact set such that f|g\x = 0, then the inequality is trivial on R\ K and

thus it suffices to show it for x € K. Since we have finitely many such a;’s and s;’s, we then
invoke the property of compact set that any open cover has finite subcover.

Fix an z € K, there must be a s € R such that g(x — s) # 0, and hence there is a a > 0
so that f(z) < ag(z — s), which means that
ze{reR: f(x) <ag(x —s),Ja>0,3s € R}

— U U{xeR:f(x)<ag(a?—S)}

a>0seR

= U {reR:0<ag(z—3s)— f(z)}
—_—

(a,s)€(0,00) xR

= U F,; 1(0,00).

(a,s)€(0,00) xR

=Fqy s(x)
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It is clear that for each a,s, Fy s is continuous and hence F,;SI(O7 o0) is open. The above
inclusion is true for all x € K, we conclude

K C U {z eR: f(z) < ag(x — s)},

(a,s)€(0,00) xR

but RHS is an open cover, it can be thinned into a finite subcover, which implies there are
(ai, 8i) € (0,00) xR, i =1,2,...,n such that

K C U{x eER: f(x) < aig(z —s4)}.

i=1

Finally for each y € K, y € {x € R: f(z) < ajg9(x — s;)}, for some j = 1,2,...,n, and
hence

fy) <ajgly—s;) = fly) <> agly—s;),
j=1

and the last inequality is true for all y € K, and we are done.
To be added.

(a) Direct consequence of mean-value theorem.

(b) Let 1,22 be two consecutive roots of g, the cases 1 < 29 < 0 and 0 < z7 < x5 can
be solved by observing that z1g(z1) = z29(x2) = 0 (in that cases there is ¢ # 0 such
that cf(c) = 0).

The story is similar in the case 1 < 0 < x4, there is still ¢ € (21, 22) such that
cf(c) = 0. Recall that zf(z) = L(2g(z)) = z¢'(z) + g(z) = 0= cg'(c) + g(c), if
¢ =0, then g(c) = 0, contradicting that x1, x5 are already a pair of consecutive roots.
Hence ¢ # 0 and hence f(c¢) = 0, as desired.

Consider the Taylor expansion of f at a,

f// 9(1’,&) 2
L10wD) (o (@)

where 6(z, a) is a point lying between z and a. We mainly focus on z € [0,1] and a € (0,1).

fl@) = fa) + f'(a)(z — a) +

Taking z =0 and = 1 in (©), we get
f”(@((),a))

0= f(a) + f'(a)(~a) + ———=(a)?, (1)
0= (@) + @1 -a)+ D g g, @)

next we do the operation (1) x (1 —a) + (2) x (a),
(@ = U= (7 (0(0.0))a + £ (AL ) (1~ a) ()

Now we are almost done, take a € [0, 1] such that f(a) = sup f([0, 1]) = 2, clearly a # 0,1
(i.e. a € (0,1)), so dividing a(1 — a) on both sides of (**), we see that

ey = £ 0.@)ak 1)1 - a)

let ¢ = min{f”(6(0,a)), f"(A(1,a))} and observe a simple fact that a(l —a) < 1,

S16= 52> pr(0(0,a))a+ £ (601, @) (1—a) > c.
y a(l—a)
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We observe something simple first. There must be a fixed point of f on R (we will prove
later). That is, there is g € R such that f(xzg) = xo, after that taking o = b = ¢, we see
that (xg, o, z0) € R? is indeed a solution.

The solution for such kind of requirement must be unique. If there are two solutions
(a1,b1,¢1) and (ag,ba, c2), then a; = fo fo f(a1) and az = f o f o f(az), however, z — f o
f o f(x) is a strictly increasing function (since the monotonicity of x is strict), so the root
of z — f o fo f(x) must be unique, therefore, a; = as. Similarly, by = ba, ¢1 = co, as was to
be shown.

So we see the key point of this problem is to show existence of fixed point.

Method 1. Since z — f(x) is strictly increasing with lim,_, 1. (x — f(x)) = %00, so
there is zp € R such that zo — f(z¢) = 0.

Method 2. Let’s suppose there were no such kind of number. Then either f(x) > x or
f(z) <z for all x € R. Let’s assume the former case, then f(z) < z, taking f o f on both
sides,

fofof(x)<folf(z)
however, f(z) <ax = fo f(z) > f(z) Igr)f ofof(x)> fo f(x), a contradiction.

The case that f(x) > x for all x € R is essentially the same.

Let’s for the sake of contradiction assume there are just finitely many discontinuous points.

It can be seen that discontinuity must occur at the zero of f(z) (otherwise it is not injective),
let’s call this z¢ (i.e. f(xzo) =0).

There can’t be only 1 discontinuous point otherwise f((—o0,z0) U (zo, +00) U{zo}) =
[-0,00) = f((—00,20) U (z9,+00)) = (0,00), impossible (as left hand side is discon-
nected). So there have to be at least 2 discontinuous points.

Let D = {x1,29,...,2,} with 1 < zg < -+ < &, be the collection of all discontinuous
points (n > 2), then f is unbounded either on the left of x; or the right of z, (this is
due to piecewise continuity of f on [z, z,]), let’s WLOG assume it is unbounded on the
right. Then since f is increasing and continuous on (zn, +00), letting y = lim,_, + f(x),
fli=so,an) + (=00, 2,] — [0, 4] is bijective.

By “surjective” we mean
f((=o00, 1) U (z1,22) U+ U (Tp—1,2p) U {@1, 22, ..., 20 }) = [0, Y]
= f((—OO,l‘l) U (1‘1,]}2) U---u (xn—lvxn)) = [07y] \ {f(wl)v v 7f(xn)}

Here f(z;) =0 and f(z;) =y, for some distinct z;, z; € D (if one of equalities is false, then
from the last set equality left hand side is an open set in R (with the usual topology) while
right hand side is not). This implies

f((—OO,CCl)) U f((ajlv 1:2)) U---u f((zn—lvxn)) = (Ovy) \ {f(xlﬁ)v SERE) f(l'kn,g)};

i.e. disjoint union of n intervals = disjoint union of n — 1 intervals, impossible. Hence a
contradiction arises.

Simplifying a little bit, we see that f(x) + f (1 — %) =1l+z,nowzx —1— %, we have

(- or(st)
T z—1 T

to see what is f ( %), we let x — —ﬁ in the original functional equation, yielding

F(oty) Hiw=1- 1

r—1
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SO
3 .2
Lbe—fo) 41 oy~ =2 = fe) = G

Since X is compact, f(X) is also compact and hence if f~! is continuous on f(X), then
f~! must be uniformly continuous. So let’s suppose the continuity of f~! is not uniform,
then there is € > 0 such that for any n € N, there are x,, y, satisfying ||z, — yn| < % and
Ilf~ (2n)— f~1(yn)|| > €. Since X is bounded and closed, there are convergent subsequences
{f~Yan)}s {f ' (yn,)} with respectively the limits z and y. Closedness of X implies
x,y,€ X and from the assumption, ||z — y|| > €. So

v=lim [ (e,,) = f(@)=] (,g;n;o f-1<xnk>) = lim [ (f " () = Jim o,

k—o0 —00

Similarly, f(y) = limg—oo Yn,, since [|Tn, — Yn. || < nflk, fly) = f(z), hence =z = y, a
contradiction.

(a) The uniform continuity implies that lim,_,q+ f(x) exists, define the function

f(z) x>0
g(x) = lim f(z) =0

z—0t

we see that g is a uniformly continuous surjective map on [0, 00).

Suppose that there is a a such that there are only finitely many b’s, f(b) = a,
then there are only finitely many b’s. g(b) = a. Call the largest one of such b’s be
b'. Then for all z > V', g(x) # a, that implies either @: g¢((b,0)) = (a,0) or @:
9((b,00)) = (=00, a).

Now ¢[0,b] is bounded and closed, g(]0,c0)) = g[0,b] U g((b, 00)), that implies

9([0,00)) = ¢[0,b] U (a, o) if ® is true, g is bounded below
g([0,0)) = ¢[0,b] U (=00, a) if @ is true, g is bounded above ’

both cases lead to contradiction.

(b) V/xsin+/z is such an example.

We only have 5 possible cases,

(a) 0<a,b<1 (¢c) 0<a<l,b>1 (e) 1 <a,b
(b)y 0<a<l,b=1 (d) a=1,b>1
Among these cases, only the case 0 < a < 1,b > 1 is possible, other cases will lead to
b
contradiction. In this case, the identity given is equivalent to — —1 = 1— 7 <~ ab= a—2|— .
a

We know that a4 ;_ b > \/6%7 thus

ab > Vab = Vab(vVab—1) >0 = ab > 1.

Since that f is differentiable cannot imply the continuity of f’. Intermediate value theorem
fails to work here. We on the contrary define a new continuous function, g(z) = f(z) — yoz.
It can be easily varified that ¢’(a) = f'(a) —yo < 0 and ¢'(b) = f'(b) — yo > 0, then the
minimum value cannot be attained at the end point, the minima must lie somewhere else in
the interval (a,b), hence there exists ¢ € (a,b) such that

g'(c) = 0 (as attained minima) = f’(c) = yo.
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It is often easy to prove the converse to be impossible for this kind of problems. We on
the contrary suppose that f(z) # 0, Vo € [a,b], then either f(z) > 0 or f(z) < 0 for all
z € [a,b].

We assume that f(x) > 0, due to continuity there exists z¢ such that

(%) : f(x) > f(xo) > 0,Vx € [a,b]
However, we have the following observation.
1
Elyl € [avb]a f(yl) < if(y())
1

Jy2 € [a,0], f(y2) < §f(y1)

Sy € [0, £ ) < 5 (na)-

n

2
thus f(yn) < %f(yn,l) < (;) fYn—2) <--- < (;) f(yo). Since right hand side tends

to 0 as n — oo, there exists an N such that n > N = f(y,) < € < f(x0), a contradiction
with (*). The case that f(x) < 0 is essentially the same, hence there exists ¢ € [a,b] such
that f(c) = 0.

Alternatively, if we know that any bounded sequence have a convergent subsequence,
then this problem can be solved in a much neater way. As above we show that

2 n
7 < 51501 < (3) 1ol << (3) 1l va €N (o)

then since there exists a convergent subsequence {y,,} with klim Yn, = C € [a,b], thus
—00

taking limit on the proved inequality, we get

0 < i 11l =7 (i o, )| = 1566 < g (5) st =o.

k—o0

here we used the fact that a composite of continuous function is still continuous, we are
done.

Suppose on the contrary for all z € (zg, 1), g(z) # 0.
Define
G(z) = g(z)f'(z) — f(z)g'(z).

The map x K % is differentiable, for all x # 0 and the composition of differentiable functions
Log(z) = ﬁ is differentiable, moreover, the multiplication of two differentiable functions
f(z)- ﬁ is also differentiable, that means the first order derivative of ch
formula is given by

((g exists and its

g(z)

G(a) _ g@)f'(@) ~ fla)g'@) _ d <f<x>)
2 9(@)? da |

Now since f(z)/g(x) is continuous on [xg, z1], differentiable on (xg, 1) and f(xg)/g(x0) =
f(z1)/g9(z1) = 0, by Rolle’s theorem, there exists a ¢’ € (xg,z1) such that

& (6| = oy

a contradiction with G(z) # 0 for all z € (a,b). Thus the assumption is wrong and there
exists a ¢ € (xg, z1) such that g(c) = 0.

=0 = G(¢)=0,
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Suppose f”(x) # 0 for all real x, then we have either f” > 0 or " < 0 for all z.

Case that f” > 0:
f”>0 = fisconvex on R. Let u < x < v < w, then we have

JO T TOZTE ) > @)+ =2 r0) - )| )
T2 JEIZTO) ) > )+ Y= 0) - | @

Case 1. If there exist « and v such that f(v) — f(z) < 0, then by using inequality (1), we
have as u — —o0, f(u) = +o0.

