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Chapter 1

A Collection of Problems

Problem marked with hint is given a hint at the last section of this problem set. Problem
marked with

⊗
is the problem that I can’t solve, but its technique is worth seeing once.

1.1 Inequality

1.1.1 Cauchy-Schwarz

This part is devoted to the use of Cauchy-Schwarz inequality. Next part (miscellaneous) may
require you to use additional inequalities that may or may not be mentioned in preceding
questions.

Problem 1. (a) Prove that (ac+ bd)2 ≤ (a2 + b2)(c2 + d2). When does equality hold?

(b) Hence, or otherwise (except differentiation), compute the maximum value of f(x) =
7− 2x+ 1

2

√
3 + 2x− x2, for all x ∈ [−1, 3], when does this mxima occur?

Problem 2. Let a, b, c, d be positive real numbers, prove that

a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b
≥ 2.

Problem 3. Let a, b, c > 0 and a+ b+ c = 1. Prove that

a√
b+ c

+
b√
c+ a

+
c√
a+ b

≥
√

3

2
.

Problem 4. Let a, b, c, d > 0 and a+ b+ c+ d =
1

a
+

1

b
+

1

c
+

1

d
, prove that

2(a+ b+ c+ d) ≥
√
a2 + 3 +

√
b2 + 3 +

√
c2 + 3 +

√
d2 + 3.

Problem 5. Let a, b, c > 0 be such that a2 + b2 + c2 = 3, show that

3− a2

b+ c
+

3− b2

c+ a
+

3− c2

a+ b
≥ a+ b+ c.

Problem 6. We would have encountered a famous inequality, the Nesbitt’s inequality (It
appears in Breakthrough algebra p.265, question 2(d)), a

b+c + b
c+a + c

a+b ≥
3
2 , similarly,

show that if abc = 1,
a2

b+ c
+

b2

c+ a
+

c2

a+ b
≥ 3

2
.

3



4 CHAPTER 1. A COLLECTION OF PROBLEMS

Problem 7. If a, b, c ≤ 1√
3

and a+ b+ c = 1, show that√
1− 3a2 +

√
1− 3b2 +

√
1− 3c2 ≤

√
6.

Problem 8. If a, b, c > 0 and abc = 1, show that

1

a3(b+ c)
+

1

b3(c+ a)
+

1

c3(b+ a)
≥ 3

2
.

Problem 9. If a, b, c, d ∈ R+, a+ b+ c+d = 3 and a2 +2b2 +3c2 +6d2 = 5, find the extreme
values of a.

Problem 10. For any positive a, b, c, show that

a3

b2
+
b3

c2
+
c3

a2
≥ a2

b
+
b2

c
+
c2

a
.

Problem 11. If x, y, z ∈ R+, and
x2

4
+

(y + 1)2

9
+

(z + 1)2

16
= 1, find the extreme values of

2x+ y + z − 16.

Problem 12. If a, b, c ∈ R+, find the minimum value of a2 + b2 + (2a− 3b− 4)2.

Problem 13. Let n be positive integer, {ai} be a sequence of positive real number and
S = a1 + a2 + · · ·+ an, show that

(a)

n∑
i=1

ai
S − ai

≥ n

n− 1
(b)

n∑
i=1

S − ai
ai

≥ n(n− 1).

Problem 14. If ai > 0, where i = 1, 2, . . . , n, show that

a1 + a2 + · · ·+ an
a1 + a2 + · · ·+ an + 1

<

n∑
k=1

ak
ak + 1

.

Problem 15. Suppose a, b, c > 0 and ab+ bc+ ca = 1
3 , show that

a

a2 − bc+ 1
+

b

b2 − ca+ 1
+

c

c2 − ab+ 1
≥ 1

a+ b+ c
.

Problem 16. Let x1, x2, . . . , xn be positive real number satisfying

n∑
k=1

1

xk
= n. Find the

minimum of

n∑
k=1

(xk)k

k
.

Problem 17. Let a, b, c > 0, prove that

ab

c(c+ a)
+

bc

a(a+ b)
+

ca

b(b+ c)
≥ a

c+ a
+

b

a+ b
+

c

b+ c
.

Problem 18. Let a, b, c ∈ (0, 1], show

a√
(a2 + b2)(b2 + c2)

+
b√

(b2 + c2)(c2 + a2)
+

c√
(c2 + a2)(a2 + b2)

≥ 3

2
.

Problem 19. Prove that all roots of the polynomial P (z) = zn + an−1z
n−1 + · · ·+ a1z + a0

lie in the open disk

{z : |z| <
√

1 + |an−1|2 + · · ·+ |a1|2 + |a0|2}.
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1.1.2 Miscellaneous

Problem 20. Show that am+n + bm+n ≥ ambn + anbm, where m and n are non-negative
integers.1

Problem 21. Given that 0 ≤ a, b, c < 1 and a+ b+ c = 2. Prove that

abc

(1− a)(1− b)(1− c)
≥ 8.

Problem 22. Prove that for any a, b, c ≥ 0, we always have

9(a+ b)(b+ c)(c+ a) ≥ 8(a+ b+ c)(ab+ bc+ ca).

Problem 23. Let ai, bi ≥ 0, show that

n
√
a1a2 . . . an + n

√
b1b2 . . . bn ≤ n

√
(a1 + b1)(a2 + b2) . . . (an + bn).

Problem 24. Show that
1

a3 + b3 + abc
+

1

b3 + a3 + abc
+

1

b3 + c3 + abc
≤ 1

abc
.

Problem 25. Given x, y, z ∈ R+ and xy + yz + zx ≥ 3, show that

x7 + y7

x2y + xy2
+

y7 + z7

y2z + yz2
+

z7 + x7

z2x+ zx2
≥ 3.

Problem 26. If x, y, z ∈ R+, show that

x2

y2 + z2 + yz
+

y2

z2 + x2 + zx
+

z2

x2 + y2 + xy
≥ 1.

Problem 27. Given cos2 α+ cos2 β + cos2 γ = 1 and α, β, γ are acute angle, show that

cot2 α+ cot2 β + cot2 γ ≥ 3

2
.

Problem 28. If x, y, z are positive reals and x3 + y3 + z3 ≤ 3, show that

1

(x+ y)(x2 + y2)
+

1

(y + z)(y2 + z2)
+

1

(z + x)(z2 + x2)
≥ 3

4
.

Problem 29. If p, q > 0 and p3 + q3 = 2, show that p+ q ≤ 2.

Problem 30. If a, b, c > 0 and abc = 1, show that(
a− 1 +

1

b

)(
b− 1 +

1

c

)(
c− 1 +

1

a

)
≤ 1.

Problem 31. Suppose a, b, c are non-negative numbers, if
1

1 + a
+

1

1 + b
+

1

1 + c
= 1, show

that abc ≥ 8.

Problem 32. Suppose a, b > 0, and
1

a
+

1

b
= 1.

(a) Show that
b

a
+
a

b
≥ 2.

(b) Hence, or otherwise, show that a+ b ≥ 4.

1You may find it helpful in certain questions.
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(c) Prove by induction on n, or otherwise, that for all positive integer n,

(a+ b)n − an − bn ≥ 22n − 2n+1.

Problem 33. Show that if a, b, c > 0,

√
abc(
√
a+
√
b+
√
c) + (a+ b+ c)2 ≥ 4

√
3abc(a+ b+ c).

Problem 34. Let xi ∈ R and xi + xj ≥ xi+j , for all positive integers i and j, show that

x1 +
x2

2
+
x3

3
+ · · ·+ xn

n
≥ xn,∀n ∈ N.

Problem 35. Show that if
∑n
i=1 pi = 1 and pi, xi > 0, then

ln

(
n∑
i=1

pixi

)
≥

n∑
i=1

pi lnxi.

Problem 36. Suppose x ≥ y ≥ z > 0 and a ≥ b ≥ c > 0, show that

a2x2

(by + cz)(bz + cy)
+

b2y2

(cz + ax)(cx+ az)
+

c2z2

(ax+ by)(ay + bx)
≥ 3

4
.

Problem 37. For any real xi, yi ≥ 0, show that(
n∑
i=1

xiyi

)3

≤ n

(
n∑
i=1

x3
i

)(
n∑
i=1

y3
i

)

Problem 38. Given a, b, c are positive, show that if a+ b+ c = 3, then

1

1 + 2b2c
+

1

1 + 2c2a
+

1

1 + 2a2b
≥ 1.

Problem 39. Let a, b, c > 0, show that

√
a3 + b3

a2 + b2
+

√
b3 + c3

b2 + c2
+

√
c3 + a3

c2 + a2
≥ 6(ab+ bc+ ca)

(a+ b+ c)
√

(a+ b)(b+ c)(c+ a)
.

Problem 40. Let x1, x2, . . . , xn ∈ R+, prove that

x1x2 · · ·xn
(x1 + x2 + · · ·+ xn)n

≤ (1 + x1) · · · (1 + xn)

(n+ x1 + x2 + · · ·+ xn)n
.

Problem 41. Let a, b, c ≥ 0 and t ∈ (0, 3]. Prove that

(3− t) + t(abc)2/t + a2 + b2 + c2 ≥ 2(ab+ bc+ ca).

Problem 42. For any positive ai, bi, i = 1, 2, . . . , n, show that(
n∑
i=1

aib
2
i

)3

≤

(
n∑
i=1

a3
i

)(
n∑
i=1

b3i

)2

.

Problem 43. Let x, y, z > 1 and
1

x
+

1

y
+

1

z
= 2. Show that

√
x+ y + z ≥

√
x− 1 +

√
y − 1 +

√
z − 1.
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Problem 44. Let x, y, z be three non-negative numbers satisfying xyz = 1, show that√
4 + 9x2 +

√
4 + 9y2 +

√
4 + 9z2 ≤

√
13(x+ y + z).

Problem 45. For any positive x, y, z, prove that

xy

z(z + x)
+

yz

x(x+ y)
+

zx

y(y + z)
≥ x

z + x
+

y

x+ y
+

z

y + z
.

Problem 46. Let a, b, c be positive real numbers satisfying the condition a+ b+c = 3, prove
that

a2(b+ 1)

a+ b+ ab
+
b2(c+ 1)

b+ c+ bc
+

c2(a+ 1)

c+ a+ ca
≥ 2.

Problem 47. Let a, b, c ∈ R+ be such that a+ b+ c > 2. Prove that√
a2 + b2

2c+ a+ b− 2
+

√
b2 + c2

2a+ b+ c− 2
+

√
c2 + a2

2b+ c+ a− 2
≥ 3.

Problem 48. If a, b, c > 1, show that

a(a3 − 1)

a− 1
+
b(b3 − 1)

b− 1
+
c(c3 − 1)

c− 1
≤ abc− 1

3
√
abc− 1

(
a4 + b4 + c4

abc

)
.

Problem 49. (Generalization of Cauchy-Schwarz inequality) Let aij > 0, i, j = 1, 2, . . . , n.
Show that (

n∑
i=1

am1i

)(
n∑
i=1

am2i

)
· · ·

(
n∑
i=1

ammi

)
≥

(
n∑
i=1

a1ia2i · · · ami

)m
Problem 50. Let a, b, x, y > 0 be such that 1 ≥ a11 + b11 and 1 ≥ x11 + y11, show that
1 ≥ a5x6 + b5y6.

Problem 51. (Kyiv 2006) Let x, y, z > 0 be such that xy + yz + zx = 1. Prove that

x3

1 + 9y2xz
+

y3

1 + 9z2yx
+

z3

1 + 9x2zy
≥ (x+ y + z)3

18
.

Problem 52. Let a, b, c,m, n be positive real numbers. Prove that

a2

b(ma+ nb)
+

b2

c(mb+ nc)
+

c2

a(mc+ na)
≥ 3

m+ n
.

Problem 53. Let a, b, c > 0 be the sidelengths of a triangle. Prove that

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0.

Problem 54. Let a, b, c > 0, show that

(a3 + 1)(b3 + 1)(c3 + 1) ≥ (a2b+ 1)(b2c+ 1)(c2a+ 1).

Problem 55. If a, b, c > 0, prove that

a+
√
ab+ 3

√
abc

3
≤ 3

√
a · a+ b

2
· a+ b+ c

3
.

Problem 56. Let a, b, c > 0, prove that

a6

b2 + c2
+

b6

c2 + a2
+

c6

a2 + b2
≥ abc(a+ b+ c)

2
.
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Problem 57. Let f be convex on [a, b]. If c, d ∈ [a, b] with c− a > b− d, prove that

2f

(
c+ d

2

)
≤ f(c) + f(d) ≤ f(c+ d− b) + f(b).

Problem 58. Let A,B,C be angles of a triangle. Prove that

sinA

A
+

sinB

B
+

sinC

C
≤ 9
√

3

2π
.

Problem 59. Let x, y, z be non-negative integers with x+ y + z = 1, prove that

0 ≤ xy + yz + zx− 2xyz ≤ 7

27
.

Problem 60. Prove that for any a, b, c ∈ R,

√
a2 + (1− b)2 +

√
b2 + (1− c)2 +

√
c2 + (1− a)2 ≥ 3

√
2

2
.

Problem 61. (Mircea Lascu) Let a, b, c be positive real numbers such that abc = 1. Prove
that

b+ c√
a

+
c+ a√
b

+
a+ b√

2
≥
√
a+
√
b+
√
c+ 3.

Problem 62. Let a, b, c, x, y, z be positive real numbers such that x+ y+ z = 1. Prove that

ax+ by + cz + 2
√

(xy + yz + zx)(ab+ bc+ ca) ≤ a+ b+ c.

Problem 63. Let x, y, z > 0 and x+ y + z = 1, show that

x

xy + 1
+

y

yz + 1
+

z

zx+ 1
≥ 36xyz

13xyz + 1
.

Problem 64. Let x1, x2, . . . , xn > 0, m,n ∈ N, β1, β2, . . . , βn ∈ Q+ and β = β1+β2+· · ·+βn.

(a)

∑n
i=1 xi
n

≤
(∑n

i=1 x
2
i

n

) 1
2

≤
(∑n

i=1 x
3
i

n

) 1
3

(b)

∑n
i=1 xi
n

≤
(∑n

i=1 x
m
i

n

)1/m

(c)

∑n
i=1 βixi
β

≤
(∑n

i=1 βix
m
i

β

)1/m

One solution uses Jensen’s inequality, that certainly kills the problem in-
stantly. You can suppose yourself are merely aware of Cauchy-Schwarz inequal-
ity, as a challenge.

Problem 65. Let a, b, c > 0 and abc = 1. Prove that

a

a+ b+ 1
+

b

b+ c+ 1
+

c

c+ a+ 1
≥ 1.

Problem 66. Let x, y, z > 0 and x+ y + z = 1. Prove that√
x

yz
+

√
y

zx
+

√
z

xy
≥ 2

(√
x

(x+ y)(x+ z)
+

√
y

(y + z)(y + x)
+

√
z

(z + x)(z + y)

)
.
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Problem 67. When a+ b+ c = 3, a, b, c ≥ 0, prove that

a+ 3

3a+ bc
+

b+ 3

3b+ ca
+

c+ 3

3c+ ab
≥ 3.

Problem 68. A length of sheet metal 27 inches wide is to be made into a water trough
by bending up two sides as shown in the accompanying figure. Find x and φ so that the
trapezoid-shaped cross section has a maximum area.

φ
x

27− 2x

x

Restriction: You cannot use differentiation, any elementary approach is fine.

Problem 69. Show that for any n ≥ 2, if a1, a2, . . . , an > 0, then

(a3
1 + 1)(a3

2 + 1) · · · (a3
n + 1) ≥ (a2

1a2 + 1)(a2
2a3 + 1) · · · (a2

na1 + 1).

Problem 70. (Austrian Mathematical Olympiad 2008) Prove that the inequality
√
a1−ab1−bc1−c ≤ 1

3
holds for all positive real numbers a, b, c with a+ b+ c = 1.

Moreover, try to generalize this inequality and argue that for any ai > 0,

a1 + a2 + · · ·+ an
n

≥
(

a1a2 · · · an
(aa11 aa22 · · · a

an
n )1/

∑n
i=1 ai

)1/(n−1)

.

Remark. This inequality is useful if we are given a condition on
∏
aaii (especially = 1).

Problem 71. Let a, b, c > 0,

(
1

a2
+ 1

)(
1

b2
+ 1

)(
1

c2
+ 1

)
= 512 and k = a + b + c, find

the minimum value of k.

Problem 72. Given a, b, c > 0. Prove that

a3 + b3 + c3

2abc
≥ a

b+ c
+

b

c+ a
+

c

a+ b
.

Problem 73. Let x, y, z be real numbers greater than or equal to 1. Prove that

(x2 − 2x+ 2)(y2 − 2y + 2)(z2 − 2z + 2) ≤ (xyz)2 − 2xyz + 2.

Problem 74. Let a1, a2, . . . , an and b1, b2, . . . , bn be positive reals and a =
∑n
i=1 ai, b =∑n

i=1 bi. Prove that:
n∑
i=1

aibi
ai + bi

≤ ab

a+ b
.

Problem 75. Show that if a, b, c ≥ 0, then

(a+ b+ c)(a2 + b2 + c2) + 9abc ≥ 2(a+ b+ c)(ab+ bc+ ca).

Problem 76. Let a, b, c ≥ 0, deduce that

a2 + b2 + c2 + 2abc+ 1 ≥ 2(ab+ bc+ ac).

Problem 77. Let a, b, c ≥ 0, prove that

a2 + b2 + c2 + 2abc+ 3 ≥ (1 + a)(1 + b)(1 + c).
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Problem 78. Let x, y, z > 0, prove that

xy

x2 + y2 + 2z2
+

yz

y2 + z2 + 2x2
+

zx

z2 + x2 + 2y2
≤ 3

4
.

Problem 79. Let a, b, c > 0 and abc = 1. Prove that

1

a+ b2 + c3
+

1

b+ c2 + a3
+

1

c+ a2 + b3
≤ 1.

Problem 80. Let ai ∈ [a,A] and bi ∈ [b, B] with a, b > 0, prove that

n∑
i=1

a2
i

n∑
i=1

b2i ≤
1

4

(√
AB

ab
+

√
ab

AB

)(
n∑
i=1

aibi

)2

.

Problem 81. Let {a1, a2, . . . , an} = {1, 2, . . . , n}. Prove that

1

2
+

2

3
+ · · ·+ n− 1

n
≤ a1

a2
+
a2

a3
+ · · ·+ an−1

an
.

Problem 82. Let a, b, c be positive real numbers such that
1

a
+

1

b
+

1

c
= 1. Prove

a2 + b2 + c2 ≥ 2a+ 2b+ 2c+ 9.

Problem 83. Let a, b, c be non-negative numbers with a+ b+ c = 3. Prove that

a

b2 + 1
+

b

c2 + 1
+

c

a2 + 1
≥ 3

2
.

Problem 84. Let x, y, z > 0 and xyz + xy + yz + zx+ 2, prove that

√
x+
√
y +
√
z ≤ 3

2

√
xyz.

1.2 Integration

Problem 85. Numerical answer is not allowed.