Case 2. If there exist « and v such that f(v) — f(z) > 0, then by using inequality (2), we
have as w — 400, f(w) — +o0.

Case 3. Unfortunately if f(z) = f(v), then take a suitable value v*, u < z < v < v* < w,
such that f(x) # f(v*), same conclusion as above.

Hence a function which is convex on the whole real line must be unbounded on R, a contra-
diction with boundedness of f.

Case that f” < 0:
Let g = —f, then g is a convex function on R. We have proved that a convex function is
unbounded, hence g is unbounded, and hence f is also unbounded, again a contradiction
with boundedness of f.

To be added.

Let F(x) = [ f(t)dt, consider Taylor expansion about c, then

f'l0)

F(a) = F(a) + f(a)(z - a) +

(z —a)?, )

for some c lies between x and «. Since F'(0) = F(1) =0, let z = 0 and = 1 in (*), denoting
respectively the constant ¢ by ¢y and ¢y respectively, we get

f'(co)
2

F(o) + f(@)(~a) + L ()7 =0 = Fa) + fa)(1 - o) + T (1~ ap?

getting rid of the term f(«a), we get

/Oa £(z) da f'(co) o

f'(e1)
5 (1-a)+

2

= [F(a)|(a+(1-a)) = (1-a)a

maxo<gz<i |f’(:c)|
. AT

maxo<g<1 | f'(z)] . |1‘
< 9 4
x [f'(z)].

1
= — ma
8 0<z<1

1= a)(a)|

Just make good use of the expansion f(z+h) = f(z)+ f'(x)h+ 5 f" (x)h* + 3 [ (x+6h)h?,
for some 6 € (0,1).

For the first fact, we again use the taylor expansion f(z+h) = f(2)+ f'(z)h+3 " (x+0h)h?,
for some 6 € (0, 1), replace h by —h to construct another equation (remember to choose
different 0’s), subtract two equations, observe that 0 < 2Mq +2M;h+ Moh? for any h, while
discriminant < 0, we are done.
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For the second fact, in exactly the same manner we conclude that M;1 < \/2M;M; o
for all j < p — 2. Now we take product H?:m on both sides, having

V Mn+1Mm+1 S (\/i)n—m-ﬁ—l V Mn+2Mm~ (*)

Before we proceed, we first consider two cases. If M = 0, then the inequality we are
asked to prove obviously holds since right hand side is always non-negative. In case if
M, > 0, then we take the product H:;lo on both sides of (*), it results in

My -
MF < (]Mk2k(2 k+1)/2> M7]f+1-

(n is repalced by n — 1 for making the inequality seem better) We are interested in this
because it is a beautiful (in the sense of solving the problem) recurrence relation, we have a
direct consequence

Mo \P™% oo s

My \"*
_ o Qk(pfk)(2n72k+p)/2Mk )
Mk n+p—~k

k(p—k)p

Finally, we take n = k, M} < MgikaMg, done.

Remark. We have to take care that k — 1 is the value that m can take, recall that at the
beginning we introduce the product H?:m, that meansm <n, sok—1<n < k<n+1,
hence the choice k = n is possible.

f(0) =m < lim, 4 f(m)_fmw = 0. We define g(z) = f(x) — f(0) — maz, then given
equality can be simplified to
L (20) — g(a)
x—0 €T

=0.

Our next target is to show lim,_,¢ g(x)/x = 0, this is left as exercise.

d
Observe that |f — f'| = €” ‘dx(e_zf)‘, to tackle the problem, we have something to work

on the function e~ f, define g(z) = e~* f(x), then

gt)=e"(f'(t) = f(t)) < e [f'(t) - fF(B) < e,

it follows that
T x
/ g'(t)dt < / e tdt = f(z) < —(1+e %)e” < —e”,
0 0

this shows that lim, o, f(z) = —oo.

It is easy to prove that
f(x0) = o, 3wo € [0,1]. (*)

Suppose for all € [0,1], h(z) = f(z) — g(z) # 0, then either @: |h(z) > 0| or @:
h(z) < 0| for all z € [0,1].
For case (D, It follows from (*) that g(f(z0)) = g(z0) = f(g(z0)), that implies if zg is

a solution of
f(z) ==z, (**)
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then g(xg) is also a solution of f(z) = z, moreover, we assume that () holds, that means
xo = f(xo) > g(x0). If zop =0, then 0 = 9 > g(x0), a contradiction.

Suppose now xo > 0, again, since x; = g(xg) is a solution, z2 = g(z1) is also a solution,
while 1 = f(z1) > g(x1) = 22, it tells us we can inductively define a sequence z,11 = g(x,)
that satisfies

f(xn) = Tn
Xy > Tt (due to the fact that f > g)

xn, > 0 (if one of them is zero, then we get 0 = xy > 11, impossible).

Since {z,} is decreasing and bounded below, it is convergent with limit a € [0,1). Now
there exists u € [0, 1] such that h(z) > h(u) > 0, by taking x = x,,, we get for any € > 0,
there exists an NV € N such that

n>N = 0<h(u) <h(z,) =|rn — Tni1]
<l|zp —al+ |zps1 —a] <e.

That means a fixed positive number can be arbitrarily small, a contradiction. The case @)
also leads to a similar contradiction, we are done.

If f(0)f'(1) < 0, then from mean value theorem,
SO+ 1MW =1£0) = £ (W] =[]0 - 1] < 2010.

Suppose now f/(0)f’(1) > 0, say f'(0),f'(1) > 0, then by Taylor’s expansion with
remainder term,

fl@) =)+ f(cr)z (1)
fll@) =)+ fe)@=1) ...(2)
adding (1) and (2), we have
F1O)+ £1Q) + f(en)z + f(e) (@ — 1) = 2f (x). ()
3Le(c,1)

It is given that there exists a ¢ € (0,1) such that f(c) > f(1), it follows that f'(L)
f(c) f(l) <0, let z = L in (*) such that its right hand side becomes less than 0, we have

0< f(0)+ f' (1) < =f"(c1)L+ f"(e2)(1 — L) <2010(L) + 2010(1 — L) = 2010.

Similarly, when both f/(0), f(1) < 0, by the fact that there exists a ¢ € (0,1) such that
fI(K) = f(c) f(O) > 0, we can put x = K in (*) to make right hand side become positive,
this yields

0 < =f(0)=f"(1) < f"(c)K+f"(er) (K1) < [f" ()| K+|f"(c3)|[ K 1] < 2010(K+1-K) = 2010.
We see that wp(w) = 1, letting g(x) = zp(z) — 1, we have g(x) =0 for z = 1,2,...,2". As

g(z) is a polynomial of degree n + 1 possessing 1,2,...,2" as its roots, for some non-zero
constant C, we have

n
Hx—Qk

Call this H(x).
xT

g(@) = C [z = 2" = ap(x) -1 = p(a) =
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Now H(0) = C[p_o(—2%) +1 = C(-=1)" 1 [[}_, 28 + 1 = O(=1)nFlan(m+1)/2 1 1. As
p(zx) is a polynomial, its constant term must be zero, hence H(0) = 0, this implies

As p(x) is continuous everywhere, p(0) = p(limy_ox) = lim, o p(z), but the limit
lim,_.o @ now is of % form, we apply L’hospital’s rule once, this yields

p(0) = lim H'(z) = C lim a <H(m — 2’@))

z—0 z—0 dx
k=0
=cy [[2H=c ((—1)” Z2ZZ=0’€2—P>
p=0 k=0 p=0
k#p

_ ((71)n27n(n+1)/2> ((1)n2n(n+1)/2 i 2P>
p=0

= ZQ‘p =227,

p=0

e Let y =0, we have 0 < f(0).

e While taking y = —x, we have f(0) < f(z) + f(—2) = f(0) <z (% - %) for

all \ {0}, s0oz - 0 = f(0) <0 (for otherwise, f(0) > 0 implies 0 < f(0) < 0 when
x — 0, a contradiction).

o Altogether we get f(0) = 0, this also implies from the above inequality,
fx) > —f(-x). (*)
f(57)

e Observe that f(2"x) < 27f(z), we get f(z) < x( =
2n
f(z) < czx, for all x € R\ {0}. But in addition, f(0) =0

fz) < ca. (**)

e From (*) and (**), f(x) > —f(—x) > cx, we have f(z) = cz.

>, taking n — oo, we get

so for all x € R,

e By taking everything zero, we get f o f(0) = 0.

o If 2 =0, then fo f(y) = f(0) —y. (*)

o Let x = f(0),y =0, then f(2f(0)) = f(0), by using the identity just above,
£(0) = 2£(0) = £ (f(2f(0))) = f(£(0)) = —f(0) = f(0) = f(0)=0.

Now (*) becomes f o f(y) = —y. (**)
Taking f on (**) once, we see that —y = f(—y), i.e. f is odd.

e Replacing y by —f(y),
fle+y) = f(x)+ f(y),

so f satisfies Cauchy functional equation, in particular,
flx) = f(D)ax,Vx € Z.

Finally, by taking # = f(1), we get from (**) that f(1)? = —1, a contradiction.
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183. What we are asked to prove is the same as proving there is a a interval (—d’,¢’) such that

184.

185.

f(z) = f(0) =0
Case 1. Suppose that x > 0, then consider Taylor’s expansion about 0,
22
g(z) = ¢ (0)x + g”(hw)?, for some h,, lies between 0 and x. (*)
Now there is M such that |¢g"| < M for all = € J, so (*) tells us
2

g(x) > ¢'(0)x — M-

29'(0)
M

Now choose = > 0 such that ¢’(0)z — Mr—; >0 < §= > x. While since clearly

when z = 0 the inequality still holds, altogether
g(x) > 0,Yx € [0,0).

Let’s replaced = by x2t, but we still need z?t < §. Since t < x in the integration domain, if
we choose = < 61/, then 2%t < 2° < §, so when z € [0,5'/3),

oa*) 20 = 1) = [ gla)dt =0 1(0).
0
Case 2. Suppose now x < 0, let u > 0 and let’s replace x by —u, then we need to show
—Uu
fl=u) = / g(u?t)dt > 0.
0
This is quite clear since f(—u) = — f (u?t) dt, but g(u?t) < 0 for sufficiently small u > 0.

It remains to find such u (easy from (*) again). And this is true when u € (0,6%/3), i.e.
€ (—=0'2,0), so f(z) > 0 when z € (—§'/3,6/3).

Since f(r+1/n) = f(r) and f(r —1/n) = f(r), for all r € Q and n € N, so
m m—1
() - f(’”+n> = =10

and

-

for all r € Q and m,n € N, so f(y +
for all z € Q. As f is continuous, f(z

(") = s

x) = f(y), for all z,y € Q. As a result, f(x) = f(0),
) = f(0), for all z € R.

Method 1. Observe that

o< | " flan) day < / )l oy < / ) / " F(e2) duaday
S/OI /Ow/oi \f ()] ditndn_1 -~ day. ()

Since |f(x)| is continuous whose domain [0, 1] is compact (closed and bounded on R), so
SUP,eo,1] |f ()] < +00, hence from (*),

[f(@)] <a™ sup |f(z)],

z€[0,1]



98 CHAPTER 2. SOLUTIONS

so for each x € [0,1), f is forced to be zero by letting n — oo. Due to continuity, f(1) =0

since
f(l):f(lim (1_1)> ~ lim f<1—1> —o.
n— oo n n—oo n

Method 2. Suppose f(a) # 0, for some a € (0,1], we choose zy € [0,a] such that
|f(l'0)| = SUPg¢[0,qa] |f($)| For z € [07a]7

< | “1F @) dt < |f (o)l < |f(o)la,

putting x = x( in above inequality, we deduce that a > 1, but a < 1, so a = 1.
Hence by contrapositive, if  # 1, f(xz) = 0, once again due to continuity f(1) =0, a
contradiction.
186. WLOG we assume the leading coefficient of P is positive.

When r = 0, we are done. Suppose r # 0, we write
Qr(x) = —re"/"(P(z)e /). (*)
The proof constitutes 3 claims.

o We always get a biggest root of @, (x) that is larger than biggest root of P(x).

e Between two nearest distinct roots h, k (h < k), thereis ¢ € (h, k) so that (P(z)e™%/") |4ee =
0.

e Root with multiplicity e of P will give root with multiplicity at least e — 1 of Q..

The 3rd claim is easy, 2nd claim is direct consequence of mean value theorem.

Proof of 1st claim. From the graph it is intuitive that after the line (z, P(z)e~*/") passes
through the biggest root, we always get a point such that (P(z)e~®/")" vanishes.

Let’s make it precise. Let a be the biggest root of P(z). If (P(z)e™*/") # 0, for all
z > a, then due to continuity (P(z)e™2/")" > 0 or (P(z)e~%/") < 0, for all z > a. The
former case implies lim, ., o P(z)e™/" # 0, the latter case implies P(z)e~*/" < 0 for all
z > a, both are contradictions. So there is o/ > a such that (P(z)e™"")|,—a = 0, i.c.
Q- (') =0. O

We can now solve the problem. Let P = A(z — 1) (x — a2)® -+ (& — a,)®", a’s are
distinct, 22:1 e; =n and e; > 1. WLOG, suppose that e1,...,ex > 2 and egy1,-- 6. =1,
then @, can be factorized into a product of linear factors with degree at least

k

k
Slei=1) + r=1 + 1, =Y e+r—k=n
1=1 r distinct roots  largest root i=1

—_———
due to multiplicity

So we get all the roots we need, they are indeed real.
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Method 1. We show by sequential continuity theorem. Suppose there is z,, — a, due to

differentiability, for any € > 0, there is always a y,, € ((xn — %, Tn + %) \ {xn}) N I, such

that

Yn — Tn

<€
27

f(wn) =

now the following estimate will do

f(yn) = f(n)

Yn — Tn

Yn — Tn

[ (@n) = F(@)] < | f(2n) — — f'(a)

"

since with the chosen € above, we can find an N such that when n > N, |f/(z,,) — f'(a)| < e.

Method 2. We imitate the proof of sequential continuity theorem! Suppose f’ is not
continuous at a, then there is € > 0 such that for each n € N, there is z,, € (a - %, a—+ %) NI,
|f'(zn) — f'(a)] > €. Define

P ) o,
g(x) = Tp =T
|f/(xn) - f/(a)lv T = Tn,

it is obviously continuous when = # z,, and it is also continuous when = = z,, due to
differentiability at this point. Since g(z,) > € > €/2, so there is §,, > 0 such that when
y € (zp, — 6p,xn + 0,) NI, we still have g(y) > €/2.

1

Let {K, € N} be strictly increasing such that % < 0n, then if we take y = y, €
f(xn) B f(yn) - f'(a) > 6/2,

n n
for all n > 1, this is a contradiction as both z,,y, — a, T, # Yn.

(zn — K%m,xn + K%?) NI\ {z,}, we also have g(y,) > €/2, or

(a) Let’s assume on the contrary there is = € (a,b) such that f(z) > f(b). Let o € [z, b]
such that f(x¢) = max f([x,b]). Then for sure

fxo) = f(z) > f(b),

but that means g # b, hence z¢ € [x,b). But then since zg is a shadow point, there
is ' > xo so that f(z') > f(xg). If ' > b then b becomes a shadow point, that is
impossible. So we know that 2’ € (xo, ] C (x,b]. But we have f(xo) > f(z') > f(x0),
a contradiction.

(b) If f(a) < f(b), then a is a shadow point, not allowed, so f(a) > f(b). Now for

cach @ € (a,b), f(x) < f(b) < f(a), so f(a) = lim, o+ f(2) < f(b) < f(a) implies
f(a) = F(b):

Let ap = v2km, by = \/2km + 7, then we repeatedly use mean value theorem on the interval
lak, by] to get

f(by) —sinbi — (f(ag) —sina?) = f'(cx) — 2cx cos cz,
where ¢ € (ay, by). We rearrange the terms to get f/(cx) = f(bx) — f(ax) —sinb? +sina? +
2ci cosci. Since ¢ € (ak,by), hence ¢ € (2km,2km + %) and coscj > Moreover,
0] < L+ [sina?] < 3, we get

s

9
><2—1><2:ck\/§—§,

| Ot

f’(ck) > 2¢ -

Sl

hence limy_, o0 f/(cx) = +00.
To be added.
To be added.
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Let Z(f) = f~1(0), we will prove that f is holomorphic on C\ Z(f) and Z(f) respectively,
let zo & Z(f), then there is § > 0 such that f(z) # 0 on B(zo,d), since B(zg,d) is simply
connected and doesn’t contain zero of f, we can define a holomorphic branch of log f2 on
B(Z07 6) by

z 2y/
log f2(z) = / (1;2) dz +log f*(z0)

with fixing a choice of log f2(zg). Now g = %log f? is also holomorphic, so is h = e9. We
notice that h is a holomorphic square root of f2, that is, h? = f2 = h(z) = +f(20).

If h(z0) = f(z0), we hope that in a neighborhood of zy, h(z) = f(z), this is indeed true
since

0=/ —1=(f+h)(f — h),

as h(zo) + f(z0) # 0 (we assumed 29 & Z(f) at the beginning), so near zg, h(z) + f(z) # 0
= near 2o, f(z) —h(z) =0 = f is holomorphic near z.

The case that h(zg) = —f(20) is essentially the same.
As zg is arbitrary in G\ Z(f), we conclude that f is holomorphic away from its root.

By considering the restriction of f to G\ Z(f), then f|e\ z(s) is a holomorphic function
with singularity on Z(f), since f is continuous, for each z; € Z(f), lim,_,,, f(z) € C, hence
z1 is a removable singularity, and hence f is holomorphic on Z(f), we are done.

Remark. We can also argue f = h near zy by seeing that
for any neighborhood of zy, there is z in that neighborhood such that h(z) # f(z),
18 wrong.

Method 1. We claim that f(™(z) € R for any z € R. Let z € R. We first prove that
f/(x) is real, this is because f'(x) = limgsp—0 w € R. Suppose f("~1(z) is real

(n—1) _pn—1)
for every z € R, then f((z) = limgsy_0 £ ' (zﬂg I"77(@) ¢ R due to the same reason,
so we have proved our claim. In particular,

f@M(0) e R,¥n € N. (*)

Let g(2) = f(z) + f(—z), then since f is entire, the power series representation f(z) =

> mz” holds for all z € C. So g(2) = > 2 2f<2n),(0) 22", Let y € R, consider z = iy,
n=0 n! n=0 (2n)!

from (*),

o £(2n)
iR > f(iy) + f(i(—y)) = gliy) = > 2f(2n)(gO)

n=0

(_1)ny2n c R7

this can only happen when g(iy) = 0. Replace y by & with large enough n € N, then
g(it)=0and 2 — 0, so g(z) = 0 for all z.

Method 2. Alternatively, since an entire function which takes real value on the real
axis must satisfy f(z) = f(Z) by Schwarz reflection principle, so by taking z = z%, n € N,
we are done.

To be added.

Since f(z)e'®+g(z)e’” as a function in z is holomorphic on B(0,1) (in particular, continuous
on the boundary), for any fixed «, 3, there is wqy g € 0B(0, 1) such that

f(2)e' + g(2)e”| < |f(wa,p)e™ + g(wa,p)e™| < |f(wa,s)| + |g(wa,p)]

< sup (|f]+|g])(w),
wedB(0,1)
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for all z € B(0,1). By the compactness of 9B(0, 1), SqueaB(o,1)(|f|+|g|)(w) = (|f]+19g])(20)
for some zg € 9B(0, 1), so the last inequality implies for all z € B(0, 1),

|f(2)e™ + g(2)e”| < (If] + |gl) (20)-

However, for each z € B(0,1), there is ., 3. such that f(z)e’® = |f(z)| and g(2)e*?s =
|g(2)|, so the last inequality implies for all z € B(0, 1),

[F )+ 19(2)] < (£ + 19])(20),

and the upper bound is attained when z = zj.

Let H = {z : Rez > 0}, the right half space. Then we can define a conformal map

T : B(0,1) = H by T(z) = 15%. Then g 2 T~ o foT : B(0,1) — B(0,1) satisfies

g(0) =T7(f(T(0))) = T~*(f(1)) =T~'(1) = 0 and holomorphic on B(0,1). By Schwarz’s
lemma, one has |g(z)| < |z|. By putting z = —%,

1-£(2) 1 1

‘Hf(?)’ T s ”“ (‘)‘Sg'

If f =0, then clearly fg is holomorphic. If f # 0, then there is zp € U such that f(zq) # 0,
continuity of |f| implies there is 6 > 0 such that f(z) # 0, for all z € B = B(z9,6) C U, so

2 _ =, (J9g
lg]* =799 = ~%
constant function. So |g|? is constant. But |g| is continuous, |g| must be constant, so from
Cauchy-Riemann equation, g is constant on B. In other words, the following equation holds

1 1
g (zo + ) = const.,Vn > {] +1,
n §

but + = — 0,50 g = const. on U.

is also holomorphic on B. However, the only real-valued holomorhpism is

To be added.
To be added.

If f is constant function, let f = a, then a =0 or a = 1.
2f(22)

Suppose now f is nonconstant, then f(0) =0 or f(0) = 1. Since f(z) = 172 taking
z = %, %, ..., wWe can guess f (2%) = % = 1+ ey this can proved by induction. Since
2” — 0 and both f and - are holomorphic on B(O, 1), f(z) = 1+z on B(0,1).

1

To sum up, f(z) = T

is the only solution.

Let’s write z in the problem by 2’. Define T = Zt2 S Z+Z then g=S"tofoT:

1+wz’ = +
B(0,1) — B(0,1) is holomorphic with g(0) = St o foT(0) = S~ o f(w) = S7(2') = 0.
So by Schwarz lemma, |¢’(0)| <1 = [(S™1) ( N (w)T'(0)] < 1. Since
!/
Sl = 22 _ 1
@) =17 (ST = T2
1+wz — (z4+w)w - 11
T'(2) = — T7'(0) =1 — |w|*.
()= e, (0) =1 ful
) ) 1— ‘Z’|2
Plugging in all results, we have | f'(w)| <
1—fw|*’

To be added.
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On the contrary let’s suppose there is zp € U such that |f(zo)| > M.

Let {6,,} be a increasing sequence defined by &, = (1 — L)d(z9,0U), n > 2. Define
Cpn = 0B(20,6,) and let z, € C, satisfies f(z,) = maxzemﬁ(zﬂ, then {|f(z,)|} is
strictly increasing, hence |f(z,)| > |f(20)|, for all n > 2, so h_fm lf(zn)| = |f(20)| > M, a

n—oo

contradiction.

Remark. We eztract from the second paragraph a fact that if there is zg in a domain U
such that |f(z0)| > M, then there is a sequence {2, € U} converging to OU such that
lim |f(zn)| > M with the same construction as above.

n—oo

With the experience of problem and the result in problem this can be easily

n

done. Consider g(z) £ f(2) H 12 _jc , then g is continuous on B(0,1). Since f is
— ZkX
k=1

holomorphic at z;, so there are small enough §;’s such that on B; = B(z;,9;) C B(0,1),
fla, = 22, f(":ngw)(z —z)" and B; N B; = () when i # j. It is clear that on each B;,
(Zflf)k is holomorphic, where k; is the multiplicity of the root z;, so g is holomophic on
both B(0,1) — U; B; and U;B;, hence g is holomorphic on B(0, 1).

Now since |f| < 1 and lim;j ;1 [T,—, [$=25 | = 1" = 1, so for any {2, } which converges
to a point in the boundary of B(0,1),

— 1
T Jg(za)| < 7 =1,

n— oo

and hence |g] < 1.

Remark. We extract from the first paragraph a useful fact, let U be a domain and a; € U,
i=1,2,...,n. If f is continuous on U, holomorphic on U—U>_1{a;}, then f is holomorphic
onU.