(a) 5050 ·
∫ 1

0
(1− x50)100 dx∫ 1

0
(1− x50)101 dx

(b)

∫ 1

0

(1− 2x)ex + (1 + 2x)e−x

(ex + e−x)3
dx

(c)

∫ π/2

−π/2

sinnx

(2x + 1) sinx
dx,∀n ∈ Z

(d)

∫ π

−π

sin2 nx

(ex + 1) sin2 x
dx,∀n ∈ N

(e)

∫ ∞
0

tan−1(πx)− tan−1 x

x
dx

(f)

∫ ∞
0

cosx− 1

xex
dx

(g)

∫ 1

0

tan−1 x

x
√

1− x2
dx

(h)

∫ 1

0

xb − xa

lnx
dx, here a ∈ (0, b)

(i)

∫ 1

0

sin

(
ln

1

x

)
· x

b − xa

lnx
dx

(j) Find

∫
x2 − 1

(x2 + 1)
√

1 + x4
dx.

(k) By using Poisson integral formula, find∫ 2π

0

1

5− 4 cos t
dt &

∫ 2π

0

3ecos t cos(sin t)

5− 4 cos(t−
√

2)
dt.

(l)

∫ π

0

cosnx− cosna

cosx− cos a
dx, a ∈ (0, π), n ∈

N
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Problem 86. Let f be continuous. We say that f ∈ Lp(R) (1 ≤ p ≤ ∞) if

‖f‖p :=


(∫

R
|f(x)|p dx

)1/p

<∞, 1 ≤ p <∞,

sup
x∈R
|f(x)| <∞, p =∞

is finite.

(a) (Young inequality) Let two functions f, g ∈ Lp(R) be continuous with 1 ≤ p ≤ ∞.
Prove that

‖f ∗ g‖p ≤ ‖f‖1‖g‖p,

where the function f ∗ g is the convolution of f and g defined by f ∗ g(x) =

∫
R
f(x−

y)g(y) dy.

(b) (Sobolev inequality) Let f(x) be continuously differentiable (i.e., it has continuous
derivative) on R. Assume f, f ′ ∈ L2(R) and lim|x|→∞ f(x) = 0. Prove that

‖f‖∞ ≤
√

2‖f‖1/22 ‖f ′‖
1/2
2 .

Problem 87. Suppose f(x) is an integrable function on [a, b], prove that the following are
equivalent.

(a)

∫ d

c

f(x) dx = 0 for any [c, d] ⊂ [a, b].

(b)

∫ b

a

|f(x)| dx = 0.

(c)

∫ b

a

f(x)g(x) dx = 0 for any continuous function g(x).

(d)

∫ b

a

f(x)g(x) dx = 0 for any integrable function g(x).

(e) f(x) = 0 at continuous points.

Problem 88. If the function f(x) satisfies f(0) = 5 and f ′(x) = 6x +
√

2 + x2 sin2 x, find∫ 2

−2

f(x) dx.

Problem 89. Show that

∞∑
n=1

∞∑
k=1

1

n(n+ 1) · · · (n+ k)
=

∫ 1

0

ex − 1

x
dx.

Problem 90. Suppose f(x) is continuous on [a, b], differentiable on (a, b), f(a) = 0 and
0 ≤ f ′(x) ≤ 1. Prove that

(∫ b

a

f(x) dx
)2

≥
∫ b

a

f(x)3 dx.

Problem 91. Let f(x) be a integrable function continuous at 0, show that lim
h→0+

∫ 1

0

h

h2 + x2
f(x) dx =

π

2
f(0).
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Problem 92. Suppose f is an non-negative continuous function on [a, b], show that lim
n→∞

(∫ b

a

f(x)n dx
) 1
n

=

max
a≤x≤b

f(x).

Problem 93. Show that

∫ 1

−1

(1− x2)n dx ≥ 4

3
√
n

, ∀n ∈ N.

Problem 94. Let [x] be the biggest integer ≤ x. Let a > 0. Determine the convergence of
the improper integral ∫ 1

0

([a
x

]
− a

[
1

x

])
dx.

Problem 95. (A well-known integral without University knowledge)

(a) Prove that 1− x2 ≤ e−x
2

when 0 ≤ x ≤ 1

e−x
2

≤ 1

1 + x2
when x ≥ 0.

(b) Hence show that lim
λ→∞

∫ λ

0

e−x
2

dx =

√
π

2
.

Problem 96. Let f(x) be a differentiable function, f(0) = 0 and f(1) = 1, prove that∫ 1

0

|f(x)− f ′(x)| dx ≥ 1

e
.

Problem 97. Let f(x) be differentiable function, f(1) = 1 and f ′(x) =
1

x2 + f(x)2
, for all

x ≥ 1. Show that lim
x→∞

f(x) exists and lim
x→∞

f(x) ≤ 1 +
π

4
.

Problem 98. Let f(x) be continuous and increasing on [a, b], prove that

∫ b

a

xf(x) dx ≥(
a+ b

2

)∫ b

a

f(x) dx.

Problem 99. Suppose f(x) and g(x) are integrable on [a, b]. Prove that for any ε > 0, there
is δ > 0, such that for any partition P satisfying ‖P‖ < δ and choices x∗i , x

∗∗
i ∈ [xi−1, xi],

we have ∣∣∣∣∣∑ f(x∗i )g(x∗∗i )∆xi −
∫ b

a

f(x)g(x) dx

∣∣∣∣∣ < ε.

Problem 100. Let f be integrable on [0, 1]. Suppose there is positive real numbers m and
M such that m ≤ f(x) ≤M , for all x ∈ [0, 1], then prove that∫ 1

0

f(x) dx

∫ 1

0

1

f(x)
dx ≤ (m+M)2

4mM
.

Problem 101. Let x(t) be continuous on [0, a] satisfying

|x(t)| ≤M + k

∫ t

0

|x(u)| du,

where M and k are positive constants, prove that |x(t)| ≤Mekt, for t ∈ [0, a].
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Problem 102. Let f be a continuous function on [−1, 1]. Suppose for any even function g
on [−1, 1], the integral ∫ 1

−1

f(x)g(x) dx = 0,

then prove that f is an odd function on [−1, 1].

Problem 103. Let f be continuous on [0, π], n ∈ N. Prove that

lim
n→∞

∫ π

0

f(x)| sinnx| dx =
2

π

∫ π

0

f(x) dx.

Problem 104. Let f be continuous real-valued function on [0, 1] and f(0) = 0, f(1) = 1.
Find

lim
n→∞

n

∫ 1

0

f(x)x2n dx.

Problem 105. Find lim
n→∞

n2

(∫ 1

0

n
√

1 + xn dx− 1

)
.

Problem 106. Find lim
n→∞

1

n4

(
n∑
k=1

k2

∫ k+1

k

x ln
(
(x− k)(k + 1− x)

)
dx

)
.

Problem 107. Let f : [0, 1]→ R be differentiable on [0, 1] with f(1) = 0, show that

lim
n→+∞

n2

∫ 1

0

f(x)xn dx = −f ′(1).

1.3 Evaluation of Limit

Problem 108. Evaluate the following limits

(a) lim
x→0

√
cos 2x 3

√
cos 3x · · · n

√
cosnx− 1

x2

(b) lim
x→0

√
1− 2x 3

√
1− 3x · · · n

√
1− nx

sinx

(c) lim
x→0

(1 + 2x+ x2)
1
x − (1 + 2x− x2)

1
x

x

(d) lim
n→∞

n

(
1α + 2α + ...+ nα

nα+1
− 1

α+ 1

)
,

α > 1

Problem 109. Let a1, a2, . . . be a sequence of positive real numbers. Prove that

lim
n→∞

an
(1 + a1)(1 + a2) · · · (1 + an)

= 0.

Problem 110. Let lim
n→∞

an = a, lim
n→∞

bn = b, prove that lim
n→∞

a1bn + a2bn−1 + · · ·+ anb1
n

=

ab.

Problem 111. Let x1 = sinx0 > 0, xn+1 = sinxn, n > 1, prove that lim
n→∞

√
n

3
xn = 1.

Problem 112. Let a1 = 1 and an+1 =
√
a1 + a2 + a3 + .....+ an, for n > 0, find lim

n→∞

an
n

.

Problem 113. Let n, k ∈ N, tnk ≥ 0,
n∑
k=1

tnk = 1 and lim
n→∞

tnk = 0. Suppose lim
n→∞

an = a,

let xn =
n∑
k=1

tnkak, prove that lim
n→∞

xn = a.
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Problem 114. Let lim
n→∞

an = a, prove that lim
n→∞

a1 + 2a2 + · · ·+ nan
n2

=
a

2
.

Problem 115. Suppose f(x) has second order derivative at 0. Let lim
x→0

(
1 + x+

f(x)

x

) 1
x

=

eλ.

(a) Find f(0), f ′(0) and f ′′(0).

(b) Find lim
x→0

(
1 +

f(x)

x

) 1
x

.

Problem 116. Discuss the continuity of the function

f(x, y) =


|x|p|y|q

(|x|k + |y|l)α(|x|m + |y|n)β
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

at (0, 0). All parameters are positive.

Problem 117. Let p, q > 0. Study the continuity and differentiability of the function

f(x, y) =


|x|p|y|q

|x|+ |y|
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

at all the points on the plane.

1.4 Sequence and Series

Problem 118. Denote [x] the greatest integer not exceeding x.

(a) Calculate

100∑
k=1

[
√
k(k + 4) + 20]. (b) Express

n∑
k=1

[
√
k] in terms of n and a =

[
√
n].

Problem 119. Given that u = 1 +
x3

3!
+
x6

6!
+ · · · , v =

x

1!
+
x4

4!
+
x7

7!
+ · · · , w =

x2

2!
+
x5

5!
+

x8

8!
+ · · · , show that u3 + v3 +w3− 3uvw = 1. Moreover, find the function that u converges

to.

Problem 120. Show that

n−1∑
k=0

(−1)k cosn
(
kπ

n

)
=

n

2n−1
, for any positive integer n.

Problem 121. For any xi > −1, i ∈ N.

(a) Prove that if

∞∑
n=1

xn converges, then

∞∏
n=1

(1 + xn) converges if and only if

∞∑
n=1

x2
n con-

verges.

(b) Prove that if

∞∑
n=1

x2
n converges, then

∞∏
n=1

(1 + xn) converges if and only if

∞∑
n=1

xn con-

verges.

Problem 122. Evaluate f(x) =

∞∑
k=1

1

2k
tan

x

2k
(i.e. find f), where f is well-defined on its

own domain.
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Problem 123. Show that if

∞∑
n=1

an convereges, then we have lim
n→∞

a1 + 2a2 + · · ·+ nan
n

= 0.

Problem 124. (Generalized version of the above question) Suppose {bn} is increasing with

lim
n→∞

bn =∞ and

∞∑
n=1

an converges, show that lim
n→∞

a1b1 + a2b2 + · · ·+ anbn
bn

= 0.

Problem 125. Suppose

∞∑
n=1

an converges, let bn =
a1 + 2a2 + · · ·+ nan

n(n+ 1)
, show that

∞∑
n=1

bn

also converges. Moreover,

∞∑
n=1

an =

∞∑
n=1

bn.

Problem 126. Does the following converge?

(a)

∞∑
n=1

(
1√
n
−
√

ln
n+ 1

n

)
(b)

∞∑
n=1

(n1/(n2+1) − 1)

Problem 127. [2010 IMO prelim (held in 2009)] Evaluate tan

(
2009∑
n=1

tan−1 1

2n2

)
.

Problem 128. Evaluate

∞∑
n=0

cot−1(n2 + n+ 1).

Problem 129. Let a1 = 1, an = n(an−1 + 1), n = 2, 3, . . . , prove that

∞∏
n=1

(
1 +

1

an

)
= e.

Problem 130. Find the function T (x) satisfying T (x) = T
(x

2

)
+ b · x log x, T (1) = 1 and

limx→0+ T (x) exists.

Problem 131. Find all p ∈ R such that

∞∑
k=2

1

(log log k)p log k
converges.

Problem 132. Let 0 < x1 < 1 and define xn+1 = xn(1 − xn). Show that the series
∑
xn

diverges.

hint Problem 133. Let {an} be a sequence of non-negative real numbers with the property that
for every sequence {bn ≥ 0} with

∑∞
n=1 b

2
n < ∞ one has

∑∞
n=1 anbn < ∞. Prove that∑∞

n=1 |an|2 <∞.⊗
Problem 134. Let a1, a2, . . . , aM ∈ C, prove that

lim
n→∞

∣∣∣∣∣
n∑
j=1

anj

∣∣∣∣∣
1/n

= max
j=1,2,...,M

|aj |.

Problem 135. Let a1, a2, a3, . . . be a decreasing sequence of positive real numbers. Let

sn = a1 + a2 + · · · + an and bn =
1

an+1
− 1

an
, n ≥ 1. Prove that if the sequence {sn} is

convergent then the sequence {bn} is unbounded.

Problem 136. Consider the sequence {an}n≥1 such that a1 = a2 = 0 and an+1 = 1
3 (an +

a2
n−1 + b), where 0 ≤ b ≤ 1. Prove that the sequence is convergent and evaluate limn→∞ an.
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Problem 137. Consider a sequence of positive real numbers {an}∞n=1 such that an+1 −
1

an+1
= an +

1

an
, for all n ≥ 1. Compute

lim
n→∞

1√
n

(
1

a1
+

1

a2
+ . . .+

1

an

)
.

Problem 138. Let {xn} be a bounded sequence of real numbers such that

lim
n→∞

(xn+1 − xn) = 0, limn→∞ xn = a and limn→∞ xn = b.

Show that for every c ∈ [a, b], there exists a subsequence {xni} of {xn} with limi→∞ xni = c.

Problem 139. Let a0 6= 0 and {an} be a sequence of real numbers defined by

an+2 =
n(n+ 1)− `(`+ 1)

(n+ 1)(n+ 2)
an, n ≥ 0, ` ∈ R \ {0, 2, 4, 6, . . . }.

Prove that the series a0 + a2 + a4 + · · · diverges.

1.5 Binomial Identity

Problem 140. Show that

2009∑
k=0

(
2009

k

)
(−1)k

k + 2011
=

2010∑
k=0

(
2010

k

)
(−1)k

k + 2010
.

Problem 141. Show that when |4x| < 1, (1− 4x)−1/2 =

∞∑
n=0

(
2n

n

)
xn.

Problem 142. Show that

n∑
k=0

(
2k

k

)(
2n− 2k

n− k

)
= 4n.

Problem 143. Show that

n∑
k=0

1

1− 2k

(
2k

k

)
22n−2k =

(
2n

n

)
.

hint Problem 144. Prove that If an =

n∑
k=1

(−1)k
(
n

k

)
bk, then bk =

k∑
l=1

(−1)l
(
k

l

)
al, where k =

1, 2, . . . , n.

Problem 145. Prove that

n∑
k=1

(−1)k+1 1

k

(
n

k

)
= 1 + 2 + · · · + 1

n
. Hence, or otherwise, show

that
n∑
k=1

(−1)k
(
n

k

)(
1 +

1

2
+ · · ·+ 1

k

)
= − 1

n
.

Problem 146. (i) Give a combinatorial interpretation to the equality

(
n

k

)(
k

m

)
=

(
n

m

)(
n−m
k −m

)
.

(ii) Let m ≤ n and δm,n =

{
1, m = n,

0, m 6= n.
Prove that

n∑
k=m

(−1)k
(
n

k

)(
k

m

)
= (−1)mδm,n.

(iii) Prove by using (i) and (ii) that

n∑
k=m

(−1)k
1

k + 1

(
n

k

)(
k

m

)
=

(−1)m

n+ 1
.
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hint Problem 147. Show that

m−1∑
i=1

m−i∑
j=1

(
m

i

)(
m− i
j

)
(n−2)m−i−j = nm−2(n−1)m+ (n−2)m,

likewise,

m−2∑
i=1

m−i∑
j=1

m−i−j∑
r=1

(
m

i

)(
m− i
j

)(
m− i− j

r

)
(n−3)m−i−j−r = nm−3(n−1)m+3(n−2)m−(n−3)m.

1.6 Basic Counting

Problem 148. In how many ways can we choose elements from {1, 2, 3, . . . , n} to form 2
disjoint subsets?

Problem 149. There are 6 distinct presents. In how many ways can we distribute the
presents to 3 people if everyone at least have one present?

Problem 150. There are 20 distinct presents. In how many ways can we distribute the
presents to 6 people if everyone at least have one present? You must give your numerical
answer in exact!

Problem 151. Suppose that a mathematical expression can only be formed by the following
symbols: 0, 1, 2, . . . , 9, ×, +, ÷. Some examples are “0 + 9”; “2 + 28”; “100÷ 5 + 6”. Let an
be the the number of such mathematical expression of length n (e.g. “0 + 9” is considered
of length 3). Find a recurrence relation for an and compute the closed form for an.

Problem 152. Each of two fair dices is tossed 6 times, let a1, a2, . . . , a6 and b1, b2, . . . , b6
be the values shown in the first and second dice respectively. Find the probability that∑6
i=1 ai 6=

∑6
i=1 bi.

Problem 153. Let there be 10 people whose ages are ranged from 1 to 60 (with 1 and 60
included). Suppose their ages are pairwise distinct, show that there is a possible way to
divide these people into 2 groups such that, the sums of ages of each group are the same.

For example, if there are 1, 2, 3 year-old people out of 10 people, then the division {3}
and {1, 2} are allowed since 3 = 1 + 2 (no need to group all of 10 people).

Problem 154. If three tickets are chosen at random without replacement from a set of
6n tickets numbered respectively 1, 2, . . . , 6n, what is the probability that the sum of the
numbers on the numbers on the chosen tickets is 6n?

1.7 Function and Differentiation

1.7.1 Real-valued Function

Problem 155. Let G = {(x, sin 1
x ) : x ∈ (0, 1]} and let S = {0}× [−1, 1]. Define M = G∪S.

Show that there cannot be any continuous path in M connecting point in G and point in S.

y = sin 1
x
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Problem 156. Suppose f(x, y) is continuous on [0, 1]×[0, 1]. Prove that g(x) := maxy∈[0,1] f(x, y)
is also continuous.

Problem 157. Suppose f has continuous first and second order derivatives on (−1, 1) and
f ′′(x) 6= 0 for all x ∈ (−1, 1).

(a) Show that, for all nonzero x ∈ (−1, 1), there exists a unique θ = θ(x) ∈ (0, 1) such
that

f(x) = f(0) + xf ′
(
xθ(x)

)
.

(b) Show that lim
x→0

θ(x) =
1

2
.

Definition. Define Cc(R) = {f ∈ C(R) : exists a compact set K in R, f ≡ 0 on R \K}. For
example,

x

y

and

x

y

are functions in Cc(R) (need not to share the same compact set). Such function is said to
have compact support. We then define C+

c (R) = {f ∈ Cc(R) : f ≥ 0}.

Problem 158. Given f, g ∈ C+
c (R), g 6≡ 0, show that there are ai > 0 and sj ∈ R such that

f(x) ≤
n∑
j=1

ajg(x− sj), ∀x ∈ R.

Problem 159. Let f(x) be a function on the interval (a, b) that is strictly increasing and
concave with continuous derivative. Suppose that for all x ∈ (a, b) we have a < f(x) < x
and limx→a+ f

′(x) = 1. Define f1(x) = f(x) and fn(x) = fn−1(f(x)) for n ≥ 2, so fn(x) is
the function f applied n-times on x.

Prove that for every x ∈ (a, b)

lim
n→∞

fn+2(x)− fn+1(x)

fn+1(x)− fn(x)
= 1.

Problem 160. Let f(x) and g(x) be two differentiable functions such that

d

dx
f(x) = −g(x) and

d

dx

(
xg(x)

)
= xf(x).