Let z9 € C, then f(")(zo) = 0, for some n > 0, hence zg € UnZOZ(f(”)). In other words,
UnZQZ(f(n)) = C, but C is complete, it is of second category, hence there is n > 0 s.t.

(Z(f™))°e = (Z(f™))° # 0, but then f() =0, the result follows.

The only if (=) direction is clear. For the if direction, since f can only have countably many

zeros in D, let Z(f) = {21, 22, ...} be the collection of its roots with order 2k; repsectively.

Then g = W will be nonvanishing holomorphic function on D. As each root z; is
i=1 i

isolated, any z; can be seen as a removable singularity of g|p\ z(¢) and hence g is holomorphic
on each of the zero of f.

Claim. Any nonvanishing holomorphic function & on a simply connected domain D has a
holomorphic sqaure root on D.

Proof. This is a simple observation that if f is nonvanishing on D, take zy € D, then the
function A defined by

° S (w)
h(z) = dw + log f(z
#= 1, Fw) (%)
is a holomorphic branch of log f by fixing a value of log f(z). Now F = ez is holomorphic
and clearly F?2 = f(z), hence F is desired square root. O
f

_ = G2 for some holomorphic function

Finally by the last claim we see g = TG
=1 z

GonD,so f=(GI[_,(z— zz)k)2



2.7. FUNCTION AND DIFFERENTIATION 103

Remark. The claim above can be modified to be “Any nonvanishing holomorphic function h
on D has a holomorphic n-th root on D”.

207. (a) Consider g = 14 > 77 ,na,z", let z € B(0,1), then since |na,z"| < nla,|, by the
Weierstrass M-test Zn 1 napz" converges uniformly on B(0,1), and hence we can do
termwise integration to get f(z fo t)dt. Which implies for each z € B(0,1),
we have power series representatlon (Wlth radlus of convergence at least 1), so it is
differentiable everywhere in D.

(b) Let zo € D, then for each r € (Jz0],1), on |z| = r,

|f(2) = f(z0) = (2 = 20)| = Zan - z3) <|z—z0|Zn\an|r"<|z—z0|

n>2 n>2

so f(z) — f(z0) and z — zg share the same number of root, which is 1.
208. | >0 €zi|* < | Yo, €w;|? implies

Do €i€j2i%5 < 30, S €€ Wiy
A B
SrtAH Y €627 + 255) < it + X i (Wit + wiwty)

Ai(€ig1yseer€n) Bi(€it1,---5€n)

A+305 61W<B+Zz 1 €ZW

A"’ZZ 1 ezA <B+ZZ | 6B

It is explicit that A; and B; are independent of €1, ..., ¢;. Now if we take (e1,€a,...,€,) =
(1,€2,...,€,) and (€1,€2,...,€,) = (—1,€2,...,€,), then one has respectively
n—1
A+A1(€2,...7 +Z€ZA <B—|—3162,...7 +Z€z iy
=2
n—1
A*Al(eg,..., +Z€2A <B BlEQ,..., +Z€Z iy
=2

they add up to A+ >, e A; < B+ Z" ! ¢;B;. Now all A; and B; are independent of e,
we repeat the process to get A+ Ei:3 €A; < B+ Z?:Sl €;B;. We finally arrive to A < B,
as desired.

209. Let K C B(0,1) be compact. Let r = sup{|z| : z € B(0,1)}, by compactness of K,
r = |20/, for some zyp € K. Define C = 0B(0, 1+T) then C is also compact. Moreover,
=inf{lc—kl:ceC,ke K} =|c—k| >0, for some c € C,k € K. So for each z € K,

) = fat) = 5z | [ 22 =0

|fm ( )|
= 27r/ |w z|2 [dw]

sup,ec | frm(w) — fr(w)] 1+7
< % S 7 - 27 - 5
< SuPyec |fm(w) - fn(w)|
d? ’

Since {f,} converges uniformly on every compact subset of B(0,1) (in particular, C), so
{f} converges uniformly on K (recall that {f,} converges uniformly on X iff it is uniformly
Cauchy on X).
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2.8 Real Analysis

Observe that both g(z) = m*(EN[—x,0]) and f(x) = m*(EN[0,x]) are continuous functions
for > 0. Let’s check it for f, let x > y, then

fx) =m (En(0,y] Uy, z])) <m™(EN0,y]) + m (EN[y,z]) = f(z)—f(y) <lz—yl
And the checking of g being continuous is the same.

Finally since one of I = EN[0,400) and J = EN(—o00, 0] must be positive, let’s say I > 0,
then by continuity for any ¢ € [0, m*(E)), there is a € [0, +00) such that f(a) = ¢ < co.

Let I, = [n§, (n+1)§), then ENI,’s are disjoint, the convergence of Y>> m(ENI,) and

S m(ENI_,) imply we can take Ni, Ny such that
m(ENUpsny+1l-n) ,m(ENUp>n,+11,) <,
and since each m(A N I,) < § < ¢, the decomposition
ENUpsny+1l-n, ENI_n,, ENI_ny41, ...,ENIn, ENUpsn+iln
will do.
Assume F is measurable, there there is an open set O and a closed set F' such that FF C E C

O and m*(O\E),m*(E\F) < §, then since (O\ E)U(E\F) = (OUE)N(O\F)N(ENF)¢ 2
ON(O\F)NF°=0\F, hence

m*(O\ F) < m*((O\ E)U(E\ F)) < e.

Conversely, observe that E O F, O\ E C O\ F and use the outer measure property in
the remark.

Let A= {x € a,b]: f(z) =g(x)}, A" =[a,b] \ A (then [a,b] = AU A" and m(A4’) = 0) and
a’ € A’. We claim that

for any neighborhood U of a’ that is open in [a, ], there is an a € A such that a € U.

Suppose it’s wrong, that is, there is an open neighborhood U such that ANU = (), it follows
that € U = x € A’, this implies U C A’. However U is open in [a, b], there is an open
set U’ in R such that U = U’ NJa,b],s0 A’ DU =U'NJa,b] 2 U' N (a,b), but U’ N (a,b) is
open in R which doesn’t have measure 0, contradiction.

Now by the claim we know that for each a’ € A’, there is a sequence {a, } in A such that
lim,, o0 @, = a’, 50

! _ . _ . _ . _ . _ !
£6) = 1 (i an) =t f(an) =l glan) =g (lisn on) = g(a'),
hence f = g on [a,b].

With the same proof [a,b] can be replaced by (a,b), however, general measurable set
cannot replace the interval. Let zg,x1 € [a,b] such that f(xo) = g(zo) but f(z1) # g(z1).
On G ={zo} U{z1}, f = g almost everywhere (except x1) and f|¢ and g|g are continuous
(with respect to the subspace topology), but it doesn’t imply f|a(z1) = g|g(z1).

(a) Let’s denote A = {z € R: z lies in infinitely many of A;’s}. Since z lying in infinitely
many of E}’s is equivalent to say that for any k € N, there is a natural number n > k,
x € F,,. Hence

A:ﬁ{x:ﬂnZk,ern}:ﬁ G{meEn}

k=1 k=1n=k
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(b) Since A CUX , E,, for all k € N, hence

oo

m(A) < m (L En) < Y m(Ey),

n=~k
by the convergence of Y m(E,) in the hypothesis, we get m(A) = 0 by letting k — oo.
Give an € > 0, we note that

zefa,b) = ze ()| () {zelab]:|f(@) - fulx) <€}

e0N=1n>N

— ve |J{relal:|f) - fy)] <o,

N=1

=En

the logic above means exactly the inclusion [a,b] C UX_;En. We note that f — fy is a
continuous function, hence Ex = {z € [a,b] : (f—fn)(z) < €} = ((f—fn) " ((—€,€)))N[a, b]
is open in [a,b]. Since [a,b] is compact, there is an integer N such that [a,b] C UN_ Ej.
Hence for all = € [a,b] (there is k, € {1,2,...,N}, x € Ey_), when n > N,

[f(@) = fa(@)| = f(2) = fulz) < f(2) = fr,(2) <&,
that is, the choice of € is independent of .

No! Let A C [0,1) be nonmeasurable. Recall that any open interval is homeomorphic
to the real line R (allowing one end of the interval to be be infinity), that is, there is a
homeomorphism h : R — (—1,0), we then construct f: R — (=1,1) by

x, T € A,
@) = {h(x), xR\ A

Clearly f is injective on both A and R\ A, hence for each ¢ € R, f~!({c}) is measurable,
but f~! ([O, +oo)) = A is not measurable, meaning that f is not measurable.

Let ¢ > 0 be given. Since FE is of finite measure, by the first principle there is a finite
disjoint union of bounded open intervals U = U™, I; such that m(UAE) < e. Let’s define
h=xu =Y i, X1, we claim that this h will do.

We try to prove that h = x g except a set of measure at most e. Sincey € {x € I : h(x) #
xe(@)} <= y €I and h(y) # xp(y). However, h(y) # xp(y) < y € (U\E)U(E\U),
thus

{rel:h(z)#xel)}=INnUAE).
Hence if we let F = {z € I : h(z) = xg(z)}, then h = xg on F and m(I \ F) = m(I N
(UAE)) <m(UAFE) <e.

Let ¢ = Z?:l aixa,, U_1A; =1, then for each x 4,, there is an F; C I and a step function
h; such that
€
hi=xa, on F; and m(I\F;) < —.
n

Now we take F' = N, F;, then m(I \ F) < € and h; = x4, on F for i = 1,2,...,n, so
S aihi = > a;xA; on F. Finally, a linear combination of step function is still a step
function.

As f is bounded measurable function, there is a simple function v such that |f — | < €
on I. Define ¢ = Y1 | a;xa,, where A; = ¢"!(a;) and a; # 0 for all ¢ (if a; = 0, the
term 0 - xy-1(0) is redundant). We now try to approximate ¢ by a step function h. This
is made easy with the help of problem we can construct h such that ¢y = h on F' and
m(I \ F) < ¢, hence we are done.
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220. As f is measurable, there is a sequence of simple functions {¢, } such that ¢,, — f pointwise
on E. By Egoroff’s theorem, given an € > 0, there is a measurable subset (can be chosen to
be closed) F of E such that ¢, = f on F and m(E \ F) < e. Hence we are able to find an
N such that |f — ¢n| < 1 on F, this implies |f| <14 |¢pn]| on F. But simple functions are
always bounded, hence f is bounded on F with m(E \ F) <.

221. Assume f B g. A2 {z € E: f(z) # g(z)} = U2, {z € E : |f(z) — g(z)| > 1}. Observe
that
" 5@ = ful)| 4 1fa@) — g)] 1
2 2k’
this then implies for all n € N, |f(2) — fa(2)| > 5% or |fu(z) — g(x)| > 5%, hence

7(2) ~ g@)] > 3 = WneN,

oo

[_j N ({er )= ) > g = € B ) =m0 > g )

Given i7 € > 0, there is an nj such that both

€

m{xGE: (@) = fou ()] > ;}f}m{er 19(2) = gn, ()] > 211<;} < ok

observe also that A C ;- ; ({a: EE:|f(x)— fn,(2) > ﬁ} U {x € E:lg(x) — gn,(z)] > 2—1k}),

hence -
<> (2k+1 2k+1) -¢
k=1

But € > 0 is arbitrary, m(A) = 0.

Conversely assume f = g a.e. on E. We define Ey = {z € E : f(x) # g(z)}, then
m(Fp) = 0 and

miz € E:|g(x) = fulz)| > n} <mfz € E:|f(x) = fulz)] > n},
this implies f,, = g.
222. The first one follows easily from the fact that || f, ()| = [f(z)|| > n = |fu(z) — f(x)] > n.

The second one follows form the observation that A%B >C —= A>CorB>C.

The last one is a kind of complicated (maybe my proof is messy). Anyhow, it works!

Observe that fngn — fg = f(gn — 9) + (fn — f)(9n — 9) + 9(fn — f). Let n,e > 0 be given,
then (everything is evaluated at z)

|fngn_fg‘>n = ‘f||gn_g|+‘fn_f‘|gn_g|+|g”fn_f‘>na

this implies

|fn — fllgn — 9] > n/3
[fllgn — gl >n/3, |gllfn— fI >n/3 or [}

‘fn_f|> \/77/30r |gn_g|> \/77/3

Let P(x) be a property satisfied by x and we denote m{z € E : P(z)} by m{P}. For
example, m{z € E : f(x) > 0} = m{f > 0}. Then from the above logic,

24 4B
m{|fugn — fol >0} < mA{fllgn — gl > n/3} +m{gllfn — f| > n/3}

+m{|fn — fI > \/7%}+m{|gn —g| > \/%}
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From hypothesis the last two terms can be small when n large. We apply problem [220] to
get uniform bound of f and g on “large” enough subsets of E such that we can also estimate
the first two terms. By problem given €/6 > 0, we can find subsets F, G C E such that
there is M > 0,

[fl<MonF,m(E\F)<e/6 and |g| <M onG, m(E\G)<¢e/6.

That is to say, on F, |f(z)||gn(z) — g(2)| > n/3 = |gu(z) — g(2)| > n/(3M). On G,
lg(@) || fu(z) = f(2)] >n/3 = |fu(z) — f(x)] > n/(3M), hence

m(A)+m(B)=m(ANF)+m(A\ F)+m(BNG)+m(B\G)
<m{x € F: |gn(x) — g(x)| > n/BM)} + m{z € G : [fu(z) — f(2)[ > n/(BM)} + €/6 + €/6
< milgn — gl >n/BM)} +m{|fn — fI >n/(BM)} +2-€/6,

recall once the abbreviation is adopted, we mean all elements x in E having property P(z).

Now we can find an N such that when n > N, all 4 remaining terms become less than €/6,
hence

m{lfngn_fg‘ >77} <6'€/6:6.

223. (=) Assume f, 5 f, let {ny : k > 1} C N, then f,, > f, hence having a further
subsequence { fnk,,} that converges pointwise to f a.e. on E.

(<) Assume f,, & f, then there are 7, ¢y > 0 and a subsequence {f,, } of {f,} such that
m{|fn, — f| > n} = €. But by hypothesis, there is a further subsequence {f,, } such that
fri, = [ pointwise a.e. on E. By Egoroff’s theorem we can find a measurable subset F' of
E such that f,, = fon F and m(E\ F) < €/2, now

co < m{lfu, = 1 >0t =m{{lfas, = 1 > O F} 4 m{{Ifu, = FI >0} \ F}

<m{{|fnkp ff|>77}ﬂF}+eo/2.

However, by uniform convergence on F' we can find a P such that | frn, = f | <non F, and
at p = P the above inequality implies €y < €y9/2, a contradiction.

224. (=) If f, B f, then given ¢ > 0, there is an N such that n > N = m{|f, — f| >

Som(EDy ) < €/2, hence when n > N,
/ ‘fn_f‘ :/ ‘fn_f‘ +/ |fn_f|
el+[fo—f| {Ufn—F1> sy L+ |fn = fl {1 fn— 1< stmcerery } L+ |fn = fl
¢ (B0
<m{ifa- 11> b+ I ()
{ 2(m(E)+1) 1+ FmE)FD)
€ €
AL -
<3t s sy
< €.

(<) Assume lim,, o0 p(fn, f) = 0, then if f, 2 f, there are 7, ey > 0 and a subsequence
{fn} of {fn} such that m{|fn, — f| > n} > €o, hence

/ |fnk_f| Z/ |f’nk_f‘ > U €0,
g L+ fu, — [l Ufneflsny L fue =17 1+

that’s a contradiction.
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Define forn=1,2,..., X, = {x €EFE: H’;U{” <|f(x)] < H;;”ff},thean - {a: EFE: |J;Uf° < |f(x)|},

hence
1

(2lfo¢>n :

/1l e € _ 1-a
/Xn floll < Gumrm(®a) < Gamr ()" o
2TL

Here X,,’s are disjoint and U, X,, = F.

By part (b) of problem for almost all zy € F, there is an index K(z() € N such that
x & {x € E:|fu(x)] > a,} when n > K(zg). That is, whenever n > K(z),

fn(xO)

o2

[fn(zo)] <oy = —1< < 1.

The result follows from taking lim and lim in the inequality. And it is obvious from
definition that lim < lim.

=K,

Since z € [a,b] = xe{f>0}:Up>1{f>1},hence [a,b] = Up>1 {x : [a,b] : f(z) > 1}
Let K| = K1, K}, = K, \ U'_ K;, then U,K/, = [a,b] and for all p > 1,

1 1
fxe, > fxe, > 7/ XE, = —m(E, N K,),
[a,b] K}, P Jk p

this implies lim,, o m(E, N K},) = 0 for each p. Now observe that

00 P 00
m(En) =m(En, N (Upz1Kp)) => m(E,NEK)) <> m(E,NKp)+ > m(Kp).
p=1 p=1 p=P+1

after that we can
hence when

Let € > 0 be given, we can fix a P such that Zp pr1 (K, <
choose an N such that for eachp =1,2,..., P, whenn > N, m(E NK
n>N,

£
2
K’

3
) 2p7

m(Ep,) < P- ﬁntf—

To apply Fatou’s lemma f g limu, <lim f & Un, we need the integrand u, to be nonnegative
and measurable. So it is natural to consider u,, = g — f,, hence

[ a=1= [ timia, = £,) <1 [ (= £) =t [ g —Tim [ 7.,

the last equality follows from the fact that lim(—a,) = —lima,. Cancelling f 9 on both

sides, we have
lim/ fng/ I *)
E E

By letting u,, = g + f, this time, [, g+ [, f < [z g +1lim [, fn, combined with (*), we

obtain
e A

(a) Without loss of generality let’s assume f(z) is bounded on each of z € R. We also
assume f > 0, then by integrability, there is a bounded measurable function f, /o with
fey2 < f and with finite support Ey (i.e. f|g, # 0 and f|p\ g, = 0) such that

= fopl= | £ | fopp <5 (*)
/ IRENRZES
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On Ej since fc/p is bounded and measurable, let’s assume m(Ep) > 0, there is a

simple function 7 such that 0 < f.o —n < m, we can also require 7|g\ g,

M1l
o

(hence its support is contained in Ey), and hence

€
\/|f€/2777|:/ |fe/277"<5
R Eo

Finally by (*) and (**),

/le—nlS/le—fe/zle/R|f€/2_n|<e.

The same argument also shows that the last inequality holds when m(Ep) = 0 (in fact
the second integral vanishes). And the extension to general measurable function is
obvious.

—~~
*
*

~—

(b) We also do that for f nonnegative, and its extension to general measurable function is
obvious. By part (a) there is a simple function 1 with finite support Ey such that

/le—nl<§-

Let’s assume [ is a closed interval such that I O FEj, then on I since 7 is simple. Let
also |n| < M for some M > 0, by problem [218] given any ¢ > 0, we can find a step
function s on I and measurable subset F' of I such that

€
=son F and I\F)< —.

7 =5 on nd m(I\F) Y5y

Recall that such simple functions can be chosen such that the maximum of s is the

maximum of 7, let’s assume also |s| < M, define § = sy, then § is also a step function

such that

~ ~ €
Jur=si< [ir=ar+ [m-si<5+ [ m-s+ [ -
R R R I\F F

<§+2Mm(I\F)<e.

(c) Just linearize the step function in part (b).
230. To be added.

231. (=) Since F has measure zero, for each k& € N, there must be an open set Oy such that
Or 2 E with m(Ok) < 5. Write Op = ugilll(,k) (in case if Oy is a finite union of
disjoint open sets, let I,()k) with large enough p be empty set). Then clearly for each p,
m(I]gk)) < m(Ok) < 5. We claim that the collection Z = {I,gk) :p, k> 1} will do.

Let e € FE, then e € [Z(,}), for some p;. We can find ks such that 2%2

there is ps such that e € 1,2’;”. Since m(II(,f"’)) < 55 < m(IIg})), they must be distinct
< m(II(,,’i”)) and find a p,y; such

< m([é})), and

1
oknt1

that e € I,giﬁl), hence e € IJS}), I,(,i") for n > 2 and they are all different intervals.
Finally we check that >, .z m(I) < 372 m(O) =1 < oco.
(<) Since x € E implies © € Ng>1 Up>k In, le. © € Upsily, for all k, hence m(E) <
m(UnZkIn) < Zzo:k m(In) — 0.

intervals. Inductively we can take k,y; such that
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fle+t)—fle) > /\((ck,dk)ﬂ[e,e—l-t))
St =2

Letec E, 7

. Let e € (ck,,di,) forp=1,2,...,
k=1

fle+t)— f(e) - - /\((ckp,dkp)ﬂ[e,e—i—t))
t - t ’

p=1

for each n > 1,

We can take t,, € (0, 1) small such that e +t, < dg,, for p=1,2,...,n, it follows that

fle+tn) — f(e) S noty,
7% -t
fle+tn) — f(e)

but this is true for all n, hence lim —————= =00
n—00 tn

(a) Since

ft+h) = f@)| _ TVUpern) _ TV aern) =TV (fjoq)
h - h h

v(x + h) —v(z)

T

this implies |f/| < v’, hence f: If| < f; v/ <wv(b) —v(a) = TV(f). The last inequality
follows from the fact that v is increasing.

(b) Assume the equality holds, then since fuv |f' <TV(fu,) and

(/x 'l = Tv(f[a,mﬂ) + </: ' = TV(f[m’b])> —0.

but both of them are nonpositive, hence ff |f'| = TV (fa,) for all z € [a,b], it follows
that [ [f'1 = [J 11 =[5 11 =TV (fiu)-

For each € > 0 there is a § > 0 such that whenever m(E) < 6, [, |f’| < e. Hence
if {(ci,di)}i; is a disjoint collection of open intervals in [a,b] with > " | (d; — ¢;) <,
then

n n n d;
S — £ < 3TV (o) = 3 / ) = / F<e.
i=1 i=1 i=17¢i u

™1 (ciydi)

Conversely if f is absolutely continuous, then f(z) = f(a) + f; f’. It is enough
to show TV (f) < f: |f'|. This is obvious since for every partition P of [a,b], P =

{ag,a1,...,an} witha =ag < a1 < ag <--- <a, =0b,
n n a; n a; b
Sl - =Y | [ <X [ = [
i=1 i=1 |7 ®i-1 i=1 v di-1 @

and the result follows from taking supremum over all possible partitions.

If m*(A) = oo, we are done. Suppose m*(A) < oo, then given € > 0 we can find an open
U 2 A such that m(U) < m*(A) + e. A simple if-then statement shows the following
inclusion

f(B(a,r)) € B(f(a),Lr),

for any a € R and r > 0. Hence by writing U = U(a;, b;), then A =U N A = U((a;, b;) N A),
we see that f((a;,b;) NA) C f((a;, b)) = ]‘(B(“‘TH“7 LQ‘“)) CB (f(‘“T'*'bi),L(bi;“i)), and
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hence

FA) = (Ui ((ai, b)) NA)) C U B (f(th), L(k59))
m* (f(A)) <m* (U; B (f(2tbe), L(k5%)))
< Xim (B (f(25%), L(%5%)))
=2 L(bi —a;) = Lm(U).

It follows that
m* (f(A)) < Lm(U) < L (4) + Le,

we let € — 07 to complete the proof.

Assume A is bounded and measurable. It is obvious that f is continuous, hence for
any compact K, f(K) is compact and hence measurable. By measurability of A there is
a F, set F = U;K; C A such that each K; is compact and m(A \ F) = 0. Observe that
A= FU(A\F), this implies

f(A) = F(F) U f(A\F),

by what we have just proved, f(A \ F) is measurable since it has measure zero. f(F) =
U, f(K;) is a countable union of closed sets which is also measurable.

It follows that f maps measurable set E to measurable set f(E) = Upenf(E N [—n,n]),
a countable union of measurable sets.