(a) Show that between two consecutive roots of f(x), g(x) has a root.

(b) Show that between two consecutive roots of g(x), f(x) has a root.

Problem 161. Let f : R → R be twice differentiable on R. If f(0) = f(1) = 0 and
max{f(x) : x ∈ [0, 1]} = 2, then prove that there exists θ ∈ (0, 1) such that f ′′(θ) ≤ −16.

Problem 162. Let f : R → R be continuous and decreasing. Prove that there exists a
unique element (a, b, c) ∈ R3 = R× R× R such that

a = f(b), b = f(c) and c = f(a).

Problem 163. Show that every bijection f : R → [0,+∞) has infinitely many points of
discontinuity.

Problem 164. Suppose that f : R− {0, 1} → R satisfies the equation f(x) + f

(
x− 1

x

)
=

1 + x, find f(x).
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Problem 165. Let X ⊂ Rm be compact (i.e. closed and bounded in Euclidean space). Let
f be continuous and injective on X. Prove that f−1 : f(X) ⊂ Rn → X is also continuous.

Remark. There is a result in point-set topology which asserts that:

If X is compact and Y is Hausdorff, then any bijective
continuous map f : X → Y is a homeomorphism.

Problem 166. Let f : (0,∞) → R be a uniformly continuous surjective map. Then prove
that

(a) for any a ∈ R, there are infinitely many b ’s ∈ (0,∞) s.t. f(b) = a;

(b) such an f actually exists.

Problem 167. Let f(x) =

∣∣∣∣1− 1

x

∣∣∣∣ , x > 0, if 0 < a < b and f(a) = f(b), then prove that we

must have ab > 1.

Problem 168. Let f be differentiable and f ′(a) < f ′(b), ∀y0 ∈ (f ′(a), f ′(b)), prove that
∃c ∈ (a, b) such that f ′(c) = y0.
(Note: Differentiability of f(x) cannot imply the continuity of f ′(x), Intermediate Value
Theorem fails to work.)

Problem 169. Consider a continuous function f on [a, b], suppose for any a ≤ x ≤ b, there
is a ≤ y ≤ b, such that |f(y)| ≤ 1

2 |f(x)|. Prove that there is a c ∈ [a, b] such that f(c) = 0.

Problem 170. Let f, g : (a, b)→ R be differentiable such that f(x)g′(x)− f ′(x)g(x) 6= 0 for
all x ∈ (a, b). If there exist x0, x1 such that a < x0 < x1 < b and f(x0) = f(x1) = 0, then
prove that there exists c ∈ (x0, x1) such that g(c) = 0.

Problem 171. For f ∈ C2(R) (i.e. f ′ and f ′′ exist and are continuous on R), if f is bounded,
then prove that there exists x0 such that f ′′(x0) = 0.

Problem 172. Prove that there does not exist a differentiable function f on R such that
f ◦ f(x) = −x3 + x2 + 1.

Problem 173. Suppose that f : [0, 1]→ R has continuous derivative and that

∫ 1

0

f(x) dx =

0. Prove that for every α ∈ (0, 1),

∣∣∣∣∫ α

0

f(x) dx

∣∣∣∣ ≤ 1

8
max

0≤x≤1
|f ′(x)|.

Problem 174. Let f : R → R, be a three times differentiable function. If f(x) and f ′′′(x)
are bounded functions on R, show that f ′ and f ′′ are also bounded functions on R.

Problem 175. Let f be p times differentiable on R and let Mk = sup{|f (k)(x)| : x ∈ R} <∞,
k = 0, 1, 2, . . . , p and p ≥ 2. Prove that

(a) M1 ≤
√

2M0M2

(b) Mk ≤ 2
k(p−k)

2 M
1− kp
0 M

k
p
p , for k = 1, 2, . . . , p− 1.

Problem 176. Let f be continuous at x = 0, if lim
x→0

f(2x)− f(x)

x
= m, prove that f ′(0) = m.

Problem 177. Let f : [0,∞) → R with f(0) = −1 be a differentiable function so that
|f(x)− f ′(x)| < 1, ∀x ≥ 0.

(a) Prove that f does have a limit that is infinite.

(b) Give an example of such a function.
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Problem 178. Let f : [0, 1] → [0, 1], g : [0, 1] → [0, 1] be continuous and satisfy f ◦ g(x) =
g ◦ f(x). Prove that there is a w ∈ [0, 1] such that f(w) = g(w).

Problem 179. Let f : R → R be twice differentiable and for all x ∈ [0, 1], |f ′′(x)| ≤ 2010.
If there exists c ∈ (0, 1) such that f(c) > f(0) and f(c) > f(1), then prove that

|f ′(0)|+ |f ′(1)| ≤ 2010.

Problem 180. P (x) is a polynomial of degree n such that for all w ∈ {1, 2, 22, . . . , 2n}, we
have p(w) = 1/w. Determine P (0) with proof.

Problem 181. Let c be a real constant such that lim
x→0

f(x)

x
= c. Find f(x) which satisfies

f(x+ y) ≤ f(x) + f(y), for all real numbers x, y.

Problem 182. Let Z denote the set of all integers. Determine (with proof) all functions
f : Z→ Z such that for all x, y in Z, we have f(x+ f(y)) = f(x)− y.

Problem 183. Suppose g : R → R is a function in a neighborhood J of 0 s.t. g(0) = 0
and g′(0) > 0. Prove that if g has bounded second derivative in J , then the function

f(x) =

∫ x

0

g(x2t) dt has a local minimum at 0.

Problem 184. Let f : R→ R be continuous function such that

f

(
r +

1

n

)
= f(r),∀r ∈ Q,∀n ∈ N.

Prove that f is constant function.

Problem 185. Let f : [0, 1] → R be continuous and |f(x)| ≤
∫ x

0

f(t) dt, for all x ∈ [0, 1].

Show that f is constantly zero on [0, 1].

Problem 186. Let P be a nonconstant polynomial with real coefficients and only real roots.
Prove that for each r ∈ R, the polynomial Qr(x) , P (x)− rP ′(x) has only real roots.

Problem 187. Let f : I → R be differentiable on the interval I. For a given a ∈ I, suppose
for every sequences {xn}, {yn} satisfying lim

n→∞
xn = lim

n→∞
yn = a with xn 6= yn, one has

lim
n→∞

f(yn)− f(xn)

yn − xn
= f ′(a). Prove that f ′ is continuous at a.

Problem 188. Let f : R→ R be a continuous function. A point x is called a shadow point
if there exists a point y ∈ R with y > x such that f(y) > f(x). Let a < b be real numbers
and suppose that

• All the points of the open interval I = (a, b) are shadow points;

• a and b are not shadow points.

(a) Show that f(x) ≤ f(b) for all x ∈ (a, b).

(b) Show that f(a) = f(b).

Problem 189. Let f : R → R be a differentiable function so that
∣∣f(x)− sin

(
x2
)∣∣ ≤ 1

4
for any x ∈ R. Prove that there exists a sequence of real numbers {xn}∞n=1 for which
lim
n→∞

f ′(xn) = +∞ .
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1.7.2 Complex-valued Function

Problem 190. Show that if f is holomorphic on {z : |z| ≤ 1}, then there must be some
positive integer k such that

f

(
1

k

)
6= 1

k + 1
.

Problem 191. Suppose f is holomorphic on the annulus {z : 1 ≤ |z| ≤ 2}, |f(z)| ≤ 1 for
|z| = 1 and |f(z)| ≤ 4 for |z| = 2. Prove that |f(z)| ≤ |z|2 throughout the annulus.

Problem 192. Let G be a open connected domain and f : G → C be continuous. If f2 is
holomorphic on G, show that f is holomorphic on G. [Hint: First show f is holomorphic at
z such that f(z) 6= 0, then consider the singularity type of roots of f .]

Problem 193. Let f be an entire function which is real on the real axis and imaginary on
the imaginary axis, show that f is an odd function, i.e. f(z) = −f(−z).

Problem 194. Suppose f is a nonconstant holomorphic function on the closed annulus
A = {z : 1 ≤ |z| ≤ 2}. If f sends the boundary circles of A into the unit circle, show that f
must have a root in A.

Problem 195. Suppose f and g are holomorphic on the closed unit disk. Show that |f(z)|+
|g(z)| takes its maximum on the boundary. [Hint: Consider f(z)eiα+g(z)eiβ for appropriate
α and β.]

Problem 196. Let H = {z : Re z > 0}. Suppose f : H → H is holomorphic and f(1) = 1.
Show that

|1− f(2)| ≤ 1

3
|1 + f(2)|.

Problem 197. Let f and g be holomorphic on a domain U . If fg is holomorphic on U , show
that either f ≡ 0 or g is a constant function.

Problem 198. Find the maximum of |f( 1
2 )|, where f is holomorphic on D = {z : |z| < 2},

f(1) = 0 and |f(z)| ≤ 10, for z ∈ D.

Problem 199. Let D be the open unit disk. If f : D → D is holomorphic with at least two
fixed points (i.e. points w such that f(w) = w), show that f(z) ≡ z. [Hint: By composing
with a suitable Möbius mapping, one of the fixed points may be moved to the origin.]

Problem 200. Find all holomorphic function(s) f defined on the open unit disk B(0, 1)
satisfying f( 1

2 ) = 2
3 and f(z) =

(
2− f(z)

)
f(2z), for all z ∈ B(0, 1).

Problem 201. Let w and z be in the open unit disk B(0, 1). If f : B(0, 1) → B(0, 1) is

holomorphic and f(w) = z, prove that |f ′(w)| ≤ 1− |z|2

1− |w|2
.

Problem 202. If f is an entire function mapping the unit circle into the unit circle (i.e.
|f(z)| = 1 for |z| = 1), show that f(z) = eiθzn for some θ ∈ R and some positive integer

n. [Hint: consider roots α1, α2, . . . , αn in the unit disk and recall that

∣∣∣∣ z − αj1− αjz

∣∣∣∣ = 1 for

|z| = 1. Show that f(z) = eiθ
n∏
j=1

z − αj
1− αjz

first.]

Problem 203. (Generalized Maximum Principle) Let U ⊂ C be a bounded domain and
f : U → C be holomorphic. Assume that for every sequence zn ∈ U which converges to the
boundary of U , we have lim

n→∞
|f(zn)| ≤M . Prove that |f(z)| ≤M for every z ∈ U .
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Problem 204. (Generalized Schwarz Lemma) Let f : B(0, 1)→ B(0, 1) be holomorphic and

f(z) = 0 for z = z1, z2, . . . , zn. Show that for all z ∈ B(0, 1), |f(z)| ≤
n∏
k=1

∣∣∣∣ z − zk1− zkz

∣∣∣∣.
Problem 205. Suppose f is an analytic function defined everywhere in C such that for each

z0 ∈ C at least one coefficient in the expansion f(z) =

∞∑
n=0

cn(z − z0)n is equal to 0. Prove

that f is a polynomial.

Problem 206. Suppose D is simply connected and f is nonconstant holomorphic function
on D. Show that there exists a holomorphic g on D such that f = g2 if and only if every
zero of f has even order.

Problem 207. Let f(z) = z +

∞∑
n=2

anz
n. Suppose

∞∑
n=2

n|an| ≤ 1.

(a) Prove that f is holomorphic on the open unit disk D.

(b) Prove that f is injective on D. [Hint: use Rouches’s theorem and consider the number
of roots of f(z)− f(z0) for each z0 ∈ D.]

Problem 208. Let n be a positive integer. For i = 1, 2, . . . , n, let zi and wi be complex
numbers such that for all 2n choices of ε1, ε2, . . . , εn ∈ {1,−1}, we have∣∣∣∣∣

n∑
i=1

εizi

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

εiwi

∣∣∣∣∣ .
Prove that

n∑
i=1

|zi|2 ≤
n∑
i=1

|wi|2.

Problem 209. Let {fn} be a sequence of functions holomorphic on B(0, 1). Show that if
{fn} converges uniformly on every compact subset of B(0, 1), so is {f ′n}.

1.8 Real Analysis

All functions here are extended real-valued. The set functions m and m∗ denote Lebesgue

measure and outer measure on R respectively. All integral “

∫
E

” on a measurable set E

denotes Lebesgue integral over E. λ(I) denotes the length of bounded interval I.

Problem 210. Show that if a set E has positive outer measure, then there is a bounded
subset of E that also has positive outer measure.

Problem 211. Show that if E has finite measure and ε > 0, then E is the disjoint union of
a finite number of measurable sets, each of which has measure at most ε.

Problem 212. Show that a set is measurable if and only if for each ε > 0, there is a closed
set F and open set O for which F ⊆ E ⊆ O and m∗(O \ F ) < ε.

Remark. Recall the Outer Measure Property: E is measurable ⇐⇒ For each ε > 0,
there is an open set O containing E for which m∗(O \ E) < ε ⇐⇒ There is a Gδ set G
containing E for which m∗(G \ E) = 0.

And the Inner Measure Property: E is measurable ⇐⇒ For each ε > 0, there is a
closed set F contained in E for which m∗(E \ F ) < ε ⇐⇒ There is an Fσ set F contained
in E for which m∗(E \ F ) = 0.
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Problem 213. Suppose f and g are continuous functions on [a, b]. Show that if f = g a.e.
on [a, b], then, in fact, f = g on [a, b]. Is a similar assertion true if [a, b] is replaced by a
general measurable set E?

Problem 214. Let {Ek}∞k=1 be a countable collection of measurable subsets of R for which∑∞
k=1m(Ek) <∞.

(a) Show that

{x ∈ R : x lies in infinitely many of Ak’s} =

∞⋂
k=1

∞⋃
n=k

En , lim
n→∞

En.

(b) Hence show that almost all x ∈ R belong to at most finitely many of the Ek’s.

Problem 215 (Dini’s theorem). Let {fn} be an increasing sequence of continuous functions
on [a, b] which converges pointwise on [a, b] to the continuous function f on [a, b]. Show that
the convergence is uniform on [a, b]. [Hint: For ε > 0 and for each natural number n, show
that {En} defined by En = {x ∈ [a, b] : f(x)− fn(x) < ε} is an open cover of [a, b].]

Problem 216. It is known that if f is measurable, then f−1(c) is measurable for any c ∈ R (if
c 6∈ range of f , then f−1(c) = ∅). How about the converse? That is, suppose f is a function
on R such that f−1(c) is measurable for each number c ∈ R. Is f necessarily measurable?

Problem 217. Let I be a compact interval and E a measurable subset of I. Let ε > 0, show
that there is a step function h on I and a measurable subset F of I for which

h = χE on F and m(I \ F ) < ε.

[Hint: Use the first principle.]

Problem 218. Let I be a compact interval and ψ a simple function defined on I. Let ε > 0.
Show that there is a step function h on I and a measurable subset F of I for which

h = ψ on F and m(I \ F ) < ε.

If m ≤ ψ ≤M , then we can take h so that m ≤ h ≤M . That is to say, each simple function
on E is “nearly” a step function.

Problem 219. Let I be a compact interval and f a bounded measurable function defined
on I. Let ε > 0. Show that there is a step function h on I and a measurable subset F of I
for which

|f − h| < ε and m(I \ F ) < ε.

[Recall that step function ϕ on [a, b] has a canonical representation ϕ =
∑n
i=1 aiχIi , where

Ii are bounded interval.]

Problem 220. Let E have finite measure and f be a measurable function that is finite a.e..
Prove that given ε > 0, there is a subset F of E such that

f is bounded on F and m(E \ F ) < ε.

That is to say, each measurable function on a set of finite measure is “nearly” a bounded
measurable function.

Definition. Let {fn} be a sequence of measurable functions on E and f a measurable
function on E for which f and each fn is finite a.e. on E. The sequence {fn} is said to

converge in measure on E to f (denoted by fn
m→ fn) provided for each η > 0,

lim
n→∞

m{x ∈ E : |fn(x)− f(x)| > η} = 0.
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Problem 221. Let fn (n ≥ 1), f and g be measurable functions on E that is finite a.e. on

E. Assume fn
m→ f , show that

fn
m→ g ⇐⇒ f = g a.e. on E.

Problem 222. Let E have finite measure. Assume fn
m→ f and gn

m→ g on E, where fn, gn, f
and g are measurable and finite a.e. on E. Prove that for every constants α, β ∈ R,

|fn|
m→ |f |, αfn + βgn

m→ αf + βg and fn · gn
m→ f · g.

Problem 223. Assume E has finite measure. Let {fn} be a sequence of measurable functions
on E and f a measurable function on E for which f and each fn is finite a.e. on E. Prove
that

fn
m→ f ⇐⇒ Every subsequence of {fn} has in turn a further subsequence

that converges to f pointwise a.e. on E.

Problem 224. Assume m(E) < ∞. For two measurable functions g and h on E, define

ρ(g, h) =

∫
E

|g − h|
1 + |g − h|

. Show that

fn
m→ f ⇐⇒ lim

n→∞
ρ(fn, f) = 0.

Problem 225. Let f be a bounded measurable function on E ⊆ R. Assume that there are
constants C > 0 and 0 < α < 1 such that

m{x ∈ E : |f(x)| > ε} < C

εα

for every ε > 0. Show that
∫
E
|f | <∞.

Problem 226. Let E be a measurable subset of R, m(E) < ∞ and {fn} be a sequence
of measurable functions on E. Let {αn} be a sequence of positive numbers such that∑∞
n=1m{x ∈ E : |fn(x)| > αn} <∞. Prove that

−1 ≤ lim
n→∞

fn(x)

αn
≤ lim
n→∞

fn(x)

αn
≤ 1

for almost all x ∈ E.

Problem 227. Let f(x) be a positive integrable function on [a, b], {En} a collection of
measurable subsets of [a, b]. Show that

lim
n→∞

∫
En

f(x) = 0 =⇒ lim
n→∞

m(En) = 0.

Problem 228 (General Lebesgue Dominated Convergence Theorem). Let {fn} be a sequence
of measurable functions on E that converges pointwise a.e. on E to f . Suppose there is a
sequence {gn} of nonnegative measurable functions on E that converges pointwise a.e. on
E to g and dominates {fn} on E in the sense that

|fn| ≤ gn on E for all n.

Show that

lim
n→∞

∫
E

gn =

∫
E

g <∞ =⇒ lim
n→∞

∫
E

fn =

∫
E

f.

[hint: just imitate the proof of Lebesgue dominated convergence theorem, how can we apply
Fatou’s lemma?]
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Problem 229. Let f be integrable (tacitly assumed measurable) over R and ε > 0. Establish
the following three approximation properties.

(a) There is a simple function η on R which has finite support and
∫
R |f − η| < ε. (do it

for non-negative function first)

(b) There is a step function s on R which vanishes outside a closed, bounded interval and∫
R |f − s| < ε.

(c) There is a continuous function g on R which vanishes outside a bounded set and∫
R |f − g| < ε.

Remark. Now the result can be extended to integration over any measurable subset of R.

Problem 230. Let f be integrable over (−∞,∞).

(a) Show that for each t, ∫ ∞
−∞

f(x) dx =

∫ ∞
−∞

f(x+ t) dx.

[hint: density of step functions]

(b) Let g be a bounded measurable function on R. Show that

lim
t→0

∫ ∞
−∞

g(x) ·
(
f(x)− f(x+ t)

)
dx = 0.

[hint: density of continuous functions]

Problem 231. Show that a set E of real numbers has measure zero if and only if there is a
countable collection of open intervals {Ik}∞k=1 for which each point in E belongs to infinitely
many of the Ik’s and

∑∞
k=1 λ(Ik) <∞.