As f, g are integrable, there is Ey C E such that f, g are finite on E'\ Ey with m(Ep) = 0.

On E\ Ey, since f(z)g(x) > 1, then f(y)g(z) > %, for any z,y on E \ Ey. And by

J’fgz; Adding them up and applying

interchanging x, y in the inequality, we get f(x)g(y) >
AM-GM inequality once,

fly) | f(x)
fWg(z) + f(z)g(y) > o) + o) > 2.

Now the result follows by integrating respect to = and y respectively.

Let € > 0 be given. Assume Lusin’s theorem holds on a finite measure space. Let f be
real-valued measurable on E with m(E) = oo. Define E,, = EN (n,n + 1), where n € Z,
then we can find a continuous g, : R — R and a measurable (in fact closed in the theorem)
F,, C E,, such that

f=gnonF, and m(E,\F,) < €/2|n|+3'
Clearly

m(E\UpFo) =Y m(E; \UyF,) <> m(E;\ Fy) < e(1/2° +1/2° +1/2%) < ¢/2.
1EZ 1€Z

We construct g = >, giXrF,, then glu, r, = flu,r,, we claim that g : U, F,, — R is
continuous with respect to the subspace topology. Fix a « € U, F},, then there is an n such
that € F,. Hence by continuity of g, on R, given ¢ > 0 there is a § > 0 such that
gn(B(z,06)) C B(gn(x),€). Since € F,, C (n,n + 1), we can choose § > 0 small such that
B(z,6) C (n,n + 1), therefore B(x,d) N (U Fx) = B(x,0) N F,, hence
9(B(z,0) NUFy) = g(B(x,) N Fy,)

= gn(B(x,0) N F,)

C B(gn(z),e)

= B(g(2),e),
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this proves our claim. Now measurability of Ll, F},, enables us to construct its closed subset
F such that m(U,F,, \ F) < €/2, thus

m(E\ F) <m(E\U,F,)+m(U,F,, \ F) <e.

It is clear now that g|r is continuous w.r.t. subspace topology of F, so we are done with
the help of problem 25.

237. We only prove the general case. By the simple approximation theorem, there is a sequence of
simple functions {¢, } such that ¢,, — f pointwise on R and |¢, (x)| < |f(z)|. The integral
comparison test shows that each ¢, is integrable and by Lebesgue dominated convergence

theorem,
lim ¢n( g(tz)dm = /f g(tz)dm and lim (bn )dm:/f(ac) dm
n—oo n— oo R

Hence it sufﬁces to prove the given identity holds for simple functlon7 to this end, it suffices to
prove it holds for characteristic function which has finite support (as the above convergence
is uniform, interchange of limit processes is permitted).

Let A be measurable and m(A) < oo, we will prove that

lim [ xa(x)g(tz)dm = m(4) /[0 . g(x)dm. (*)

t—o0 R T

Since m(A

) < 00, there is a descending collection of open set {O,,} for which O, D A
and m(NO, \ A) =

0, hence
tlggo RXA(x)g(tz) dm = hm (tx dm = hm / dm = tlggo nhﬁn;o o g(tz)dm,

since g is bounded, the convergence lim,,_, | 0.9 tx) dm is then uniform, which implies it
is enough to prove the limit

lim g(tx) dm(x)

t—o00 o,

exists and is equal to m(o”) fo x)dm (as the limit process can be interchanged). This
motivates us to prove (* ) is true When A = (a,b), an bounded open interval (we will transit

the result to open set). Consider when A = (a,b), we aim to show lim;_,, f;g(tx) dm =
fo x) dm. We first observe that

b tb
1) = / gttz) dm(a) = [ glt0)xn @) dm(e) = 1 [ g@)xiun(a/t)dm(@) = 7 [ o) dmia).

t a

We take ¢ large so that ¢(b — a) > 2T, then we can choose n4(t),n2(t) € Z so that

ta<ni()T < (n(t) + 1T < --- <n2(t)T < tb (**)
with

()T —ta<T and th—no(t)T <T. (**%)

Now

12O T ( nl(t)T+f 2(t)T) ) dm

I(t) = : / g(x)dm + .
b () 7H =R(t)
1 ng(t)—l

T
; k_;l(t) /O g(z) dm + R(t)
(n2(t) =i ()T (b—a)

- Ll B2 [ gta) im + RO, (rre0)
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2 [ |g(z)| dm
t

Since R(t) < , limy, o0 R(t) = 0. Moreover, by (**) and (***),

(n1(t) —na(t)T _ t(b—a)—2T 2T
i e B ) BT e

these shows, continued from (****) that

b —a) [T
lim [ g(tz)dm(z) = lim I(t) = <b>/0 g(x) dm.

t—o0 a t—o0 T

Thus for open set O with m(0) < oo, O = U2, I; where I; is bounded open interval (in
case when O is just a finite union, we let the extra indexed intervals be )), once again by
boundedness of g, the convergence limy_, Zle J;. g(tx) dm is uniform, thus

A, f, gt dm = iy, J;H;OZ |, ott2ram = Jim, JE&Z J, st

(@]
= lim mé{i)/() g(x)dm

k—00 4

m T
- o) | stwm.

it follows, continued from the previous result, that

lim [ xa(z)g(tx)dm = lim lim g(tx) dm(x)

t—o00 R t—00 n—o0 o,

= lim lim g(tx) dm(x)

n—o00 t—o00 o
n

m T
= lim (7(?“)/0 g(x)dm

n—oo

=D [ o) i

To be added.

2.9 Fourier Analysis

To be added
To be added
To be added
To be added
To be added

We first show existence. Pick g, € A so that inf{||f —g|| : g € A} = lim, 00 || f — gnll- If
{gn : n > 1} is finite, then we are done as one of the g;’s must satisfy the the equality in the
above limit. Let’s assume {g,, : n > 1} is infinite. Starting from ¢ = 2, if g; can be expressed

as a linear combination of {gi,...,g;—1}, we weed it out, and the remaining list of elements
{gny+Gny, - - - } can be made into an orthonormal sequence of functions. Explicitly,
k—1
ey — 9n, o 9ny — Zj:l <gnj,€j>€j
1=

Ta_» €= =1 :
g gn. = 225=1{9n; - €5)e5ll
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Since f € L*(Q), the sequence {>,_, f(k)ek.},?:l is Cauchy in L2(Q), so this sequence
converges to a F' € L?(Q) by completeness.

We claim that F := Y 72, f(k)e, will do. Now we still have limy_,o0 |f — gn, || =
inf{||f — g|| : g € A}, and since g,,,, = vazl CNi€i,

> f(k)ex

k>N

If = Fll < + <

N

f= ZCNkek + Z (k)P
k=1 k>N

= If = guxll+ D IF R,

k>N

N ~
F=Y" f(k)ex
k=1

the result follows from taking N — oo, since e, € A,Vk = F € A, thus existence is
established.

Finally we have to show that such F' is unique, so that Pf is well-defined. Assume both
F,G € A are closest to f, the polynomial P(e) := ||f — eF — (1 — €)G||?> has minimum at
e =0 and e = 1, hence P’(0) = P’(1) = 0, which implies P’(e) = 0. Since

P(e) = If =G +e(G=F)|*=|f = GI? + |G = F||* + 2¢Re(f - G,G — f),
P’(e)=0 = |G- F| =0,ie, F=G ae. on Q.

Let g € A, we use the same trick as before, ky(€) := ||f — Paf + eg||? is a polynomial in e
for which minima occurs at € = 0, hence k{(e) = 0. Since ki(e) = ||f — Paf||* + €*[|g]|* +
2¢Re(f — Paf,g), k1(0) = Re(f — Paf,g) =0.

Similarly, ky(€) = |f — Paf +ieg|® = |f — PafI? + Ellgll? + 2¢Tm(f — Paf,g) is
minimum at € = 0, k4(0) =0 = Im(f — Paf,g) = 0, we conclude (f — Paf,g) = 0.

For part (a), let f € L?(Q). By definition, P4 f — P3f € A, and since Paf — Pa(Paf) € AL,
we have Py = P3%; For part (b), (fi, Pafa) = (Pafi + (fi — Paf1), Pafa) = (Paf1, Pafa),
and similarly,

(Paf1, fo) = (Paf1, Pafo+ fo — Pafo) = (Paf1, Pafo);
For part (c), ||fI|> = [|Paf + (f — Paf)||*> = IPafI? + |If — Pafll* > [[Paf||?; For part (d),

when f € A, f—Paf € ANALY s0o Paf = f. When f € A+, Paf = f—(f—Paf) € AnA*,
so Paf =0.

It remains to show Py is linear. For each o € C and f,g € L?(Q),
A3 Pa(f +ag) = Paf — aPag = [Pa(f + ag) — f —ag] + [f — Paf] + alg — Pag) € A~
To be added
Assume T € [L?(Q)]*. Since T is continuous,
A:=kerT

is closed subspace of L2(Q). If T = 0, then we are done. Assume T' # 0, then there must be
a h € L*(Q) so that Th # 0. In other words, h & A, and hence u := h — Pah € A+ \ {0}.

We observe that dim A+ = 1. For each g € AL,

Tg \ _ Ty, _
T(g—Tuu>—Tg T—uTu—O,

which means that g — %u € AN At and hence g = %u. So spanc{u} = A+,
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Finally for each f € L*(Q), f — Pa = Wu = (f — Paf,u) = %HuHZ, and
hence

Tu Tu
Tf = ptf = Pafo) = mos (frw) = (Pafyu)

Tu Tu
= W((fa@ _f)f,PAu:L) = <f7 <|u”2>u>,

we conclude T'f = (f, g), for some g € L?(Q). Conversely, any linear functional of this form
is bounded.

249. To be added
250. To be added
251. To be added
252, To be added
253. To be added
254. To be added

2.10 Number Theory

255. Since (2,n) = 1, 2a1,2az, .. .,2a4) also form a reduced residue system modulo n, hence
a; = 2ays¢;y (mod n) for i = 1,2,...,¢4(n), here f is a bijection from {1,2,...,¢(n)} to
{1,2,...,¢(n)}. Finally, we make use of the formula sin2z = 2sinx cosz and let 2a; =

hin + a;, we are done.

256. Observe that (4a® — 1) = (4a% — 1)(4a® — 1) = (4a® — 1)(2a + 1)(2a — 1). Now in modulo
4ab — 1,

(4a®—1)? = (4a®—1)(4ab+2b)(4ab—2b) = (4a*>—1)(1+2b)(1-2b) = (4a*—1)(4b*~1) =0, (mod 4ab—1)

on expansion and making use of the fact that 4ab =1 (mod 4ab — 1) again, we can deduce
that the original divisibility actually implies 4ab — 1|(a — b)?, this is equivalent to say that
(a—b)?

N.
4ab—1 <

2
T —

Define S = {(x,y) eN?: % eNz # y}, We now suppose, for the sake of con-

Ty —

tradiction, there is a solution (z/,y’) € S with 2’ # ¢/, then S is not empty, clearly there
(a—b)*
4ab—1
terms in this equation into a quadratic equation of a, we see that if a is a solution, then

b2 +k

is a smallest a and b such that (a,b) € S, let’s say = k € N, then by rearranging

from product of root, a’ = € N is another solution, by the minimality of a, we deduce

that a’ > a, this implies =k > b® — d®, this implies a — b > (a + b)(4ab — 1), a

contradiction.
257. To be added.
258. To be added.
259. To be added.
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To be added.

To be added.

To be added.

To be added.

To be added.

To be added.

To be added.

To be added.

To be added.