Problem 232 (Riesz-Nagy). Let E be a set of measure zero contained in the open interval
(a, b). According to the preceding problem, there is a countable collection of open tervals
contained in (a, b), {(ck, dk)}∞k=1, for which each point in E belongs to infinitely many
intervals in the collection and

∑∞
k=1(dk − ck) <∞. Define

f(x) =
∞∑
k=1

λ
(
(ck, dk) ∩ (−∞, x)

)
for all x ∈ (a, b). Show that f is increasing and fails to be differentiable at each point in E.

Problem 233. Let f be of bounded variation on [a, b] and define v(x) = TV (f[a,x]) for all
x ∈ [a, b].

(a) Show that |f ′| ≤ v′ a.e. on [a, b], and infer from this that∫ b

a

|f ′| ≤ TV (f).

(b) Show that the above is an equality if and only if f is absolutely continuous on [a, b].

Problem 234. Let f : R→ R be Lipschitz, that is, there is a constant L such that |f(x)−
f(y)| ≤ L|x− y| for any x, y ∈ R, prove that for any A ⊆ R, one has

m∗
(
f(A)

)
≤ Lm∗(A).

Then prove that a Lipschitz function takes bounded measurable subsets to bounded mea-
surable subsets, does it take any measurable set to measurable set?
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Problem 235. Let f, g > 0 be integrable extended real-valued functions on measurable E
such that fg ≥ 1 and m(E) = 1. Prove that∫

E

f

∫
E

g ≥ 1.

Problem 236. Complete the proof of Lusin’s theorem.

Problem 237. Suppose f is Lebesgue integrable function on R, prove that

lim
n→+∞

∫
R
f(x) cosnx dm(x) = lim

n→∞

∫
R
f(x) sinnx dm(x) = 0.

And in general, if g is bounded integrable function with period T > 0, then

lim
t→+∞

∫
R
f(x)g(tx) dm(x) =

1

T

∫
[0,T ]

g(x) dm

∫
R
f(x) dm.

Problem 238. Let f : [a, b] → R be bounded and continuous m-a.e.2 on [a.b], here m
denotes Lebesgue measure on R.

(a) Let {Pn}n≥1 be any sequence of partitions of [a, b] such that each Pn+1 refines Pn and
‖Pn‖ → 0. Let ϕn and ψn (ϕn ≤ f ≤ ψn) be defined as in theorem ??. Let x ∈ (a, b)
be a point of continuity of f , show that

lim
n→∞

ϕn(x) = f(x) = lim
n→∞

ψn(x).

(b) Using (a) and the dominated convergence theorem, deduce that∫
[a,b]

f dm = lim
n→∞

∫
[a,b]

ϕn dm = lim
n→∞

∫
[a,b]

ψn dm.

(c) Show that f is Riemann integrable on [a, b] and∫
[a,b]

f dm =

∫ b

a

f(x) dx.

1.9 Fourier Analysis

• Let both
∫
Q
•,
∫
Q
•(x) dx denote the Lebesgue integral over Q.

• For any two functions f, g ∈ L2(Q), we denote the inner product of f and g by
(f, g) =

∫
Q
fg.

• For n ∈ N and an orthonormal collection {en(x)}∞n=1 on Q, f̂(n) := (f, en) =
∫
Q
fen.

We say {en} is complete or a basis of L2(Q) if for any f ∈ L2(Q), f =
∑∞
n=1 f̂(n)en

in the sense of L2 distance.

• Any function in this section is complex-valued function on Q ⊆ R whose real and
imaginary part are both measurable functions.

• A collection {en} is indexed by n ∈ N or n ∈ Z when one of them is convenient.

• For two vectors (or sequences) a = (a1, a2, a3, . . . ), b = (b1, b2, b3, . . . ) ∈ `2, we define
(a, b) =

∑
n≥1 anbn.

2Some property P holds µ-a.e. means P holds except a set of µ-measure zero.
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• Define the “circle” to be S1 = R/Z, i.e. [0, 1) with 0 and 1 identified. Henceforth
functions defined on S1 are 1-periodic functions (another useful convention is T =
R/2πZ).

Problem 239. Check that for any orthonormal collection and any f ∈ L2(Q),

∞∑
k=1

|f̂(n)|2 ≤ ‖f‖2

and conclude that {en}∞n=1 is a basis if and only if the Plancherel identity holds:

∞∑
k=1

|f̂(n)|2 = ‖f‖2

for every f ∈ L2(Q).

Problem 240. Let en : n ≥ 1 be any orthonormal collection in L2(Q). Then for any
f ∈ L2(Q), any n ≥ 1, and any complex numbers c1, . . . , cn,∥∥∥∥∥f −

n∑
k=1

f̂(k)ek

∥∥∥∥∥ ≤
∥∥∥∥∥f −

n∑
k=1

ckek

∥∥∥∥∥ .
The lower bound on the LHS is attained if and only if ck = f̂(k),∀k ≤ n.

Problem 241. Show that L2(Q) is infinite dimensional.

Problem 242. Check that the map f 7→ f̂ = (f̂(1), f̂(2), f̂(3), . . . ) preserves inner products:

(f1, f2) =

∫
Q

f1f2 = (f̂1, f̂2) =

∞∑
n=1

f̂1(n)f̂2(n).

Definition (for problem 243 to 248). Let A ⊆ L2(Q) be a closed subspace, by closed we mean
limit points of A are still in A. Define the annihilator of A, A⊥, to be the class of functions
from L2(Q) that are “perpendicular” to every function from A.

Problem 243. Check that A⊥ is a closed subspace, what if A is not closed?

Problem 244. For any f ∈ L2(Q), there is a point Pf in A which is closest to f , i.e.

‖f − Pf‖ ≤ ‖f − g‖, ∀g ∈ A.

[Hint: Pick gn ∈ A so as to make limn→∞ ‖f − gn‖ = infg∈A ‖f − g‖. Then apply the
Gram-Schmidt recipe to convert gn : n ≥ 1 into an orthonormal sequence en : n ≥ 1 and
put Pf =

∑
(f, en)en.]

Problem 245. Prove that f − Pf ∈ A⊥ and that f = Pf + (f − Pf) is the only way of
splitting f into a piece from A and a piece from B. That is,

L2(Q) = A⊕A⊥.

[Hint: Pick g ∈ A, then k(ε) := ‖f −Pf + εg‖2 is a polynomial of degree 2, consider its least
value.]

Problem 246. The so-called projection f 7→ Pf in problem 244 is a linear map of L2(Q)
into itself, check it. Besides, verify that:
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(i) P 2 = P ;

(ii) (Pf1, f2) = (f1, Pf2);

(iii) ‖Pf‖ ≤ ‖f‖;

(vi) P = id on A and 0 on A⊥.

Problem 247. Show that the family fn : n ≥ 1 spans L2(Q) if and only if (f, fn) = 0 for all
n ≥ 1 implies f ≡ 0.

Problem 248. Show that any linear map T of L2(Q) into the complex numbers which is
bounded in the sense that

T (f) ≤ constant× ‖f‖,

where the constant is independent of f , can be expressed as an inner product:

T (f) = (f, g)

for some g ∈ L2(Q). This is the so-called Riesz representation theorem.
[Hint: Suppose T 6≡ 0 and let A = kerT . Check that A⊥ is of dimension 1 and find a
function g ∈ L2(Q) so that T (f) = 0 ⇐⇒ (f, g) = 0. Then

T (f) = ‖g‖−2T (g)(f, g) = constant× (f, g).

]

Problem 249. The orthonormal collection

en(x) = e2πinx, n ∈ Z

is a basis for L2(S1), that is, any function f ∈ L2(S1) can be expanded into a fourier series

f =
∑
n∈Z

f̂(n)en

while the limit is taken in the sense of L2 distance, with coefficients

f̂(n) = (f, en) =

∫ 1

0

fen =

∫ 1

0

f(x)e−2πinx dx.

[Hint: The space C1(S1) is dense in L2(S1).]

Remark. Hence for any function f ∈ L2(Q), completeness of {e2πinx}n∈Z implies we always
have the Plancherel identity:

‖f‖2 =

∫ 1

0

|f |2 =
∑
n∈Z
|f̂(n)|2 = ‖f̂‖.

Definition (for all of later problems). Until further notice, the orthonormal collection en will
always mean e2πinx and “Fourier series” will refer to this particular collection.

Problem 250. Check that f ∈ C∞(S1) if and only if f̂ is rapidly decreasing in the sense

that npf̂(n) approaches 0 as |n| → +∞, for every p <∞, separately.

[Hint: For rapidly decreasing f̂ ,
∑
f̂(n)en converges uniformly to a periodic function f1,

and ∫ x

0

f1 =
∑

f̂(n)

∫ x

0

e′n =
∑

f̂(n)[en(x)− en(0)] = f(x)− f(0).

]
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Problem 251. Show that any linear map T : L1(Q)→ C subject to |T (f)| ≤ constant×‖f‖,
with a constant independent of f , can be expressed as T (f) =

∫
Q
fg for some bounded

measurable function g.
[Hint: L2(Q) ⊆ L1(Q) if Q is bounded. Now apply problem 248 to find such a function
g ∈ L2(Q) and check that ∫ b

a

|g| ≤ constant× (b− a),

for any interval a ≤ x ≤ b.]

Definition. For f, g ∈ L1(S1), we define convolution of f and g, denoted by f ∗ g, to be
the “product”

f ∗ g =

∫ 1

0

f(x− y)g(y) dy.

Problem 252. Check that the convolution defined above makes sense, that is, check that
f ∗ g ∈ L1(S1).

Problem 253. Check that L2(S1) is an ideal in L1(S1). This means that f ∗ g ∈ L2(S1) as
soon as one of the factors does.

Problem 254. Check that L1(S1) does not have a multiplicative identity.
[Hint: A multiplicative identity e would satisfy e ∗ f = f . Now look at ê(n) keeping the
Riemann-Lebesgue lemma in mind.]

1.10 Number Theory

Let φ(k) be the number of positive integers less than or equal to k that are relatively prime
to k, i.e. the Euler-φ function.

Problem 255. Let n be an odd number greater than 1, let a1, a2, . . . , aφ(n) be a reduced

residue system modulo n (all ai’s are relatively prime to n), prove that

∣∣∣∣∣∣
φ(n)∏
k=1

cos
akπ

n

∣∣∣∣∣∣ =
1

2φ(n)
.

Problem 256. Let a, b ∈ N, show that if 4ab− 1|(4a2 − 1)2, then a = b.

Problem 257. Let x, y ∈ N, find all the integral solution of y2 = x3 + 7.

Problem 258. For every positive integer n, let an = 2n + 3n + 6n − 1. Prove that for every
prime number p ≥ 5, there exists a positive integer n such that p divides an (this can be
done by Fermat’s little theorem).

Problem 259. Let m and n be positive integers such that mφ(m) = nφ(n), then prove that
m = n. (Note: φ(n) itself is oscillating)

Problem 260. Prove that there is a bijection f : N→ N such that for every positive integer
k, f(1) + f(2) + · · · + f(k) is divisible by k (this can be done by the Chinese remainder
theorem).

Problem 261. Determine all positive integers x and y such that 2x4 + 1 = y2.

Problem 262. Determine all positive integers n such that n2 − 1 divides 2n! − 1.

Problem 263. Let x, y ∈ N, find all the ordered pair(s) (x, y) satisfying

y2 − (x+ 1)2x = 1

with proof. (hint given: There is only one solution)
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Problem 264. Find all values of n such that φ(n) =
n

3
.

Definition. Let (a,m) = 1, denote ordm(a) the smallest integer k such that ak ≡ 1
(mod m). Such k must exist as at least aφ(m) ≡ 1 (mod m). If further ordm(a) = φ(m) (i.e.
aφ(m) ≡ 1 (mod m), φ(m) is least possible), we call a the primitive root of m.

Some basic fact we have already known:

• ordm(a) = p =⇒ ordm(aq) = p/(p, q). • If ah ≡ 1 (mod m), then ordm(a) |h.

• If g is a primitive root, then {[g], [g2], . . . , [gφ(m)]} = (Z/mZ)× (the complete reduced
residue class), here [k] = k ∗ (mZ) = k +mZ, the coset of mZ.

Problem 265. Let p be an odd prime. Prove that ordp(a) = 2 if and only if a ≡ −1 (mod p).

Problem 266. (a) If ordm(a) = h, prove that no two of a, a2, . . . , ah are congruent modulo
m.

(b) Let g be a primitive root modulo p, p is an odd prime. Show that (by using the known
fact)

(p− 1)! ≡ g · g2 · · · gp−1 ≡ g
p(p−1)

2 (mod p).

Use this to give a proof of Wilson’s congruence that

(p− 1)! ≡ −1 (mod p).

(c) Show that if g and g′ are primitive roots modulo an odd prime p, then gg′ is not a
primitive root of p (you can use other fact that is not given in this question).

Problem 267. If gcd
(

ordm(a), ordm(b)
)

= 1, show that

ordm(ab) = ordm(a) ordm(b) .

Remark. If “co-primeness” is dropped, one can argue that

ordm(ab)

∣∣∣∣[h, k] =
hk

(h, k)
.

Inspired from the fact that ordm(a) = p =⇒ ordm(aq) = p/(p, q) (here pq/(p, q) is LCM!),
one may conjecture “|” above can be replaced by “=”. Unfortunately equality cannot hold in
general.

Problem 268. Give an example that ordm(ab) 6= [ordm(a), ordm(b)].

Problem 269. Let D not be a perfect square. Assume that x2 − Dy2 = −1 has integer
solution, and let x1, y1 be its smallest positive solution. Prove that

(a) x2, y2 defined by

x2 + y2

√
D = (x1 + y1

√
D)2

is the smallest positive integer solution of x2 −Dy2 = 1.

(b) All solutions of x2 −Dy2 = −1 are given by (xn, yn), where

xn + yn
√
D = (x1 + y1

√
D)n, n = 1, 3, 5, . . . ,

and that all solutions of x2 −Dy2 = 1 are given by (xn, yn), with n = 2, 4, 6, . . . .

Problem 270. n2 + (n+ 1)2 is a perfect square for infinitely many values of n.

Problem 271. Let n be a natural number such that the equation an + bn = c2, where a, b
and c are prime numbers, has at least one solution. Find the maximal possible value of n.
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1.11 Metric Spaces

Problem 272. Show that a sequence is totally bounded in (S, d) if and only if every sequence
in S has a Cauchy subsequence.

Problem 273. Let f : R → R be infinitely differentiable. If for every w ∈ R, there exists
a positive integer k such that the k-th derivative f (k)(w) = 0, then prove that on some
non-empty open interval (a, b), f is a polynomial.

Definition. A Fσ set in M is a union of a countable number of closed sets in M . A Gδ set
in M is an intersection of a coutable number of open set in M .

Problem 274. For ∅ ⊂ A ⊆M , define d(x,A) = inf{d(x, y) : y ∈ A}. Prove that d(x,A) = 0
if and only if x ∈ A. Prove that every closed set in M is a Gδ set in M . (Then by de Morgan’s
law, every open set in M is a Fσ set in M .)

Problem 275. (a) Let C[0, 1] denote the set of all continuous real-valued function on [0, 1].
For f, g ∈ C[0, 1], define d∞(f, g) = sup{|f(x)− g(x)| : x ∈ [0, 1]}. Prove that d∞ is a
metric for C[0, 1].

(b) Prove that C[0, 1] is complete with sup-norm ‖f‖∞ = sup{|f(x)| : x ∈ [0, 1]} by
checking the completeness criterion.

(c) Prove that there is a unique continuous real-valued function f(x) on [0, 1] such that

f(x) = sinx+

∫ 1

0

f(y)

ex+y+1
dy.

Problem 276. Prove the Lebesgue Covering Theorem: Let M be a compact metric space
and U be an open covering of M . Prove that there exists r > 0 such that for every x ∈M ,
there is at least one U ∈ U satisfying B(x, r) ⊆ U . The constant r is called a Lebesgue
number for the covering U .

Problem 277. Let X be a compact metric space with d as the metric. If f : X → X satisfies
d
(
f(x), f(y)

)
< d(x, y) for all distinct x, y ∈ X, then prove that f has a fixed point.

Problem 278. Let W1,W2,W3, . . . be closed sets in R and W ◦1 ,W
◦
2 ,W

◦
3 , . . . be their interiors

in R respectively. If R = W1 ∪W2 ∪W3 ∪ . . . , then prove that S = W ◦1 ∪W ◦2 ∪W ◦3 ∪ · · · is
dense in R.

Definition. Let f be a real (or extended-real) valued function on a metric space X. If

{x ∈ X : f(x) > α}

is open for every real α, f is said to be lower semicontinuous.

Remark. When X is any topological space, the notion of lower semicontinuity is defined in
the same way. The simple example for such a function is the characteristic function of a
open set in X.

Problem 279. Suppose that X is a metric space, with metric d, and that f : X → [0,∞]
is lower semicontinuous, f(p) < ∞ for at least one p ∈ X. For n = 1, 2, 3, . . . and x ∈ X,
define

gn(x) = inf{f(p) + nd(x, p) : p ∈ X}.

Prove that:

(i) |gn(x)− gn(y)| ≤ nd(x, y);

(ii) 0 ≤ g1 ≤ g2 ≤ · · · ≤ f and
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(iii) limn→∞ gn(x) = f(x), for all x ∈ X.

Definition. Let X be a metric space and Λ a set of real numbers. A collection of open
subsets of X {Oλ}λ∈Λ is said to be normally ascending provided for any λ1, λ2 ∈ Λ,

Oλ1
⊆ Oλ2

when λ1 < λ2.

Problem 280. Let Λ be a dense subset of (a, b), where a, b ∈ R, and {Oλ}λ∈Λ a normally
ascending collection of open subsets of a metric space X. Define the function f : X → R by
setting f = b on X \ ∪λ∈ΛOλ and otherwise setting

f(x) = inf{λ ∈ Λ : x ∈ Oλ}.

Show that f : X → [a, b] is continuous.

1.12 Linear Algebra

Denote L(U, V ) a collection of linear maps from U to V . Define L(V ) = L(V, V ). Here V is
a finite dimensional vector space (unless otherwise specified) over F (F is C or R).

Problem 281. Suppose T ∈ L(V ) and dim rangeT = k. Prove that T has at most k + 1
distinct eigenvalues.

Problem 282. Suppose S, T ∈ L(V ). Prove that ST and TS have the same eigenvalues.

Problem 283. Suppose T ∈ L(V ) is such that every vector in V is an eigenvector of T .
Prove that T is a scalar multiple of the identity operator.

Problem 284. Let S, T ∈ L(V ), prove that ST = I if and only if TS = I.

Problem 285. Let S, T ∈ L(V ), prove that T is a scalar multiple of the identity if and only
if ST = TS, for every S ∈ L(V ).

Problem 286. Suppose u, v ∈ V . Prove that 〈u, v〉 = 0 if and only if

‖u‖ ≤ ‖u+ av‖, for all a ∈ F.

Definition. Let T ∈ L(V ). Let U be a subspace of V . We say that U is invariant under
T or U is an invariant subspace of T if and only if for every u ∈ U , Tu ∈ U . In short,
T |U ∈ L(U).

Problem 287. Suppose T ∈ L(V ) is such that every subspace of V with dimension dimV −1
is invariant under T . Prove that T is a scalar multiple of the identity operator.