(a)

Suppose that (u,v) is the smallest positive solution of 22 — Dy? = 1, then we need to

show that u > x5 (this implies v >y, as u? — 23 = D(v? — 43)), then we write

To + \/Byg = (u+ \/Bv)k,

for some k € N.
If k= 2n, n > 1, then z; + VDy; = (u+ v/ Dv)", this is a contradiction as

(21 + VDy1)(x1 — VDy1) = (u+ VDo) (u — VDv)" = —1=1.
So k must be odd and write k£ = 2n + 1,n > 0, then we have
(21 + VDy)? = (u+ VDv)*"*' —= (21 + VDy1)*(u — VDv)*" = (u+ VDv),

this is the same as (21 + v/ Dy1)(u — vVDv)" = vu + v/ Dv, so there must be some
a,b € Z such that

u+vVDv=a+ VDb < |u+VDv=(a+VDb)?| ()

Since 2ab = v > 0, so a, b must be both positive or negative, but since \/u—i—i vDv >0,
a,b are both positive. Next

(a+ VDb)*(a — VDb)? = (u+ VDv)(u — VDv) = 1
— (a+ VDb)(a — VDb) =d,d = +1.

Case 1. If d = 1, then since from (*), u = a® + Db? > a, so contradiction arises as
(u,v) are smallest such solution. We must have d = —1.

Case 2. When d = —1, then by the minimality, a > x; and b > y;, as a result,
u=a®+ Db?> > 22 + Dy? = 1.

It is known that (x9,ys2) is smallest integer solution of 22 — Dy? = 1, so all solutions
are given by (uy,v,) defined by

Uy + \/Evn = (IQ + \/ByQ)n = (‘Tl + \/Eyl)Zn’

and hence (u/,,v/,) defined by u!, + v Dv!, = (z1 + v/ Dy;)?"*! will give all solutions of

n»vn

22 — Dy? = —1.

270. To be added.
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Clearly when n = 1,a = b = ¢ = 2 is a solution.
We will show that the equation has no solution when n > 2, we first see that a,b can’t
be both even for such n. If they are even (i.e. = 2), then c is also even (i.e. ¢ =2), but

2n +2n — 2n+1 _ 22

is impossible.
If n is odd, recall that

a + b = (a+b)(a”71 o a"72b+ RS (71)n71bn71)’

we also note that these two factors are different. Suppose it were true that a +b = (a" "1 —
a"2b 4 (=) 1), then a™ +b" = (a +b)%. However, a™ +b" > a® +b> > (a+b)?
for a,b > 2 and a,b not both 2. So ¢ = a” + b” implies ¢® can be factorized into two
different numbers. So a +b=1or a+b=c? a+b =1 is impossible and a + b = ¢? =

2 =a"+b" > a+b=c?, it’s also impossible.

So n must even, let n = 2m, then
(a™)* 4 (b™)? = 2.
By the theorem on Pythagorean triple, there is u,v € N, v > v such that
(™, 0™, c) = (u? —v?, 2uv,u® + v?).

Now b™ = 2uw, 2[b™ == 2|b and b is prime implies b = 2, so 2™~ ! = uwv, so u = 2% and
v=2"a+b=m—1witha>b>0. am = (u+v)(u—v)=(29+2%) (2% - 2°), so a is even
and hence a = 2. But a = b = 2 is also impossible in this case!

2.11 Metric Spaces

To be added.

oo

Let E,, = {z : f*(x) = 0}, then U E, =R. Now R° # () = R is of second category
n=1

= R is not of first category = for positive positive integer n, F, is not nowhere dense,

then

(En)® # 0. (*)
What’s more, E,, is closed, let z € E,, then there is a sequence {z,, € E,} that tends to
x, then f(”)(:n) = f() (imy,—y00 Tn) = limy, 00 f(”)(xn) =0, thus z € E,. As a result, (*)
tells us Ep # 0, take xg € E;, then there is an open ball in E,,. As a ball on R is an open
interval, we have shown that there is a open interval (a,b) such that

R (z) =0,
integrating it n times will give us a polynomial of n — 1 degree.

Method 1. The first part is easy. For the second part, let L = L, prove the claim that
~ 1
L= -1].
N(Us(=1))
n=1 \z€L
Method 2. Let f(z) = d(x, A), then f is continuous, now z € A < f(z) =0 <
z € f71(0). But {0} =N52,[0,2) and [0, 1) is open in [0,00), for all n € N. So

‘n

A=A=f1 <fjl {oi)) fjlfl {oi)
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Direct use of Contraction mapping theorem.

Suppose on the contrary, for all Vr > 0,3z € M,YU € U = {U, : a € A}, B(z,r) € U;.

Let r = %, there is z,, € M, B(xm%) ¢ Uy, for all @ € A. As M is compact, @,
converges to x, for all € > 0, there is K7 such that

E>K = d(zn,,z) <

DO ™

But the compactness tells us z € M, so © € Uy, 3. Ir > 0, B(x,r) C U,.

Let y € B(wny, i), d(y,2) < d(y1,@n,) + d(@n,,2) < 7= + §. Choose k large so that
d(y,r) <€, take e =1, y € B(x,r), thus

1
B (xnk,> C B(z,r) CU, €U,
n

a contradiction.

Suppose on the contrary for all z € X, d(z, f(z)) > 0, by compactness and continuity, there
is a o € X, such that ¢ = f(wo, f(z0)) = inf{d(z, f(z)) : * € X}. As a result, for all
z € X, d(z, f(z)) > c. Take z =x,, = f("(x0), we have

¢ = d(ll?o, f(xo)) > d(IWJ f(In)) > ¢,
a contradiction.

Write

R\ S = <U Wk> <Gl Wn)o> ]Q Wi \ <nL_J )

since Wy, is closed, |J,—;(W,)° is open, we see that Wy, \ (U;—,(W,)°) is closed, hence

(o)

Wi, \ (U (Wn)o> = (Wk \ <U (Wn)o>>
n=1 n=1

C (Wi \Wy)*
= 0’
so R\ S is of the first category, and hence S is dense in R.
To be added.

Since {(—o0,¢), (¢,0) : ¢ € (a,b)} is a topological subbasis for Tysua N [a,b], it suffices to
check that f~!(—oo,c) and f~1(c,00) are open for all ¢ € (a,b). Let’s fix ¢ € (a,b). Ao
always means some element in A.

Suppose f(x) > ¢, by density there is A\g > ¢ so that f(xz) > Ag. Note that f(x) >
X = z € X —0,,. Combined with our assumption, f(z) > ¢ = 3IXg > ¢,z €
X — O,,. Conversely, suppose IAg > ¢,z € O,,, then for all A < Ay, z € O, meaning that
{AeA:z e Ox} C (N, ), s0 f(z) > Ao > c. Combining the above two directions, we
conclude

f_l(cv OO) = U)\E(c,b) (X - O)\) =X- mAe(c,b)OA-

Now f~!(e, 00) is open iff Mae(e,) O s closed. But we always have Nyg(c,5)Ox C ﬂAe(qb)OiA.
And by normal ascending property, HAG(CJ,)(’T,\ C Nae(e,p) Or, we conclude that Nye (e, Ox C
Nae(e,p) O, Proving that f~Y(c,00) is open.

Similarly, if f(z) < ¢, then there is A\g < ¢, f(z) < Ag. So there must be A < Ao,

x € Oy C O,,, for some A\g < c. Conversely, if z € O,,, for some Ay < ¢, then f(z) < Mg < ¢,
hence f~!(—o0,c) = Uxe(a,c)On, which is of course open.
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2.12 Linear Algebra

Suppose there are n eigenvalues A1, \a, ..., A, of T, then let vy, vs, ..., v, be the correspond-
ing eigenvectors. Since

n n
T € range T|Span(v1 o) = Jda; €Fx=T (Z aivi> < da; €eF,x = Zai)\ivi
i=1 i=1
x € span(vy,...,v,), all X\ #0,
7 \ € spanuv;, A =0,
i#j

we conclude range T'[span (o, ... = span,; v; Or span,; v;, in either case we have

Vn)

k = dimrangeT > dimrange T'|span(u, ,...,v,) =7 — 1 = k+1>n.

To be added.
To be added.
To be added.

If T = cI, for some ¢ € F, then clearly ST =TS for all S € L(V).

Conversely, assume ST = TS for all S € L(V). If T = 0, we are done since T = 0I.
Let’s further assume 7' # 0.

Now it suffices to prove every v € V' is an eigenvector of T' (then by problemm T=cl
for some ¢ € F). Let v € V, suppose v and Tv are linearly independent (automatically
implying that v, Tv # 0), we try to show it is absurd (and the proof is completed). We can
define a linear map S € L(span(v, Tv)) by

S(a(v) +b(Tw)) = a(av) + b(Tv), a,beF,a#0,

then since T'Sv = ST, we conclude T(aw) = Tv = (a —1)Tv = 0, taking o = 2, a
contradiction arises. So for any v € V, v and Tv are linearly dependent, we are done.

To be added.

If dim V' =1, then it is trivial without the hypothesis. For dim V' > 2 we try to use problem
283] For convenience, let n = dim V. Let v € V'\{0}, assume (v, Tw) is linearly independent,
we try to derive a contradiction (hence (v,Tw) is always linearly dependent and hence all
nonzero v € V is an eigenvalue, we are done). We extend the list to (v, Tv,v1, V2, ..., Vn—2),
the basis of V. Now U = span(v,v1,vs,...,0,_2) is an n — 1 dimensional subspace and
hence invariant under 7" from our hypothesis. In particular, v € U, so Tv € U, i.e. U is at
least n dimensional, a contradiction.

To be added.
Clearly nullT C null ST. If nullT = null ST, we are done. Otherwise let (¢1,t2,...,tmn) be

a basis of null 7', extend it to
(tl,tg, e ,tm,ul, . ,un),

the basis of null ST. Clearly Tu; # 0, if not null7 will be of dimension at least m + 1,
impossible. Now S(Tw;) = 0 (iff Tu; € nullS), for all 4, it is natural to ask whether
(Tuy, ..., Tuy) is linearly independent.

Now

S aiTu; =0,30; = T (X1, aw)=0,3a, = >, a;u; € nullT, Ja;,
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hence > 1 | a;u; € span(ty,ta,... ty), but (t1,t2, ..., tm,u1,...,u,) is linearly indepen-
dent, a; = 0, for all ¢. So span(T'uy,...,Tu,) CnullS = n < dimnull S, and hence

dimnull ST = m +n =dimnullT + n < dimnull T’ + dim null S.

To be added.
To be added.
To be added.
To be added.

(a) Clearly the intersection is non-empty. Now range7 = rangeT? and nullT = null 7%
(why? both derived from the same reasoning). We let v € null T Nrange T, then we see
that Tu =v,3u eV = T?u=0,s0 v € nullT? = null T, i.e. Tu = 0, thus v = 0.
So the intersection is trivial.

If V.=nullT or V = rangeT’, then we are done. Ignoring these two trivial cases,
we suppose dim V' = n, let (v1,va,...,vr) be the basis of null T, expand the list such
that (vi,...,vg,u1,...,Up—k) is the basis of V. Then clearly ui,...,u,—g are not
necessarily vectors in range 7', we claim that

(v1,.. v, Tug, ..., Tup_p) is the basis of V.
We see that
Zaﬂ}i + Z b;Tu; =0 = Z biTQ’U,i =0 = T2 (E bzul) =0
= S biu; € nullT? = nullT = Y bju; = > civ;

- bZ:O,V’L — Zaivi=0
== a; = 0,Vi.

Indeed (v1,...,v5, Tuy,...,Tuy—k) is a list of linearly independent vectors, so V =
null T'+range T, but their intersection is trivial, we conclude that V = null T'@range T

(b) Take k = dim V, then range T9™V = range T9™ V+1 repeat all the statements above,
we are done.

Let (v1,va,...,vx) be the basis of null A.
For any u € null QAP, we have QAPu=0 = APu=0 = Pu € null 4, so

k k
Pu = E aiv; — u= g aiP_lvi,
i=1 i=1

this tells us the list of vectors B = (P~ vy, P~ lvy, ..., P~1v,) spans null QAP. It remains
to show that B is linearly independent. Suppose that > a;P~1v; = 0, then

p! (Zaivi) =0 = Zam:o = q; = 0.

So dimnull QAP = dimnull A, noting that both domains of A and QAP is R™, by rank-
nullity theorem, we are done.

Note that A is an m x n matrix implies AT A4 is an n x n matrix, so both the domain of A
and AT A is R”, thus by rank-nullity theorem,

rank AT A = rank A <= dimnull AT A = dim null A.
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To prove so, we either prove that their null spaces are the same or prove their null spaces are
spanned by the same number of linearly independent vector(s). Clearly null AT A D null A.
To prove null A D null AT A, let v € null AT A, then AT Av =0, so

0 = (u,0) = (v, AT Au) = (Ao, Av) = | Av]?,
hence v € null A, we conclude that null A = null AT A.

297. Assume (I + S)z = 0, then it is easy to deduce that x = 0, meaning that I + S is injective,
and hence invertible.

298. The (=) direction is clear since when A € o(A), one has Av = Av for some v # 0, then
Aky = My -0 = || < 1 (we can find an k so that |A¥|||v]| < ||v]|), and as o(A) is at
most finite, we conclude p(A) < 1.

For the (<) direction, we upper triangulize A by some P € GL,(C), i.e.,

/\1 b12 bln

U:= PAP! 0 e e b
1o o . i’

0 0 - A\

then Ue; = Ajeq, and Ule; = A{el and hence |\;| <1 = UFe; — 0. We complete the
proof by induction, assume there is k£ € N so that

lim U7 (ey),..., lim U?(ex_;1) = 0.

J—0o0 J—00

Then since Uley) = Zf:ll bine; + A\xer, we have Uit (ey) = Zf;ll bi U’ (€;) + A\ U (ex).
For a vector v € C" let’s denote [v], to be its ¢*' coordinate w.r.t. the usual basis, then one

has
k—1 k—1

(U7 (er)]e =D biwl[U7 (ed)]e+ MU (ex)]e == |[U7T (ex)]e| <D [bikl [[U7 (€0)]e|+[ Mkl [[U7 (er)]e],
i=1 i=1

SO mjﬁool ’[Uj"’_l(ek)]e’ < P\k‘ mjﬁoo ‘[Uj(ek)}d — mjﬁoo |4[Uj(ek)]g| =0 =

lim;_, oo [U’ (ex)]e = 0. As this is true for £ =1,2,...,n, so lim;_, U’ (ex) = 0.

We conclude by induction that lim;_,o, U7 (ex) =0 for k = 1,2,...,n. Since each vector
in R™ is spanned by {e;}";, we conclude U/ — 0. Since A’ = P~1UJ/P, we conclude
AT — 0.

299. To be added.
300. To be added.

301. The equivalence of (ii), (iii) is obvious, what is left is (i) < (ii). Let P be the orthogonal
projector onto rangeAH Assume z( solves the LSP, write r := b — Az, then

Irlf* = [|Prl3 + lIr — Pr(3
= [[Prl3 + [Ib— Azo — Prf3
> ||Pr(|3 + b — Axol13
= [[PrlI3 + 1713,

4Not assuming A has full rank.
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we conclude Pr = 0, i.e.,, r = b — Azg € (range A)*. Conversely, assume b — Axg €

(range A)L, then for each z € C",

16— Azoll2 < \/IIb — Azol3 + [ Az[3 = [Ib— A(zo — )2,

this shows that zy does solve the LSP.

We prove the last assertion now. Suppose A has full rank, let x1,zs solve the LSP. By
considering the polynomial

P(e) :==||b—[eAxy + (1 — e)Axg]H% = ||[(Azy — Aza)e + Axg — bH%

irﬂ €, it is not hard to show P”(e) = 0, hence Az; = Axs, and thus A*Az; = A*Az,. But
A has full rank, 1 = z5. Conversely, assume A does not have full rank, then A*A is not
injective, thus there is nonzero x € C", A*Ax = 0, so Az = 0. Now x + x( also solves the
LSP, the solution to LSP is not unique.

To be added.
To be added.
To be added.
To be added.
To be added.
To be added.
To be added.
To be added.
To be added.
To be added.
To be added.
To be added.

2.13 Algebra

Let A, B be two proper subgroups of a group G, then A\ B is nonempty (otherwise B = G).
Let a € A\ B, take g € G, if g € A, then clearly ga € A. If g € B, then ga € B = a € B,
a contradiction. Hence ga € A, this means Ga C A. But Ga is just a permutation of
elements in G, i.e. Ga = G, hence G C A, a contradiction.

(a) Answer is 25, see (b) to get the general idea.
(b) Let L(n, k) = |{o € Sy : |o| =k},

L(n,2) = <Z> + (g) (n;2) + (Z) (ngz) (n;l) T (72’) (”;2) . (n—22k;) |

21 3! (k+1)!

We are left to determine such least possible k, we need n — 2k > 2, s0 k+1 < g,
thus the range of k is

1gk+1§[g} — ogkg[%}—L

50ne can expand by the formula |la + b||3 = ||al|3 + [|b]|2 + 2 Re(a, b).
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so the number is precisely
[(3]-1 k

(")

=0

L(n,2) =

b

(=)

(c) In general for 2 < p < n, when we have chosen a permutation (i1 iz - - - ip), we get total
distinct permutations by multiplying (p — 1)!, namely,

i1 — (p — 1) choices — (p — 2) choices — - -+ — 1 choice (back to 41),

we generalize L(n,2) by

To “verify” the result, lets count L(n, 3) in another way, we count this by considering
an defined by

1 n 2 n—2
in=3” 2 1 1
~—— ———
choose 2 elements choose 1 of the first two choose another 1 to form permutation
to form permutation chosen numbers with the number in 2C1

The factor % is left there because we observe that every length 3 permutation can

be written as product of 2 transpositions in exactly 3 ways.
Then clearly the number of ways to form order 3 permutation by multiplying k
disjoint length 3 cycles is given by

Hf;é Ap—3r ﬁ kl:[l n—3r
(k)! (k) - 3 ’
exactly the same summand appears.

316. The map a(H N K) % (aH,aK) is a group isomorphism between G/(H N K) and (G/H) x
(G/K). Well-definedness and injectivity are easy to check. We need to argue a little bit on
surjectivity.

Let (aH,bK) € (G/H) x (G/K), since HK = G = G~' = KH, we can write a = k1hy
and b = hoko, h; € H and k; € K,1=1,2,
(CLH, bK) = (k’lth, thQK) = (le, hQK) == (klth, th) == (klth, klth) = cp(klthﬂK)

Thus the map ¢ is surjective.

Remark. From above let H, K be normal subgroups of a group G, if HK forms a group, then

HK = KH. Conversely, if HK = KH, then HK forms a group. So| HK is a group if and only if HK = KH |.

317. To be added.

318. Let N = AN B. We can check N is a subgroup of A and B. Let x,y € N, then there are
a; € A, b; € B such that © = a1 = b1, y = ap = by, then clearly 2y~ = alagl = blbgl, SO
ry~ !l e N.

It is natural to decompose AB as follows.

[A:N] [A:N] [A:N]

AB= | |J N |B= |J iNB= | a:B,

i=1 i=1 i=1
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here [H : K] denotes the number of left co-sets in H/K, we also let {ai}g‘ifv e
Let ap,aq € A'. Suppose ap,B NagB # 0, we let b, bs € B, such that
apbr = agby => ag'a, = b, ",
this tells us a;'a, € N = ANB = a,N = a;N = a, = aq, as the representatives of
co-sets have been fixed. We have proved all a; B’s are disjoint.

Since a;B’s are disjoint and |a;B| = |B| (elements inside a;B are still distinct), the
number of element(s) is
Al B
A:ANB||B| = .
[ Ii| |AN B

To be added.
It is clear that for each x € S,, wa® € S, so x{a) is contained in S,, as a result,
Sa 2 afa) 2 {x} = Sa2 |J w(a) 2 S,
2E€Sa

s0 S, = UN  x;(a) = |S.| = Nn (exactly the same idea in Lagrange’s theorem).
To be added.

To be added.

To be added.

To be added.

To be added.

To be added.

Observe that H C Z(G) <= ghg™' = h,Vg € G,Yh € H <= |Orb(h)| = 1,Vh € H.
Here Orb(h) = {ghg™! : g € G} and the action is conjugate action. Normality of H implies
that Orb(h) C H, so to prove | Orb(h)| = 1, it suffices to prove that Orb(h) # H.

Now Orb(h) = H implies there is g € G such that ghg™! =e € H, so h = e. That is to
say, if H 3 h # e, then Orb(h) = 1. So clearly Z(G) 2 H \ {e}. However it is clear that
e€ Z(G),so Z(G) D H.

Remark. We can also consider the action of group H on G, but in this way we see the
assumption that H is normal becomes unhelpful.

To be added.

We show that if a, b and @ , v are pairs of linearly independent vectors in R? such that they
generate the same discrete subgroup in R? in the sense that

Zd+7b=7d + 7V,

-,

then the transition matrix from (@,b) to (@, ') has determinant +1.
For simplicity we identify d, b,a, b with the symbol a,b,a’,b’ € R? respectively. Since
there are A, B,C, D € Z such that

a =Aa+ Bb and bV = Ca+ Db,

we are left to show that P := <B D

A C) has determinant +1.



330.

331.
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By assumption one has
Za+7b="7d + 7V
= Z(Aa + Bb) + Z(Ca + Db)
= Um,nez{(mA + nC)a + (mB + nD)b}, (*)

this is the same as saying that for any u,v € Z, we can find m,n € Z such that

s = (=G 5)()=+(2)

this shows that P : Z? — Z?2 is surjective.

We first assume A, B, C, D are nonzero, for the case some of them are zero, the same
approach will do. We observe that

r(5)-0()-+(5)- (5

PuecZx {0} < uGZ(_DB>,

this is because for u = (y) € Z?, Pu€ Z x {0} < 2B+yD =0 < y=—2B/D <+
x = Dn,y = —nDB for some n € Z, the last one follows from the observation that ged(B, D) =

1 (by (*), otherwise P cannot be surjective). Now we take an ¢ € Z? such that Pzy = (}
then there is an integer k such that xo = k( ), thus

(o) = o= (55) = ("3 7),

and hence 1 = k(DA — BC) = |DA—-B(C|=1.

and also that

(a) Let I' be a subgroup of R under addition. If " is dense in R, we are done. Otherwise,
there is a point 2y € R that is neither a point nor a limit point of I, i.e. there is € > 0
such that B(zg,e)NT = @. If T' = {0}, then it is clearly discrete. Let’s assume I is not
trivial. If there are distinct a,b € T such that |a — b| < €/2, then there will be a k € Z
such that a + k(a — b) € B(xg,¢), a contradiction. We conclude |a — b| > €/2, for all
distinct a,b € ', hence T is discrete.

(b) If Z + Z+/2 is not dense in Z, then it must a discrete subgroup of (R,+), and any
additive discrete subgroup of R must be of the form Za, for some a > 0, thus there is
a > 0 such that Z + Z+v/2 = Za. Clearly there are nonzero integers m,n such that

140v2=ma and 0+1vV2=na = acQn(R\Q),

a contradiction.
(c) Tt suffices to construct H' = {# € R:pg € H} and G' = {0 € R: py € G}.

(a) Let G be a finite subgroup of F*. Observe that u := [, .5 g has order L := lem{|g| :
g € G}. That is, u is an element in G which has largest order. Now (u) := {u¥
Z} C{x € G : 2L = 1}. Since F is a field, there are at most L solutions in F for the
equation x¥ = 1, hence (u) = {x € G : " = 1}. For each g € G, |g||L, so g* = 1, thus
g € (u). We conclude G = (u).

(b) It suffices to show the statement for cyclic subgroups of F'*. The statement is trivial
for n = 1. We prove by induction on n. Let there be at most one cyclic subgroup
of order 1,2,...,n — 1. Assume |(z >| = |{y)| = n, then |z| = |y| and for each k > 2,
we have (%) = (y¥). So z = 23(2?)" € (@%)(a®) = (5*)u?) C () — (a) C (y).
Interchanging x and y, we have (x) = (y), as desired.

The end of this pdf.
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