Problem 288. Suppose P ∈ L(V ) and P 2 = P . Prove that V = nullP ⊕ rangeP .

Problem 289. Let U and V be finite dimensional vector spaces, S ∈ L(V,W ), T ∈ L(U, V ),
prove that

dim nullST ≤ dim nullS + dim nullT.

Problem 290. Prove that if P ∈ L(V ) is such that P 2 = P and

‖Pv‖ ≤ ‖v‖

for every v ∈ V , then P is an orthogonal projection.

Problem 291. Suppose V is a real inner-product space and (v1, ..., vm) is a linearly inde-
pendent list of vectors in V . Prove that there exist exactly 2m orthonormal lists (e1, ..., em)
of vectors in V such that

span(v1, . . . , vj) = span(e1, . . . , ej)

for all j ∈ {1, ...,m}.
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Problem 292. Find a polynomial q ∈ P2(R) (a collection of polynomial of degree two with
real coefficients) such that ∫ 1

0

p(x) cosπx dx =

∫ 1

0

p(x)q(x) dx

for every p ∈ P2(R).

Definition. Let T ∗ denote the adjoint of T .

Problem 293. Suppose T ∈ L(V ) and λ ∈ F. Prove that λ is an eigenvalue of T if and only
if λ is an eigenvalue of T ∗.

Problem 294. (a) Prove that if dim rangeT = dim rangeT 2, then rangeT ∩ nullT = {0}.
Prove also that V = nullT ⊕ rangeT .

(b) Prove that for any T ∈ L(V ), there is a positive integer k such that

V = rangeT k ⊕ nullT k.

Problem 295. Let A be an m×n matrix. Show that rankQAP = rankA for any invertible
m×m matrix Q and any invertible n× n matrix P .

Problem 296. Let A be an m× n matrix. Show that rankATA = rankA.

Problem 297. Let S be a skew-symmetric matrix (i.e. ST = −S), prove that I + S is
invertible.

Definition. For an n× n matrix A (or an operator T ∈ L(V )) we define the spectrum of
A, as follows:

σ(A) := {λ ∈ C : A− λI is not invertible}.

We also define ρ(A) = max{|λ| : λ ∈ σ(A)} to be the spectral radius of A.

Problem 298. Let A be an n× n matrix, then

lim
n→∞

An = 0 ⇐⇒ ρ(A) < 1.

Here limn→∞An = 0 means that limn→∞Anx = 0 for each x ∈ Cn.

Problem 299. Let A,B be Hermitian matrices that commute. Prove that there is a unitary
matrix P such that P ∗AP and P ∗BP are both diagonal.

Problem 300. Define A = (aij)1≤i,j≤n and Ak = (aij)1≤i,j≤k, aij ∈ R and AT = A. Prove
that A is positive definite if and only if detAk > 0 for k = 1, 2, . . . , n.

Problem 301. Let b ∈ Cm and A ∈ Cm×n be fixed. The following are equivalent:

(i) x0 solves the least square problem (LSP) in the sense that

‖b−Ax0‖2 = inf{‖b−Ax‖2 : x ∈ Cn}.

(ii) b−Ax0 ∈ (rangeA)⊥.

(iii) A∗Ax0 = A∗b.

Moreover, such x0 is unique ⇐⇒ A has full rank.
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Definition. Let X,Y be normed vector space, that is, X and Y are endowed with the norms
‖ · ‖X , ‖ · ‖Y respectively. Let L(X,Y ) denote the collection of all continuous linear maps
from X to Y . For each T ∈ L(X,Y ), we can define

‖T‖ = sup{‖Tx‖Y : x ∈ X, ‖x‖X = 1},

‖ · ‖ defined above turns out to be a norm on L(X,Y ), called operator norm. When X
and Y are Euclidean spaces, L(X,Y ) is the collection of matrices, and the operator norm
in this special case is called induced matrix norm.

Let x ∈ Fn, write x as (x1, x2, . . . , xn), i.e., xi denotes its ith component. This notation
is not ambiguous as long as x is a vector. Recall that ‖x‖p = (

∑n
i=1 |xi|p)1/p, ‖x‖∞ =

max{|xi| : i = 1, 2, . . . , n} and x∗ = (xT ).
For each p ≥ 1 and a matrix A over some scalar field, it is a convention to define

‖A‖p := sup{‖Ax‖p : x in domain, ‖x‖p = 1}.

Clearly it is a special case of operator norm, with the norms of domain and range being fixed
to be p-norm. It is also a convention to denote Rm×n and Cm×n the collection of m×n real
and complex matrices respectively.

Problem 302. Let ai’s be column vectors, show that:

(a) If A = [ a1 · · · an ], ‖A‖1 = max1≤j≤n ‖aj‖1;

(b) If A =

 a∗1
...
a∗n

, then ‖A‖∞ = max1≤i≤m ‖a∗i ‖1.

In words, ‖A‖1 is the maximum (absolute) column sum, while ‖A‖∞ is the maximum (ab-
solute) row sum.

Problem 303. Let D be the diagonal matrix

D :=


d1

d2

. . .

dn

 ,

show that ‖D‖2 = max{|di| : i = 1, 2, . . . , n}.

Problem 304. Vector and matrix p-norms are related by various inequalities, often involving
dimensions m or n. For each of the following, verify the inequality and give an example of a
nonzero vector of matrix (for general m,n) for which equality is achieved (so that the bound
in optimal). In the problem x is an m-vector and A is an m× n matrix.

(a) ‖x‖∞ ≤ ‖x‖2

(b) ‖x‖2 ≤
√
m‖x‖∞

(c) ‖A‖∞ ≤
√
n‖A‖2

(d) ‖A‖2 ≤
√
m‖A‖∞

Problem 305. Let A be an m × n matrix and let B be a submatrix of A, that is, a µ × ν
matrix (µ ≤ m, ν ≤ n) obtained by selecting certain rows and columns of A (not necessarily
consecutive rows and columns!)

(a) Explain how B can be obtained by multiplying A by certain matrices.

(b) Using the result in (a), show that ‖B‖p ≤ ‖A‖p for any p with 1 ≤ p ≤ ∞.
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Problem 306. In this problem we are going to prove part (i) of the following theorem.
Whereas part (ii) (which we don’t go through in this problem!) requires the definition of
singular vectors, which motivates part (i) of the theorem.

Theorem.

(i) Every matrix A ∈ Cm×n has a SVD:

A = UΣV ∗
U ∈ Cm×m is unitary
V ∈ Cn×n is unitary
Σ ∈ Rm×n is “diagonal”

Furthermore, the singular values σj’s, σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n} ≥ 0,
are uniquely determined.

(ii) If A is square and σj’s are distinct, the left and right singular vectors
{uj} and {vj} are unique up to a multiplicative constant with modulus 1.

The theorem is simple when m = 1 or n = 1, so in the following we are going to assume
m,n ≥ 2.

(a) Show that there is v1 ∈ Cn with ‖v1‖2 = 1 such that ‖Av1‖2 = ‖A‖2 =: σ1.

(b) Show that for unitary matrix U ∈ Cm×m, ‖UA‖2 = ‖A‖2.

(c) Define u1 = Av1/‖Av1‖ ∈ Cm, then Av1 = σ1u1. Extend u1 to an o.n. basis
{u1, . . . , um} of Cm and v1 to an o.n. basis {v1, . . . , vn} of Cn. Let U1 be the matrix
with columns ui and V1 be that with columns vi, then

U∗1AV1 = [A]
(u1,...,um)
(v1,...,vn) =



Av1 Av2 ··· Avn

u1 σ1 w∗(to be proved O)
u2

... O B := [A]
(u2,...,um)
(v2,...,vn)

um

 =: S.

Show that w = 0 ∈ Cn−1 by considering

∥∥∥∥S (σ1

w

)∥∥∥∥ ≥ σ2
1 + w∗w.

Remark. Note that we have x ⊥ v1 =⇒ Ax ⊥ Av1, and the only assumption to derive
this result is ‖Av1‖2 = ‖A‖2, with ‖v1‖2 = 1. We extract this as a technical corollary.

Corollary. Let A ∈ Cm×n, v ∈ Cn with ‖v‖2 = 1. Then if ‖Av‖2 = ‖A‖2,

w ⊥ v =⇒ Aw ⊥ Av.

The same is true when C is replaced by R.

(d) Explain why B = [A]
(u2,...,um)
(v2,...,vn) .

(e) Prove the existence part of SVD by induction on k, where m+ n = k.

(f) Note, however, that if the choices of {u2, . . . , um} and {v2, . . . , vn} change, the “Σ”
may also be changed. Show that the resulting Σ in the existence part of the SVD is
independent of such choices. So the uniqueness part is completed.

We have thereby proved the existence of SVD for any complex matrix.
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Problem 307. Show that part (i) of the theorem quoted in problem 306 is also true if C are
changed to R, i.e., A ∈ Rm×n, U ∈ Rm×m and V ∈ Rn×n.

Problem 308. Two matrices A,B ∈ Cm×m are unitarily equivalent if A = QBQ∗, for some
unitary Q ∈ Cm×m. Is it true or false that A and B are uniarily equivalent if and only if
they have the same singular values (i.e., same Σ in their SVDs)?

Problem 309. Using the SVD, prove that any matrix in Cm×n is the limit of a sequence
of matrices of full rank. In other words, prove that the set of full-rank matrices is a dense
subset of Cm×n.

Problem 310. By considering the SVD of A ∈ Cm×m, say, A = UΣV ∗. Find an eigenvalue
decomposition of the 2m× 2m hermitian matrix(

0 A∗

A 0

)
.

Here to find an eigenvalue decomposition is the same as to find an invertible matrix X such
that X−1AX is diagonal.

Definition. Let P ∈ Fn×n. We say that P is a projector iff P 2 = P . Note that for each
x ∈ Fn, x = Px+ (x− Px), Px ∈ rangeP while x− Px ∈ nullP . So whenever a matrix P
is a projector, Fn = rangeP + nullP . We say that P is orthogonal iff rangeP and nullP
are orthogonal.

Problem 311. Show that a projector P is orthogonal if and only if P = P ∗.

Problem 312. Let P ∈ Cm×m be a nonzero projector. Show that ‖P‖2 ≥ 1, with equality
holds if and only if P is an orthogonal projector.

Problem 313. By considering QR factorization, show that if A = [ a1 · · · an ], where
ai ∈ Fn is column vector for each i, one has

|detA| ≤
n∏
i=1

‖ai‖2.

1.13 Algebra

Problem 314. Show that any group G cannot be a union of two proper subgroups.

Problem 315. Count the elements contained in the following sets.

(a) {σ ∈ S5 : |σ| = 2}. (b) {σ ∈ Sn : |σ| = 2}. (c) {σ ∈ Sn : |σ| = p}, p ≤
n.

Problem 316. If H and K are normal subgroups of a group G with HK = G, prove that

G/(H ∩K) ' (G/H)× (G/K).

Problem 317. Let G be a group of order psm, where p is prime, p - m. Let H ≤ G with
order ps and K ≤ G with order pt, 0 < t ≤ s and K * H, show that HK � G.

Problem 318. Let A, B be two finite subgroups of G. Show that |AB| = |A||B|
|A ∩B|

.

Problem 319. Prove that every even permutation in Sn is a product of cycles of length 3.
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Problem 320. Let G be a finite group. For a given a ∈ G, let

Sa = {x ∈ G : xax−1 = a2}.

If a has order n, prove that |Sa| is a multiple of n.

Problem 321. Let G be a group, if every element in G has order 2, show that G must be
abelian.

Problem 322. Let N be a given positive integer with N ≥ 3, and let a1, a2, . . . , am be the
full list of integers such that 1 ≤ ai ≤ N − 1 and ai is relatively prime to N (so m = φ(N)).

(a) Prove that a1 + a2 + · · ·+ am is a multiple of N .

(b) If k is relatively prime to m, prove that ak1 + ak2 + · · ·+ akm is a multiple of N .

Problem 323. Let G be a finite group with |G| = pn, where p is a prime. Suppose G acts
on a finite set X. Let B be the set of fixed points, that is,

B = {x ∈ X : gx = x for all g ∈ G}.

Prove that |X| − |B| is a multiple of p.

Problem 324. Let F = {a1, a2, . . . , an} be a finite field with n elements. If n > 3, prove
that

a2
1 + a2

2 + · · ·+ a2
n = 0 and

∑
1≤i<j≤n

aiaj = 0.

Problem 325. Suppose R is a commutative ring with 1, let a, b, x, y ∈ R satisfy ax+ by = 1.

(a) Prove that there exist c, d ∈ R such that cx2004 + dy2004 = 1.

(b) Let I be an ideal such that x2003 ∈ I and y2004 ∈ I, prove that I = R.

Problem 326. Let F be a finite field and |F | = n > 2. Let a1, a2, . . . , an be the list of all
elements in F .

(a) For a non-zero element b ∈ F , prove that the list a1b, a2b, . . . , anb is a permutation of
a1, a2, . . . , an.

(b) Prove that a1 + a2 + · · ·+ an = 0.

(c) Prove that for an arbitrary positive integer k, ak1 + ak2 + · · ·+ akn is either 0 or −1.

Problem 327. (a) Let H, with order 2, be a normal subgroup of G, prove that H is in
the center of G.

(b) Let H be a normal subgroup of prime order p in a finite group G. Suppose that p is
the smallest prime dividing |G|. Prove that H is in the center Z(G).

Problem 328. (a) Show that if G/Z(G) is cyclic, then G is abelian.

(b) Show that a nonabelian group G of order pq, where p, q are primes, has (only) a trivial
center.

Problem 329. Let ~a,~b be two linearly independent vectors in R2. Prove that every other
pair of vectors ~a′,~b′ such that

Z~a+ Z~b = Z~a′ + Z~b′

must be of the form (~a,~b) = (~a′,~b′)P , where P is a 2 × 2 integer matrix with determinant
±1.
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Problem 330. We say that A is dense in B if any element of B is either an element of A or
a limit (or called accumulation) point of A.

(a) Prove that a subgroup Γ of (R,+) is either dense in R or else of the form Za, for some
a > 0.

(b) Show that Z+ Z
√

2 is dense in R. Generalize the result to Zq + Zr for rational q and
irrational r.

(c) Let H be a subgroup of the group G of rotations in R2. Prove that H is either a cyclic
subgroup of G or else dense in G.

Problem 331. Let F be a field and F× = F \ {0} be the multiplicative group of F .

(a) Prove that every finite subgroup of F× is cyclic.

(b) Prove that for each positive integer n, F× contains at most one subgroup of order n.
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1.14 Hint

• Problem 133: Suppose that
∑∞
n=1 a

2
n =∞, consider the partition of N into consecutive

finite segments E1, E2, E3, . . . such that
∑
n∈Ek a

2
n > 1. Define a sequence {bn} by

setting bn = ckan, for n ∈ Ek. Choose suitable ck to get contradiction.

• Problem 144: Show that

k∑
`=1

∑̀
r=1

ar,` =

k∑
r=1

k∑
`=r

ar,`.

• Problem 147: Count all possibilities of picking out m numbers with replacement from
{1, 2, . . . , n}, moreover, these possibilities must contain two specified numbers (say
1, 2), also note to get RHS, we need inclusion-exclusion.
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Chapter 2

Solutions

Beforehand two symbols are introduced here for simplicity.
∑
cyc

,
∑
cyc

or
∑

cyclic

means to

take the cyclic summation about known variables
∑

cyclic

f(a, b, c) = f(a, b, c) + f(b, c, a) +

f(c, a, b). A symmetric sum is denoted by
∑
sym

or
∑
sym

, and it is seldom written as
∑

symmetric

.

The symmetric sum takes over all permutations about a, b, c in f(a, b, c), there are 3! = 6
such terms, that is∑

sym

f(a, b, c) = f(a, b, c) + f(a, c, b) + f(b, a, c) + f(b, c, a) + f(c, a, b) + f(c, b, a).

For example, (x+ y + z)3 =
∑

cyclic

x3 + 3
∑
sym

x2y + 6xyz =
∑

cyclic

(x3 + 3x2(y + z) + 2xyz).

2.1 Inequality

1. (a) Direct consequence of Cauchy-Schwarz inequality, equality holds if and only if their
corresponding ratios are equal, i.e. a

c = b
d or ad = bc.

(b) Making a transform before using the result, we have

f(x) = 7− 2x+ 1
2

√
3 + 2x− x2

= 5 + 2(1− x) + 1
2

√
3 + 2x− x2

≤ 5 +
√

(4 + 1/22)(1− 2x+ x2 + 3 + 2x− x2)

= 5 +
√

17.

Equality holds if and only if 2
√

3 + 2x− x2 = 1
2 (1− x) or x = 1− 8√

17
.

2.
∑
cyc

a(b+ c)
∑
cyc

a

b+ c
≥ (a+ b+ c+ d)2, now observe that

∑
cyc

a(b+ c) = ab+ ac+ ad+ bc+ bd+ cd+ ac+ bd

≤ ab+ ac+ ad+ bc+ bd+ cd+
a2 + c2 + b2 + d2

2

=
(a+ b+ c+ d)2

2
,

41
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so the result follows.

3. To be added.

4. Consider (
∑
cyc

√
a2 + 3)2 = (

∑
cyc

√
a
√
a+ 3/a)2 ≤

∑
cyc a

∑
cyc(a+ 3/a) = 4(

∑
cyc a)2.

5. Summing up these two inequalities, we are done.∑
cyc

(b+ c)
∑
cyc

b2

b+ c
≥ (a+ b+ c)2 and

∑
cyc

(b+ c)
∑
cyc

c2

b+ c
≥ (a+ b+ c)2.

6. Cauchy

(b+ c+ c+ a+ a+ b)

(
a2

b+ c
+

b2

c+ a
+

c2

a+ b

)
≥ (a+ b+ c)2

a2

b+ c
+

b2

c+ a
+

c2

a+ b
≥ a+ b+ c

2
≥ 3

2
.

Another method, we try to show that
∑

cyclic

a2

b+ c
≥ a+ b+ c

2
first, since two sides of the

inequality are homogeneous, we can normalise (which means we “set” a condition that is
more favourable) to a+ b+ c = 1 such that∑

cyclic

a2

b+ c
≥ a+ b+ c

2
⇐⇒

∑
cyclic

a2

1− a
≥ 1

2
.

This can be easily proved by Cauchy-Schwarz inequality, another way to show is to let

f(x) =
x2

1− x
=⇒ f ′′(x) =

2

(1− x)3
, it shows that f is strictly convex on (0, 1) and hence

f(x) =
x2

1− x
≥ f ′

(
1

3

)(
x− 1

3

)
+ f

(
1

3

)
=

5

4

(
x− 1

3

)
+

1

6

where right hand side is the tangent on f at ( 1
3 , f( 1

3 )). Thus∑
cyclic

a

1− a
≥ 5

4
(a+ b+ c− 1) +

3

6
=

1

2
.

7. Since (3)(a2 + b2 + c2) ≥ (a+ b+ c)2 = 1, it follows that

(
√

1− 3a2 +
√

1− 3b2 +
√

1− 3c2)2 ≤ (3)(3− 3(a2 + b2 + c2))

≤ 6.

8. By Cauchy-Schwarz inequality∑
cyclic

a(b+ c)
∑

cyclic

1

a3(b+ c)
≥
(

1

a
+

1

b
+

1

c

)2

we have1 ∑
cyclic

1

a3(b+ c)
≥

1
a + 1

b + 1
c

2
≥ 3

2
3

√
1

abc
=

3

2
.

1
∑

cyclic a(b+ c) = 2
(
1
a

+ 1
b

+ 1
c

)
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Or, you may find this questions is similar to Q2. Replacing a, b, c respectively by
1

a
,

1

b
,

1

c
,

you find they are exactly the same!
Or, by AM-GM inequality, we have

a2

b
≥ 2a

k
− b

k2

where a, b, k are positive reals. Now∑
cyclic

1

a3(b+ c)
=
∑

cyclic

( 1
a )2

1
c + 1

b

≥
∑

cyclic

(
2( 1
a )

k
−

1
c + 1

b

k2

)
.

We take k = 2 such that 1/k − 1/k2 = 1/4∑
cyclic

1

a3(b+ c)
≥ 2

∑
cyclic

1

a

(
1

k
− 1

k2

)
≥ 6

(
1

k
− 1

k2

)
=

3

2
.

9. We eliminate 2, 3 and 6 in the expression 2b2 + 3c2 + 6d2, that gives

(b+ c+ d)2 ≤
(

1

2
+

1

3
+

1

6

)
(2b2 + 3c2 + 6d2)

(3− a)2 ≤ 5− a2

(a− 1)(a− 2) ≤ 0

1 ≤ a ≤ 2.

10. We use Cauchy-Schwarz inequality twice, having(∑
cyc

a

)(∑
cyc

a3

b2

)
≥

(∑
cyc

a2

b

)2

and

(∑
cyc

b

)(∑
cyc

a2

b

)
≥

(∑
cyc

a

)2

,

combining these two, we are done.

11. Refer to question 5, note that when taking square root on both sides, we should add a “±”
sign as we concern all reals, in such way we can find maxima and minima.

12. Cauchy-Schwarz inequality applies to a set of reals not all zero, this fact enables us to cancel
out terms by multiplying a negative factor.

(a2 + b2 + (2a− 3b+ 4)2)((−2)2 + 32 + 1) ≥ (−2a+ 3b+ 2a− 3b+ 4)2 = 16

a2 + b2 + (2a− 3b+ 4)2 ≥ 16

14
=

8

7
.

13. (a) We apply Cauchy-Schwarz ineqaulity to eliminate the undesired factors.

n∑
i=1

ai(S − ai)
n∑
i=1

ai
S − ai

≥

(
n∑
i=1

ai

)2

= S2

while since
n∑
i=1

a2
i ≥

S2

n
(2.1)

it follows that (
n− 1

n

)
S2

n∑
i=1

ai
S − ai

≥ S2 =⇒
n∑
i=1

ai
S − ai

≥ n

n− 1
.
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(b) By (1) (
n− 1

n

)
S2

n∑
i=1

S − ai
ai

≥
n∑
i=1

ai(S − ai)
n∑
i=1

S − ai
ai

≥

(
n∑
i=1

(S − ai)

)2

,

and hence
n∑
i=1

S − ai
ai

≥ n(n− 1).

14. By Cauchy-Schwarz inequality, we have

n∑
k=1

ak(ak + 1)

n∑
k=1

ak
ak + 1

≥

(
n∑
k=1

ak

)2

while since

n∑
k=1

ak

(
n∑
k=1

ak + 1

)
−

n∑
k=1

ak(ak + 1) =

(
n∑
k=1

ak

)2

−
n∑
k=1

a2
k > 0,

this implies
n∑
k=1

ak

(
n∑
k=1

ak + 1

)
>

n∑
k=1

ak(ak + 1),

the result follows.

15. The denominator of each fraction is obviously positive, for example, a2 − bc+ 1 = a2 − bc+

3(ab+bc+ca), which has no negative term. Observe that
∑
cyc

a

a2 − bc+ 1

∑
cyc

(a2−bc+1)a ≥(∑
cyc

a

)2

=
∑
cyc

a2 +
2

3
, we have

∑
cyc

a

a2 − bc+ 1
≥

∑
cyc a

2 + 2
3

a3 + b3 + c3 − 3abc+
∑
cyc a

=

∑
cyc a

2 + 2
3∑

cyc a(
∑
cyc a

2 − 1
3 + 1)

=
1

a+ b+ c
.

16. Method 1. We observe that for all x > 0, the inequality xk ≥ k(x − 1) + 1 holds for
k ∈ {1, 2, . . . , n}. So

n∑
k=1

(xk)k

k
≥

n∑
k=1

k(xk − 1) + 1

k
=

n∑
k=1

xk +

n∑
k=1

1

k
− n,

equality holds when x1 = x2 = · · · = xn = 1.

Finally by Cauchy-Schwarz inequality (or AM-GM as in method 2), n
∑n
k=1 xk =

∑n
k=1

1
xk

∑n
k=1 xk ≥

n2 =⇒
∑n
k=1 xk ≥ n, so

n∑
k=1

(xk)k

k
≥ n+

n∑
k=1

1

k
− n =

n∑
k=1

1

k
.

Method 2. Weighted AM-GM inequality states that if ωi > 0,
∑n
i=1 ωi = 1, then for

ai > 0,
n∑
i=1

ωiai ≥
n∏
i=1

aωii ,
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hence

n∑
k=1

(xk)k

k
=

n∑
k=1

1

k

n∑
k=1

1
k∑n
k=1

1
k

(xk)k ≥
n∑
k=1

1

k
(x1x2 . . . xn)

∑n
k=1

1
k ≥

n∑
k=1

1

k
,

the last inequality follows from

n
√
a1a2 . . . an ≥

n

1 + 1
2 + · · ·+ 1

n

= 1.

Copy from the Internet (not sure to be correct) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lagrange multipliers. Define L(x1, . . . , xn) =

n∑
k=1

xkk
k

+ λ

(
n∑
k=1

1

xk
− n

)
. Its partial

derivative with respect to xk is xk−1
k − λ 1

x2
k

, equaled to zero yields xk+1
k = λ for all

k. But the polynomial xk+1 − λ = 0 can only have one positive real root, so all xk
are equal, clearly to 1 - and this is the only critical point, which easily is seen to be a

minimum. So the sought after minimum is

n∑
k=1

1

k
≈ lnn.

If xk are allowed to be negative also, the result stays when k is even, but the
discussion becomes complicated for k odd, since then we have to check all cases when
the moduli |xk| are equal.

17. We observe that(∑
cyc

ab

c(c+ a)

)
=

√∑
cyc

ca

b(b+ c)

∑
cyc

ab

c(c+ a)
≥
∑
cyc

√
c+ a

c+ b

(
a

c+ a

)
, (1)

now (∑
cyc

a

c+ a

)2

≤
∑
cyc

√
c+ a

c+ b

(
a

c+ a

)∑
cyc

√
c+ b

c+ a

(
a

c+ a

)
, (2)

but if we consider the rightmost factor,(∑
cyc

√
c+ b

c+ a

(
a

c+ a

))2

≤
∑
cyc

a(c+ b)

(c+ a)2

∑
cyc

a

c+ a
,

it is enough to prove that
∑
cyc

a(c+ b)

(c+ a)2
≤
∑
cyc

a

c+ a
, thereafter combining inequality (2) and

then (1), we are done.

∑
cyc

a(c+ b)

(c+ a)2
≤
∑
cyc

a

c+ a
⇐⇒

∑
cyc

ab

(c+ a)2
≤
∑
cyc

a2

(c+ a)2
.

However,
∑
cyc

ab

(c+ a)2
≤ 1

2

(∑
cyc

a2

(c+ a)2
+
∑
cyc

b2

(c+ a)2︸ ︷︷ ︸
call it S

)
≤
∑
cyc

a2

(c+ a)2
. We cannot as-

sume WLOG a ≥ b ≥ c as the original inequality varies when either two are interchanged.
But the inequality holds true because S itself is always a reverse sum, no matter a ≥ b ≥ c,
a ≥ c ≥ b, whatever, so by rearrangement inequality, we have proved our claim.
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18. By AM-GM inequality, one get
∑
cyc

a√
(a2 + b2)(b2 + c2)

≥ 2
∑
cyc

a∑
cyc a

2 + b2
, by Cauchy-

Schwarz inequality,

2
∑
cyc

a∑
cyc a

2 + b2
≥ 2

(
∑
cyc a)2∑

cyc a
∑
cyc a

2 +
∑
cyc ab

2
≥ 2

(
∑
cyc a)2∑

cyc a
∑
cyc a+

∑
cyc ab

≥ 2
(
∑
cyc a)2

(
∑
cyc a)2 + 1

3 (
∑
cyc a)2

=
3

2
.

19. Let a be the root of P (z). If |a| ≤ 1, we are done. Suppose that |a| > 1, then

|an| = |an−1a
n−1 + an−2a

n−2 + · · ·+ a0|
≤ |an−1||a|n−1 + |an−2||a|n−2| · · ·+ |a0|

≤
√
|an−1|2 + |an−2|2 + · · ·+ |a0|2

√
(|a|n−1)2 + (|a|n−2)2 + · · ·+ 1

=
√
|an−1|2 + |an−2|2 + · · ·+ |a0|2

√
|a|2n − 1

|a|2 − 1

squaring both sides, multiplying both sides by |a|2−1
|a|2n−1 and adding both sides by 1, we deduce

that

|a|2 < |a|2 +
|a|2 − 1

|a|2n − 1
=
|a|2n+2 − 1

|a|2n − 1
≤ 1 + |an−1|2 + |an−2|2 + · · ·+ |a0|2.

20. am+n + bm+n − ambn − anbm = (am − bm)(an − bn) ≥ 0.

21. Let (x, y, z) = (1−a, 1−b, 1−c), then x+y+z = 1, and the inequality to prove is equivalent
to ∏

cyc

1− x
x

=
∑
cyc

1

x
− 1 ≥ 8.

Remark. This inequality is equivalent to
∑
cyc

a3 + 3abc ≥
∑
sym

a2b.

22. Note that (a + b)(b + c)(c + a) + abc = (ab + bc + ca)(a + b + c), it suffices to prove that
1
8 (a+ b)(b+ c)(c+ a) ≥ abc, which is obvious.

23. This inequality is trivially true if either one of ai, bj is zero. Suppose no one of them can be
zero, then by dividing both sides n

√
b1b2 · · · bn and setting xi = ai

bi
, it suffices to show that

( n
√
x1x2 · · ·xn + 1)n ≤ (1 + x1)(1 + x2) · · · (1 + xn).

We expand RHS,

(1 + x1)(1 + x2) · · · (1 + xn) = 1 +
∑
i

xi +
∑
i<j

xixj + · · ·+ x1x2 · · ·xn

≥ 1 +

(
n

1

)
n
√
x1x2 · · ·xn +

(
n

2

)
( n
√
x1x2 · · ·xn)2 + · · ·+ ( n

√
x1x2 · · ·xn)n (why?)

= (1 + n
√
x1x2 · · ·xn)n.
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24. By previous result, we have∑
cyclic

1

a3 + b3 + abc
≤
∑

cyclic

1

a2b+ b2a+ abc
=

a+ b+ c

abc(a+ b+ c)
=

1

abc
.

25. By previous result, ∑
cyclic

x7 + y7

x2y + xy2
≥
∑

cyclic

x5y2 + y5x2

x3 + y3
=
∑

cyclic

x2y2 ≥ 3.

26.
∑

cyclic

x2

y2 + z2 + yz
≥ 2

3

∑
cyclic

x2

y2 + z2
≥ 1, what happens?2

27. Let a = cos2 α, b = cos2 β, c = cos2 γ, then a+ b+ c = 1

cot2 α+ cot2 β + cot2 γ =
∑

cyclic

a2

1− a2

=
a

b+ c
+

b

c+ a
+

c

a+ b

we are done3. If you want to apply Cauchy-Schwarz inequality here, then consider two sets

of numbers {b+ c, c+ a, a+ b} and

{
1

b+ c
,

1

c+ a
,

1

a+ b

}
.

28. ∑
cyclic

1

(x+ y)(x2 + y2)
=
∑

cyclic

1

x3 + xy2 + yx2 + y3
≥ 1

2

∑
cyclic

1

x3 + y3

≥ 9

4(x3 + y3 + z3)

≥ 3

4
.

29. The difficulty can be eased by homogenising two sides.

p+ q ≤ 2

⇐⇒ (p+ q)3 ≤ 4(p3 + q3)

⇐⇒ 3(p3 + q3 − p2q − pq2) ≥ 0

⇐⇒ p3 + q3 ≥ p2q + pq2

the particular case of previous result 1, as each step is reversible, we are done.

30. Since abc = 1, let a =
x

y
, b =

y

z
, c =

z

x
, the original inequality becomes

(x+ y − z)(y + z − x)(z + x− y) ≤ xyz.

However, it follows from the following inequality ∏
cyclic

(x+ y − z)

2

=
∏

cyclic

(x+ y − z)(x− y + z)

=
∏

cyclic

(x2 − (y − z)2) ≤ (xyz)2.

2Nesbitt’s inequality!
3Nesbitt’s inequality!!
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31. Let a = tan2 α, b = tan2 β, c = tan2 γ, where α, β, γ are acute angle, then the given condition
becomes cos2 α+ cos2 β + cos2 γ = 1, and hence

abc =
∏

cyclic

1− cos2 α

cos2 α
=
∏

cyclic

cos2 β + cos2 γ

cos2 α
.

It is equivalent to prove ∏
cyclic

y + z

x
≥ 8

this follows from AM-GM inequality

(x+ y)(y + z)(z + x) ≥ 8
√
xyyzzx = 8xyz.

32. (a) Straightforward.

(b) Straightforward, otherwise by Cauchy-Schwarz inequality, we have

a+ b =

(
1

a
+

1

b

)
(a+ b) ≥ 22 = 4.

(c) The statement is true of n = 1. Suppose the statements holds for n = k, i.e

ak + bk ≤ (a+ b)k − 22k + 2k+1.

Now for n = k + 1,

(a+ b)k+1 − ak+1 − bk+1

= (a+ b)k+1 + (a+ b)(ak−1 + bk−1)− (a+ b)(ak + bk)

≥ (a+ b)(ak−1 + bk−1 + 22k − 2k+1) (induction assumption)

≥ (a+ b)

(
2

(
a+ b

2

)k−1

+ 22k − 2k+1

)
(convexity of function y = xn)

≥ 22(2k + 22k − 2k+1) (result of part b)

= 22(k+1) + 2k+2.

33. Since the inequality is homogeneous on both sides, we are free to set abc = 1, a + b + c =
1, ab+ bc+ ca = 1, whatever. Here we set abc = 1 such that the inequality becomes

√
a+
√
b+
√
c+ (a+ b+ c)2 ≥ 4

√
3
√
a+ b+ c.

It can be shown by applying AM-GM inequality twice, that

√
a+
√
b+
√
c+ (a+ b+ c)2 = 12 ·

√
a+
√
b+
√
c+ 9

(
a+b+c

3

)2
12

≥ 12

(
a+ b+ c

3

)3/2

=
4
√

3(a+ b+ c)
√
a+ b+ c

3

≥ 4
√

3
√
a+ b+ c.
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34. It is trivially true when n = 1, suppose the proposition holds for n = 1, 2, . . . , k, i.e.

x1 ≤ x1;

x2 ≤ x1 +
x2

2
;

x3 ≤ x1 +
x2

2
+
x3

3
;

...

xk ≤ x1 +
x2

2
+ · · ·+ xk

k
.

We sum up all assumptions, this gives

k∑
i=1

(k − i+ 1)
xi
i
≥

k∑
i=1

xi

and hence
k∑
i=1

xi
i
≥ (x1 + xk) + (x2 + xk−1) + · · ·+ (xk + x1)

k + 1
≥ kxk+1

k + 1

or
k+1∑
i=1

xi
i
≥ xk+1

thus the proposition is true of n = k + 1.

35. Method 1. We let pi = ai
bi

, where ai, bi are integers with ai < bi, we also let Ai =∏n
k=1,k 6=i bk and S =

∏n
i=1 bi, then

n∑
i=1

ai
bi

= 1 ⇐⇒ a1A1 + a2A2 + · · ·+ anAn = S.

It follows that

n∑
i=1

pixi =
a1A1x1 + a2A2x2 + · · ·+ anAnxn

a1A1 + a2A2 + · · ·+ anAn

≥
n∏
i=1

x
aiAi/S
i =

n∏
i=1

xpii .

Method 2. Induction on n is more simple, suppose the statement holds for n = k, now for
n = k + 1, we have

k+1∑
i=1

pixi = (1− pk+1)

k∑
i=1

(
pi

1− pk+1

)
xi + pk+1xk+1

≥ (1− pk+1)

(
k∏
i=1

x
pi/(1−pk+1)
i

)
+ pk+1xk+1

≥
k+1∏
i=1

xpii ,

here the second row has used the result of n = 2 (which is not yet proved in our proof).

Remark. It is one of the simple ways to prove AM-GM inequality.
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What’s more, this inequality is just a particular case (ϕ(x) = − lnx) of the following in-
equality.

Theorem (Jensen’s Inequality). Suppose x1, x2, . . . , xn ∈ I, ϕ is convex on I, λi > 0 and
n∑
i=1

λi = 1, then

n∑
i=1

λiϕ(xi) ≥ ϕ

(
n∑
i=1

λixi

)
.

36. Cauchy-Schwarz inequality yields the following,

(by + cz)(bz + cy) ≤ (b2 + c2)(y2 + z2),

so we have a neat expression

∑
cyc

a2x2

(by + cz)(bz + cy)
≥
∑
cyc

(
a2

b2 + c2

)(
x2

y2 + z2

)
. (*)

Now we are given that a ≥ b ≥ c, it follows that

a2 ≥ b2 ≥ c2 and
1

b2 + c2
≥ 1

a2 + c2
≥ 1

a2 + b2
=⇒ a2

b2 + c2
≥ b2

a2 + c2
≥ c2

a2 + b2
,

similarly,
x2

y2 + z2
≥ y2

x2 + z2
≥ z2

x2 + y2
, so by Chebychef’s inequality, from (*)

∑
cyc

(
a2

b2+c2

)(
x2

y2+z2

)
3

≥
∑
cyc

a2

b2+c2

3
·
∑
cyc

x2

y2+z2

3
≥

( 3
2 )2

32
=

1

4
,

thus we are done.

Remark. The last inequality follows from a well-known inequality
∑
cyc

a
b+c ≥

3
2 .

37. We just prove the case when xi, yi ≥ 0, once this case is proved, we can see that the inequality
is also true for xi, yi ≤ 0. By Cauchy-Schwarz inequality, we have(

n∑
i=1

xiyi

)2

≤
n∑
i=1

x2
i

n∑
i=1

y2
i(

n∑
i=1

xiyi

)3

≤
n∑
i=1

x2
i

n∑
i=1

y2
i

(
n∑
i=1

xiyi

)
≤

(
n∑
i=1

x2
i

)3/2( n∑
i=1

y2
i

)3/2

.

By Jensen’s inequality, since φ(x) = x3/2 is convex, we have with a1 + a2 + · · ·+ an = 1 and
ai ≥ 0,

φ

(
n∑
i=1

aixi

)
≤

n∑
i=1

aiφ(xi),

in particular, we take ai =
1

n
, i = 1, 2, . . . , n, then

(
n∑
i=1

xi
n

)3/2

≤
n∑
i=1

x
3/2
i

n
.
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It follows that (
n∑
i=1

x2
i

)3/2( n∑
i=1

y2
i

)3/2

= n3

(∑n
i=1 x

2
i

n

)3/2(∑n
i=1 y

2
i

n

)3/2

≤ n3 ·
∑n
i=1 x

3
i

n
·
∑n
i=1 y

3
i

n

= n

n∑
i=1

x3
i

n∑
i=1

y3
i .

Alternatively,(
n∑
i=1

xiyi

)4

≤

(
n∑
i=1

√
xiyi

)2( n∑
i=1

(xiyi)
3/2

)2

≤
n∑
i=1

xiyi

(
n∑
i=1

1

)
n∑
i=1

x3
i

n∑
i=1

y3
i .

38.
∑
cyc

1

1 + 2b2c
− 1 ≥ 0 ⇐⇒

∑
cyc

2(1− b2c)
3(1 + 2b2c)

≥ 0. Removing all denominator, we have

∑
cyc

(1− b2c)(1 + 2c2a)(1 + 2a2b) ≥ 0.

Making good use of the symbol of cyclic summation, we are able to expand it effectively.
On direct expansion, we get

a2b+ b2c+ c2a+ 1

4
≥ (abc)3.

We know that by AM-GM inequality,
a2b+ b2c+ c2a+ 1

4
≥ (abc)3/4. We also claim that

(abc)3/4 ≥ (abc)3,

but it is equivalent to
abc(1− (abc)3) ≥ 0 ⇐⇒ abc ≤ 1,

the last inequality follows from the identity a+ b+ c = 3, so we are done.

39. By Cauchy-Schwarz inequality, we have
√
a3 + b3

a2 + b2
·
√
a+ b√
a+ b

≥
√

(a2 + b2)2

(a2 + b2)
√
a+ b

=
1√
a+ b

,

hence the original cyclic sum will have a neat lower bound,∑
cyc

√
a3 + b3

a2 + b2
≥
∑
cyc

1√
a+ b

,

now we try to expand it, while due to the homogeneity of the original inequality, we normalize
to ab+ bc+ ca = 1, thus it becomes

∑
cyc

1√
a+ b

=

∑
cyc

√
b+ c

√
c+ a√∏

cyc(a+ b)
=

(a+ b+ c)
∑
cyc

√
1 + c2

(a+ b+ c)
√∏

cyc(a+ b)
.

From the direct expansion and AM-GM inequality, we have (a+ b+ c)2 ≥ 3(ab+ bc+ ca),
thus we have a+ b+ c ≥

√
3. Moreover, we observe that√

1 + x2 ≥ 1
2 (x− 1/

√
3) + 2/

√
3,
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thus ∑
cyc

√
1 + c2 ≥ 1

2

(
a+ b+ c− 3√

3

)
+

6√
3
≥ 1

2
(
√

3−
√

3) + 6/
√

3 =
6√
3
,

it follows that

∑
cyc

√
a3 + b3

a2 + b2
≥

(a+ b+ c)
∑
cyc

√
1 + c2

(a+ b+ c)
√∏

cyc(a+ b)
≥ 6

(a+ b+ c)
√∏

cyc(a+ b)
,

we are done.

40. To be added.

41. To be added.

42. Let λi =
b3i∑n
i=1 b

3
i

and let xi =
ai
bi

in the inequality

(
n∑
i=1

λixi

)3

≤
n∑
i=1

λix
3
i .

43. Observe that
∑
cyc

x− 1

x
= 1, we have

x+ y + z =

(∑
cyc

x

)(∑
cyc

x− 1

x

)
≥

(∑
cyc

√
x− 1

)2

=⇒
√
x+ y + z ≥

∑
cyc

√
x− 1.

44. We see that 4 + 9x2 = (3x+ 2 + 2
√

3x)(3x+ 2− 2
√

3x). Cauchy-Schwarz inequality gives us

∑
cyc

√
4 + 9x2 ≤

√√√√(∑
cyc

(3x+ 2 + 2
√

3x)

)(∑
cyc

(3x+ 2− 2
√

3x)

)

=

√√√√(3
∑
cyc

x+ 6

)2

−

(
2
√

3
∑
cyc

√
x

)2

=

√√√√9

(∑
cyc

x

)2

+ 12 · 3 + 24
∑
cyc

x− 24
∑
cyc

√
xy.

By the fact that xyz = 1, we have
∑
cyc

√
xy ≥ 3, we also let u = x+ y + z, and hence

√√√√9

(∑
cyc

x

)2

+ 12 · 3 + 24
∑
cyc

x− 24
∑
cyc

√
xy

≤
√

9u2 + 12
∑
cyc

√
xy + 24u− 24

∑
cyc

√
xy

=

√
9u2 + 24u− 12

∑
cyc

√
xy

≤
√

9u2 + 24u− 36.

It suffices to show that 9u2 + 24u− 36 ≤ 13u2, this inequality is equivalent to (u− 3)2 ≥ 0,
this is indeed true for any u, and hence we are done.
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45. The original inequality is equivalent to
∑
cyc

x3y3 +
∑
cyc

x2y4 ≥
∑
cyc

x3yz2 +
∑
cyc

x2y2z2. By

Muirhead Inequality, 3 > 2, 3 + 3 > 2 + 2, 3 + 3 + 0 = 2 + 2 + 2, yielding.∑
sym

x3y3 ≥
∑
sym

x2y2z2 =⇒
∑
cyc

x3y3 ≥
∑
cyc

x2y2z2.

We are left to show that
∑
cyc

x2y4 ≥
∑
cyc

x3yz2 ⇐⇒
∑
cyc

x2

y2
≥
∑
cyc

x

y
. By AM-GM inequality,

we have
1

3

∑
cyc

x

y
≥ 1, while by Cauchy-Schwarz inequality, we have

∑
cyc

x2

y2
≥ 1

3

(∑
cyc

x

y

)2

≥
∑
cyc

x

y
.

46. Observe that
a2(b+ 1)

a+ b+ ab
= a− ab

a+ b+ ab
, thus the inequality is equivalent to

∑
cyc

ab

a+ b+ ab
≤

1. By AM-HM inequality, we have∑
cyc

ab

a+ b+ ab
=

1

3

∑
cyc

3

1 + 1
a + 1

b

≤ 1

9

∑
cyc

(1 + a+ b) = 1.

47. By Cauchy-Schwarz, we have∑
cyc

√
a2 + b2

2c+ a+ b− 2
≥ 1√

2

∑
cyc

a+ b√
2c+ a+ b− 2

.

Method 1. For every s > 2, observe that

s− x√
s+ x− 2

≥ −3x+ 1 + 2s

2
√
s− 1

,

this inequality follows from the convexity of f(x) =
s− x√
s+ x− 2

, and the fact that f(x) ≥

f ′(1)(x− 1) + f(1), letting s = x+ y + z and summing them up, we have

1√
2

∑
cyc

s− a√
s+ a− 2

≥ 1√
2
· 3(s+ 1)

2
√
s− 1

=
3√
2
·
s−1+2

2√
s− 1

≥ 3,

the last inequality follows from AM-GM inequality.

Method 2. Let s = a+ b+ c, then
1√
2

∑
cyc

a+ b√
2c+ a+ b− 2

=
1√
2

∑
cyc

s− c√
s− 2 + c

. We

see that
∑
cyc

√
s− 2 + c(s− c)

∑
cyc

s− c√
s− 2 + c

≥ 4s2, on the other hand,

(∑
cyc

√
s− 2 + c(s− c)

)2

≤
∑
cyc

(s− c)(s− 2 + c)
∑
cyc

(s− c)

=

(
3s2 − 6s+ 2s−

∑
cyc

a2

)
(2s)

≤
(

3s2 − 4s− 1

3
s2

)
(2s)

=
8

3
s(2s2 − 3s).
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As a result,
1√
2

∑
cyc

s− c√
s− 2 + c

≥
√

3s√
2s− 3

=

√
3 · 2s−3+3

2√
2s− 3

≥ 3.

48. We first let (a, b, c) = (a3, b3, c3). By direct expansion and cancel out all denominator, we
have ∑

sym

a12b3c3 +
∑
sym

a9b3c3 +
∑
sym

a6b3c3 ≤
∑
sym

a14b2c2 +
∑
sym

a13bc+
∑
sym

a12.

Comparing the sums of the like power on both sides and applying Muirhead Inequality, we
are done.

49. We divide both sides by (k1k2 . . . kn)m, then(
n∑
i=1

am1i
km1

)(
n∑
i=1

am2i
km2

)
· · ·

(
n∑
i=1

ammi
kmm

)
≥

(
n∑
i=1

a1i

k1

a2i

k2
· · · ami

km

)m
.

We let ki = m
√
ami1 + ami2 + · · ·+ amin and let xij =

aij
ki

such that

xm11
+ xm12

+ · · ·+ xm1n = 1

xm21
+ xm22

+ · · ·+ xm2n = 1

· · ·

xmm1
+ xmm2

+ · · ·+ xmmn = 1,

and the inequality is equivalent to

n∑
i=1

x1ix2i · · ·xmi ≤ 1.

But from AM-GM inequality, we have

n∑
i=1

x1ix2i · · ·xmi ≤
n∑
i=1

xm1i + xm2i + · · ·+ xmmi
m

=

∑n
i=1 x

m
1i +

∑n
i=1 x

m
2i + · · ·+

∑n
i=1 x

m
mi

m
= 1,

we are done.

50. Observe that
∑
cyc

a5x6 =
∑
cyc

a55/11x66/11 ≤ 11

√√√√(∑
cyc

a11

)5(∑
cyc

x11

)6

≤ 1.

51. By the extended Cauchy-Schwarz inequality, we have∑
cyc

a3

x

∑
cyc

x
∑
cyc

1 ≥ (a+ b+ c)3 ⇐⇒ a3

x
+
b3

y
+
c3

z
≥ (a+ b+ c)3

3(x+ y + z)
,

applying this inequality once, we have∑
cyc

x3

1 + 9y2xz
≥ (x+ y + z)3

3
(
3 + 9xyz(x+ y + z)

) .
It remains to show that

3 + 9xyz(x+ y+ z) ≤ 6 ⇐⇒ 3xyz(x+ y+ z) ≤ 1 ⇐⇒ 3xyz(x+ y+ z) ≤ (xy+ yz+ zx)2,

the last one holds as we know that (a+ b+ c)2 ≥ 3(ab+ bc+ ca), hence we are done.
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52. Although there is no any term with power 3 in numerator, extended Cauchy-Schwarz in-
equality also gives us a nice lower bound,∑
cyc

a2

b(ma+ nb)

∑
cyc

ab
∑
cyc

(ma+nb) ≥ (a+b+c)3 ⇐⇒
∑
cyc

a2

b(ma+ nb)
≥ (a+ b+ c)2

(ab+ bc+ ca)(m+ n)
.

It suffices to show that (a+ b+ c)2 ≥ 3(ab+ bc+ ca), this is indeed true.

53. We use the usual substitution, (a, b, c) = (x + y, x + z, y + z), x, y, z > 0, then the original
inequality is equivalent to x3y + y3z + z3x ≥ xyz(x+ y + z). Finally, the last inequality is

easy enough to see by noting that x3y + y3z + z3x = xyz

(
x2

z
+
y2

x
+
z2

y

)
, we are done.

54. Note that (a3 + 1)(a3 + 1)(b3 + 1) ≥ (a2b + 1)3, we are done (you can see what happens
when (a, b) = (b, c) and (a, b) = (c, a)).

55. We see that

a·a+ b

2
·a+ b+ c

3
=
(a

3
+
a

3
+
a

3

)(a
3

+
a+ b

6
+
b

3

)(
a

3
+
b

3
+
c

3

)
≥

(
a

3
+

3

√
ab(a+ b)

2 · 33
+

3
√
abc

3

)3

.

Finally,
a+ b

2
≥
√
ab does solve the problem.

56. Use
∑
cyc

a3

x
≥ (a+ b+ c)3

3(x+ y + z)
once, we have a new lower bound

∑
cyc

a6

b2 + c2
≥ 1

6
(a2 + b2 + c2)2,

since (a2 + b2 + c2)2 ≥ (ab+ bc+ ca)2 ≥ 3(abbc+ bcca+ caab) = 3abc(a+ b+ c), we are done.

57. The left inequality is obviously true. To go through right inequality, we first determine
the position of a, b, c, d and c + d − b. Observe that the inequality will change nothing
if we interchange c and d, so without loss of generality, we assume that c ≤ d, finally
c+ d− b ≤ c ⇐⇒ d ≤ b we know that a ≤ c+ d− b ≤ c ≤ d ≤ b.

Since f(c) + f(d) ≤ f(c + d − b) + f(b) ⇐⇒ f(b)− f(c)

b− c
≥ f(d)− f(c+ d− b)

d− (c+ d− b)
, the

equivalent inequality is obvious by convexity.

58. We observe the ineqality

sinx

x
≤

(
π
3 ·

1
2 −

√
3

2(
π
3

)2
)(

x− π

3

)
+

3
√

3

2π
.

Well I havent rigorously check its validity (one variable case is simple, differentiation!), at
least it is true for x ∈ (0, π) with the aid of graph plotting, hence replacing x by respectively
a, b, c and adding them up, we get desired result.

59. Define h(x, y, z) = xy+ yz + zx− 2xyz = z(x+ y) + (1− 2z)xy. Without loss of generality,
assume x ≥ y ≥ z, since 1 − 2z = x + y + z − 2z = x + y − z > 0, h(x, y, z) ≥ 0. Now
define f(x, y) = h(x, y, z), we first keep z fixed and let x, y to be variable. In this way
since x + y + z = 1, x + y is also fixed, but xy can still be varied. Let two constants
A = z(x+ y), B = 1− 2z, then

f(x, y) = A+Bxy ≤ A+B

(
x+ y

2

)2

.

The equality holds if and only if x = y, we now force x and y to be equal and move z, i.e.
find the maximum of F (x, y, z) = f(x, y). By x + y + z = 1, we have z = 1 − 2x, then
F (x, y, z) = g(x) = 4x3 − 5x2 + 2x. Now g′ = 0 =⇒ x = 1

2 or 1
3 , g′′( 1

3 ) < 0, we have
g(x) ≤ g( 1

3 ) = 7
27 .
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60.
∑
cyc

√
a2 + (a− b)2 =

∑
cyc

a

√
1 +

(
1− b
a

)2

≥
∑
cyc

a

(
1√
2

(
1− b
a
− 1

)
+
√

2

)
=

3
√

2

2
, here

we have used an inequality
√

1 + x2 ≥ 1√
2
(x− 1) +

√
2.

61. By rearrangement inequality,
∑
cyc

b+ c√
a
≥
√
a+
√
b+
√
c+ 3 ·

√
a+
√
b+
√
c

3
≥
√
a+
√
b+

√
c+ 3.

62. We use Cauchy-Schwarz inequality twice,

LHS ≤
√∑

cyc

a2
∑
cyc

x2 +

√∑
cyc

ab
∑
cyc

xy +

√∑
cyc

ab
∑
cyc

xy

≤

√√√√(∑
cyc

a2 +
∑
cyc

ab+
∑
cyc

ab

)(∑
cyc

x2 +
∑
cyc

xy +
∑
cyc

xy

)
=
√

(a+ b+ c)2(x+ y + z)2 = a+ b+ c.

63. By Cauchy-Schwarz inequality,
∑
cyc

x

xy + 1
≥ 9∑

cyc(y + 1
x )

=
9

1 + xy+yz+zx
xyz

, it suffices

to show that
9

1 + xy+yz+zx
xyz

≥ 36xyz

13xyz + 1
, this is equivalent to 9xyz + 1 ≥ 4

∑
cyc

xy =

4
∑
cyc

xy(x+ y+ z) = 4
∑
sym

x2y+ 12xyz ⇐⇒ 1 ≥ 4
∑
sym

x2y+ 3xyz, finally by using the fact

that 1 = (x+ y + z)3, the last inequality is equivalent to∑
cyc

x3 + 3xyz ≥
∑
sym

x2y,

this is true by Schur’s inequality,
∑
cyc x(x− y)(x− z) ≥ 0.

64. We denote
∑

=
∑n
i=1.

(a) By using Cauchy-Schwarz inequality
once, we get(∑

x2
i

)2
=
(∑

x
1/2
i xi

3/2
)2

≤
∑
xi
∑
x3
i .

(*)
Again, by Cauchy-Schwarz inequality,∑

xi ≤
√
n
√∑

x2
i ,

plugging in this into (*), we are done.

(b) We prove by inducting m. Suppose the
statement holds when m is replaced by
m− 1, i.e.∑n

i=1 xi
n

≤
(∑n

i=1 x
m−1
i

n

)1/(m−1)

.

(**)
In exactly the same way, we have(∑

xk−1
i

)2
=
(∑

x
(k−2)/2
i x

k/2
i

)2

≤
∑
xk−2
i

∑
xki .

Recall that xi > 0, i = 1, 2, . . . , n, we
have

∑
xk−1
i∑
xki
≤
∑
xk−2
i∑
xk−1
i

=⇒
m∏
k=2

∑
xk−1
i∑
xki
≤

m∏
k=2

∑
xk−2
i∑
xk−1
i

,

that implies umxm−1
i ≤ numxmi

umxi
, plug-

ging in this into (**), we complete the
induction.

(c) Replace βi by ai
bi

and multiply both nu-
merator and denominator a scale L =
lcm(b1, b2, . . . , bn) on both sides of in-
equality, we can note that every βi is
replaced by a L(aibi ) ∈ N. Hence with-
out loss of generality, we can assume
that βi ∈ N. Then by using part (b),
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we have

∑n
i=1

β′is︷ ︸︸ ︷
xi + · · ·+ xi
β

≤


∑n
i=1

β′is︷ ︸︸ ︷
xmi + · · ·+ xmi

β


1/m

.

65. We see that the original inequality becomes

a2b+ b2c+ c2a ≥ a+ b+ c ⇐⇒ (a2b+ b2c+ c2a)3 ≥ (a+ b+ c)3(abc)2,

by simplifying this inequality, we get∑
sym

a6b3 + 2
∑
sym

a5b2c2 + 3
∑
sym

a4b4c ≥ 6
∑
sym

a4b3c2.

66. First the original inequality is equivalent to∑
cyc

x

√
yz

(x+ y)(x+ z)
≤ 1

2
,

and we see that (∑
cyc

x

√
yz

(x+ y)(x+ z)

)2

≤ xyz
∑
cyc

1

(x+ y)(x+ z)
,

finally we simplify it to

xyz
∑
cyc

1

(x+ y)(x+ z)
≤ 1

4
⇐⇒ 8xyz ≤ (x+ y)(y + z)(z + x).

67. We see that
∑
cyc

a+3
3a+bc ≥ 3 ⇐⇒

∑
cyc(a+ 3)(3b+ ca)(3c+ ab) ≥ 3

∏
cyc(3a+ bc). We let

3u = a+ b+ c, 3v2 = ab+ bc+ ca, w3 = abc, then the inequality becomes

Aw3 +B(u, v) ≥ 3w6 + C(u, v) ⇐⇒ f(w3) = −3w6 +Aw3 +B − C ≥ 0,

here A is a constant, B and C are two functions independent of w. Since f is concave, it
remains to prove that f ≥ 0 when w3 is maximal or minimal, both happen when either
a = b (two of them are equal) or c = 0 (one of them is zero), up to permutation.

In case if a = b = x, let c = y 6= 0 (if a = b, then we exclude the case c = 0 as they are
mutually exclusive events), then the inequality becomes

2
x+ 3

3x+ xy
+

y + 3

3y + x2
≥ 3 ⇐⇒

(
x

y
− 1

)2

≥ 0.

In case if c = 0 (then a + b = 3), the inequality becomes ab ≤ 18

7
, this is true because

ab ≤
(

3

2

)2

<
18

7
.

68. Denote the area A(x, φ), one can show that the expression of A is

A =
1

2

(
(27− 2x+ 2x cosφ) + (27− 2x)

)
x sinφ =

(
27x− (2− cosφ)x2

)
sinφ.
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For fixed φ, A attains maximum when

x =
27

2(2− cosφ)
, (*)

this results from completing square. It follows that A ≤ 272

4

(
sinφ

2−cosφ

)
. One may intend to

use differentiation to find the maximum of the latter factor, but we stick on “elementary”
way. Observe that

sinφ

2− cosφ
=

√
1− cos2 φ

(2− cosφ)2

u=2−cosφ
========

√
1− (u− 2)2

u2
=

√
−1 + 4

(
1

u

)
− 3

(
1

u

)2

,

sinφ
2−cosφ becomes a quadratic polynomial of 1

u , by completing square again, maximum is

attained when 1
u = 2

3 , this means u = 3
2 = 2− cosφ =⇒ φ = 60◦, plugging in this into (*),

we get x = 9.

69. By Hölder’s inequality, we have (a3
i +1)(a3

i +1)(a3
i+1 +1) ≥ (a2

i ai+1 +1)3. Define an+1 = a1,
taking the product

∏n
i=1 on both sides, we are done.

70. The inequality is equivalent to
∑
cyc

(1 − a) ln
1

a
≥ ln 9. As

d2

dx2

(
(1− x) ln

1

x

)
=
x+ 1

x2
, we

conclude that∑
cyc(1− a) ln 1

a

3
≥
(

1− a+ b+ c

3

)
ln

(
1

a+b+c
3

)
⇐⇒

∑
cyc

(1− a) ln
1

a
≥ ln 9.

In general, for a1 + a2 + · · · + an = 1,

√
a1−a1

1 a1−a2
2 · · · a1−an

n ≤ 1

n(n−1)/2
, replacing ai by

ai∑n
i=1 ai

, we get desired inequality.

71. Method 1. We first make a usual substitution (a, b, c) = (cotα, cotβ, cot γ), where α, β, γ ∈
(0, π/2), then by the fact that tan2 x+ 1 = sec2 x,

∏
cyc

(
1

a2
+ 1

)
= 512 ⇐⇒

∏
cyc

cosα =
1

29/2
.

The Cauchy-Schwarz inequality tells us

∑
cyc

sinα× k =
∑
cyc

sinα
∑
cyc

cosα

sinα
≥

(∑
cyc

√
cosα

)2

≥ 9
√

2

4
,

on the other hand,(∑
cyc

sinα

)2

≤ 3
∑
cyc

sin2 α = 3

(
3−

∑
cyc

cos2 α

)
AM-GM
≤ 3

(
3− 3

8

)
=

63

8
=⇒

∑
cyc

sinα ≤
√

126

4
.

Combing all results together, we get

√
126

4
× k ≥

∑
cyc

sinα× k ≥ 9
√

2

4
=⇒ k ≥ 9

√
2√

126
=

3√
7
,

the equality can hold, it is when a = b = c = 1√
7

(not necessarily the only case).
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Method 2.(From my net friend) Since

512 =

(
1 +

1

a2

)(
1 +

1

b2

)(
1 +

1

c2

)
= 1 +

(
1

a2
+

1

b2
+

1

c2

)
+

(
1

a2b2
+

1

b2c2
+

1

c2a2

)
+

1

a2b2c2

≥ 1 +
3

(abc)
2
3

+
3

(abc)
4
3

+
1

(abc)2
=

(
1 +

1

(abc)
2
3

)3

≥

(
1 +

1(
k
3

)2
)3

,

it follows that

512 ≥
(

1 +
9

k2

)3

=⇒ k ≥ 3
√

7

7
.

72. Method 1. Observe that from hölder’s inequality,(∑
cyc

a2

(b+ c)2

)2∑
cyc

a+ b

c
≥

(∑
cyc

a

b+ c

)3

.

Recall that a3 + b3 ≥ ab(a+ b). Now observe other two inequalities

2

∑
cyc a

3

abc
≥
∑
cyc

a+ b

c
and

1

4

∑
cyc a

3

abc
≥
∑
cyc

a2

(b+ c)2
.

Combining all above, we are done.

Method 2. By direct expansion we know that the inequality is equivalent to∑
sym

a5b+
∑
sym

a4b2 ≥
∑
sym

a3b2c+ 6a2b2c2,

so by Muirhead’s inequality, we are done.

73. To be added.

74. It is enough to prove the case when n = 2, we see that

x1y1

x1 + y1
+

x2y2

x2 + y2
− (x1 + x2) (y1 + y2)

x1 + x2 + y1 + y2
≤ 0 ⇐⇒ x2

1y
2
2 + x2

2y
2
1

2
≥ x1x2y1y2.

75. Direct consequence of Schur’s inequality.

76. Use
2abc+ 1

3
≥ (abc)2/3, then use Schur’s inequality and muirhead inequality once.

77. Since both sides are symmetric polynomial of degree less than 5, by uvw method, it suffices
to prove that the cases a = b and c = 0. If a = b, let a = b = x and c = y, then the
inequality becomes

x2 + b2 + 2 + x2y + y ≥ 2(x+ y) + 2xy,

this is obviously true. The case of c = 0 is similar.

78. Since
xy

x2 + y2 + 2z2
≤ 1

4

(x+ y)2

x2 + y2 + 2z2
≤ 1

4

(
x2

x2 + z2
+

y2

y2 + z2

)
,

the last inequality follows from Cauchy-Schwarz of the form
(x+ y)2

a+ b
≤ x2

a
+
y2

b
. This is

a useful upper bound, by general hölder we can show similar inequality of higher degree,
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so feel free to use AM-GM to get upper bound! We can always do something thereafter.
Finally we note that

1

4

∑
cyc

(
x2

x2 + z2
+

y2

y2 + z2

)
=

3

4
,

this is from direct expansion and the identity (a + b)(b + c)(c + a) =
∑
sym a

2b + 2abc (for

simplicity we let (a, b, c) = (x2, y2, z2) first).

79. We see that
∑
cyc

1

a+ b2 + c3
=
∑
cyc

a+ 1 + 1
c

(a+ b2 + c3)(a+ 1 + 1
c )
≤
∑
cyc

a+ 1 + 1
c

(a+ b+ c)2
. Denote

S = a+ b+ c, we know that S ≥ 3, now

∑
cyc

1

a+ b2 + c3
≤
∑
cyc(a+ 1 + 1

c )

S2
=

1

S2
(3 + S +

∑
cyc

ab) ≤
S + S + 1

3S
2

S2
=

1

3
+

2

S
≤ 1.

80. By the given inequality we know that
a

B
≤ ai
bi
≤ A

b
, so

(
ai
bi
− A

b

)(
ai
bi
− a

B

)
≤ 0,

on simplification, a2
i +

(
Aa

Bb

)
b2i ≤

(
a

B
+
A

b

)
aibi. Having taken summation on both sides,

we apply AM-GM inequality once, then√√√√ n∑
i=1

a2
i

n∑
i=1

b2i

√
Aa

Bb
≤ 1

2

(
a

B
+
A

b

) n∑
i=1

aibi,

the result follows from some algebra.

81. Consider 1 < 2 < · · · < n− 1 and 1/n < 1/(n− 1) < · · · < 1/2, and argue a little bit more.

82. Think about the tangent line a2 ≥ 6(a−3) + 9, or consider the inequality a2 +a2 + 27
a ≥ 3a.

83. By subtracting a+b+c on both sides, the original inequality is equivalent to
∑
cyc

ab2

b2 + 1
≤ 3

2
,

this is easy to prove since LHS ≤
∑
cyc

ab2

b = 1
2

∑
cyc ab, finally the inequality (

∑
cyc a)2 ≥

3
∑
cyc ab will do.

84. Observe that
∑
cyc

√
x =

∑
cyc

√
xy · 1√

y ,

∑
cyc

√
x ≤

√∑
cyc

xy
∑
cyc

1

y
=

√
(
∑
cyc xy)2

xyz
=

√
(xyz − 2)2

xyz
.

Let u = xyz, it is enough to show that

√
(u− 2)2

u
≤ 3

2

√
u, this is equivalent to

4(u− 2)2 ≤ 9u2 ⇐⇒ 5u2 + 16u− 16 ≥ 0 ⇐⇒ (u+ 4)(5u− 4) ≥ 0 ⇐⇒ u ≥ 4

5
,

recall that u = xyz = xy + yz + zx+ 2 > 2 > 4
5 , we are done (in fact no equality).
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2.2 Integration

85. (a) Let In =

∫ 1

0

(1− x50)n dx, then integrate by parts, we have

In = (1− x50)n · x
∣∣∣∣1
0

− n
∫ 1

0

x(1− x50)n−1(−50 · x49) dx = −50nIn + 50nIn−1,

hence a recurrence relation arises,

In
In−1

=

(
50n

50n+ 1

)
.

Now substitute n = 101, the answer will be 5051.

(b) Let I =

∫ 1

0

(
(1− 2x)ex

(ex + e−x)3
+

(1 + 2x)e−x

(ex + e−x)3

)
dx, substitute x = −u in the first integral,

we have

I =

∫ 1

−1

(1 + 2x)e−x · e3x

(ex + e−x)3 · e3x
dx =

∫ 1

−1

(1 + 2x)e2x

(e2x + 1)3
dx = −1

4

∫ 1

−1

(1 + 2x) d(e2x + 1)−2.

Integrate it by parts, we have I =
4− 3e2 − e−2

4
+

1

2

∫ 1

−1

dex

ex(e2x + 1)2
, finally by the

formula
1

x(x2 + 1)2
=

1

x
− x

x2 + 1
− x

(x2 + 1)2
,

we have

I =
e2

(e2 + 1)2
.

Having seen that the answer is such simple, we may guess alternative that is more
simple would have eixsted.

(c) ∫ π/2

−π/2

sinnx

(2x + 1) sinx
dx =

∫ −π/2
π/2

2x(− sinnx)

2x(2−x + 1)(− sinx)
(−dx)

=

∫ π/2

−π/2

sinnx

sinx
dx−

∫ π/2

−π/2

sinnx

(2x + 1) sinx
dx

thus we have

In =

∫ π/2

−π/2

sinnx

(2x + 1) sinx
dx =

∫ π/2

0

sinnx

sinx
dx,

I0 = 0 and I1 =

∫ π/2

0

dx =
π

2
.

Carefully seeing that the pattern can be further simplified, we try to produce a term
that can cancel out sinx in the denominator, for n ≥ 2, we have

In−In−2 = 2

∫ π/2

0

cos(n− 1)x · sinx
sinx

dx =
2

n− 1
sin
(

(n− 1)
π

2

)
= − 2

n− 1
cos
(nπ

2

)
.

When n is odd, we put n = 2p− 1, where p ≥ 2, and then

In = I2p−1 = I2p−3 = · · · = I1 =
π

2
.
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When n is even, we put n = 2p, where p ≥ 1 such that

I2p − I2p−2 =
2(−1)p+1

2p− 1

In =

n
2∑

p=1

(I2p − I2p−2) =

n
2∑

p=1

(−1)p+1

p− 1
2

.

If n is negative, it can be seen that the integrand is an odd function, we are done.

(d) By the substitution x = −u, we get an equivalent integral, In =

∫ π

0

sin2 nx

sin2 x
dx. Again,

our aim is to get rid of the nuisance, sinx, in the denominator, we do so as follows

Jn = In − In−1 =

∫ π

0

sin(2n− 1)x

sinx
dx.

We repeat this process,

Jn − Jn−1 = 2

∫ π

0

cos(2n− 2)x dx = 0,

and consequently Jn = Jn−1 = · · · =
∫ π

0
dx = π, thus In = (n− 1)π + I1 = nπ.

(e) Method 1. Define

I =

∫ ∞
0

tan−1 πx− tan−1 x

x
dx =

∫ 1

0

+

∫ ∞
1

= J1 + J2.

here the results follow from integration by parts

J1 = − lim
x→0

lnx(tan−1 πx− tan−1 x)−
∫ 1

0

lnx

(
π

1 + (πx)2
− 1

1 + x2

)
dx,

and

J2 = lim
x→∞

lnx(tan−1 πx− tan−1 x)−
∫ ∞

1

lnx

(
π

1 + (πx)2
− 1

1 + x2

)
dx.

Since from J1,

lim
x→0

lnx(tan−1 πx− tan−1 x) = lim
x→0

= lnx(π − 1)x = 0,

and from J2,

lim
x→∞

lnx(tan−1 πx− tan−1 x) = lim
x→∞

lnx

(
cos−1 1√

(πx)2 + 1
− cos−1 1√

x2 + 1

)

= lim
x→∞

lnx

(
1

x
− 1

πx

)
= 0,

we have

I = J1 + J2 =

∫ ∞
0

lnx

(
1

1 + x2
− π

1 + (πx)2

)
dx,

it can be solved by substitution x = tan θ and x = tan θ/π respectively, yielding

I =
π

2
lnπ.

This method is clumsy, however, calculation can be further simplified by the following



2.2. INTEGRATION 63

method.
Method 2.∫ ∞

0

arctanπx− arctanx

x
dx =

∫ ∞
0

1

x

∫ π

1

d(tan−1 yx) dx =

∫ ∞
0

∫ π

1

1

x
· x

1 + (yx)2
dy dx

=

∫ π

1

1

y2

∫ ∞
0

1

(1/y)2 + x2
dx dy =

∫ π

1

1

y2

(
1

1/y
· tan−1 x

1/y

∣∣∣∣∞
0

)
dy

=
π

2

∫ π

1

1

y
dy

=
π

2
lnπ

(f) ∫ ∞
0

1− cos y

yey
dy = 2

∫ ∞
0

sin2(y/2)

yey
dy

= 2

∫ ∞
0

1

yey

∫ 1

0

d
(
sin2(ty/2)

)
dy

=

∫ 1

0

∫ ∞
0

e−y sin(ty) dy dt.

The inner integral can be computed by integration by parts twice, thus∫ ∞
0

1− cosx

xex
dx =

∫ 1

0

t

t2 + 1
dt =

ln 2

2
.

(g) Similarly,

I =

∫ 1

0

tan−1 x

x
√

1− x2
dx =

∫ 1

0

∫ 1

0

d(tan−1(yx))
dx

x
√

1− x2

=

∫ 1

0

∫ 1

0

1

(1 + (yx)2)
√

1− x2
dx dy.

Substitute x = sin θ, we get an equivalent integral

I = 2

∫ 1

0

∫ π/2

0

1

2 + y2 − y2 cos 2x
dx dy.

We next substitute t(x) = tanx, note that t is bijective on the interval [0, π/2), a unique

pre-image is to be obtained in the computation

(
It is, for example, tan−1(∞) =

π

2
, but not

3π

2
,

5π

2
, . . .

)
.

We get another form of the integral

I =

∫ 1

0

∫ ∞
0

1

1 + (y2 + 1)x2
dx dy =

∫ 1

0

1

y2 + 1

∫ ∞
0

1

(
√

1/(y2 + 1))2 + x2
dx dy.

From integration table, we get

I =

∫ 1

0

1√
y2 + 1

(
tan−1 x√

1/(y2 + 1)

∣∣∣∣∣
∞

0

)
dy =

π

2

∫ 1

0

1√
x2 + 1

dx.

Finally the substitution x = tan θ suffices to compute this integral

I =
π

2

∫ π/4

0

sec θ dθ =
π

2
ln(
√

2 + 1).
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(h) To be added.

(i) To be added.

(j) The substitution x = tan θ can reduce the integral into one we are extremely familiar,∫
x2 − 1

(x2 + 1)
√

1 + x4
dx

x=tan θ
=======

∫
tan2 θ − 1√
1 + tan4 θ

dθ =

∫
sin2 θ − cos2 θ√
sin4 θ + cos4 θ

dθ

=

∫ (1−cos 2θ)−(1+cos 2θ)
2√

(sin2 θ + cos2 θ)2 − 2
(

sin 2θ
2

)2 dθ
= −
√

2

∫
cos 2θ√

2− sin2 2θ
dθ = − 1√

2

∫
d(sin 2θ)√
2− sin2 2θ

.

The formula of the type
∫

dx√
a2−x2

can be found in integration table, yielding

∫
x2 − 1

(x2 + 1)
√

1 + x4
dx = − 1√

2
arcsin

(
sin(2 arctanx)√

2

)
+ C.

(k) To be added.

(l) Define an =
∫ π

0
cosnx−cosna

cos x−cos a dx. By writing cosnx = cos[(n − 1)x + x], one gets the
following:

= cosnx− cosna

= cos((n− 1)x)(cosx− cos a) + cos a[cos(n− 1)x− cos(n− 1)a]

− [sin(n− 1)x sinx− sin(n− 1)a sin a].

Divide both sides by cosx − cos a and integrate w.r.t x over [0, π], the first term on
RHS vanishes,

an = cos a · an−1 +
1

2

[
(−2)

∫ π

0

sin(n− 1)x sinx− sin(n− 1)a sin a

cosx− cos a
dx

]
= cos a · an−1 +

1

2
(an − an−2),

here we have used the observation that an−an−2 = (−2)
∫ π

0
sin(n−1)x sin x−sin(n−1)a sin a

cos x−cos a dx,

this easily follows from the identity cosx − cos y = −2 sin x+y
2 sin x−y

2 . We transpose
terms to get an − 2 cos a · an−1 + an−2 = 0. Fortunately this recurrence relation is
nice enough. It is a routine calculation to solve it with a0 = 0 and a1 = π, so we get
an = π sinna

sin a .

86. By AM-GM inequality, it is not hard to show

n∏
i=1

∫
R
|fi(x)| dx ≥

(∫
R
|f1(x)f2(x) · · · fn(x)|1/ndx

)n
. (2.2)

We prove it as follows: If one of
∫
R |fi(x)| dx = ∞, the inequality is trivial. Let’s assume

fi ∈ L1(R) for all i, we then fix an ε > 0, set ai(x) = |fi(x)|/(
∫
R |fi(x)| dx+ ε) and integrate

1
n

∑n
i=1 ai(x) ≥ (

∏n
i=1 ai(x))1/n both sides over R, we then get:

(1 ≥)
1

n

n∑
i=1

∫
R |fi| dx∫

R |fi| dx+ ε
≥

∫
R(
∏n
i=1 |fi|)1/n dx(∏n

i=1(
∫
R |fi| dx+ ε)

)1/n
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and (2.2) can be proved by setting ε→ 0. In the proof the term ε is to avoid the case that∫
R |fi(x)| dx = 0. Its useful discrete analogue (whose proof is exactly the same) is:

n∏
i=1

( k∑
j=1

aij

)
≥
( k∑
j=1

(a1ja2j · · · anj)1/n

)n
,

where n, k ≥ 1.

(a) Let p ∈ [1,∞) be given. If
∫
R |f(x)| dx = ∞, the inequality is trivial. Assume now

f ∈ L1(R), by applying (2.2) once:(∫
R
|g(y)||f(x− y)| dy

)p
≤
∫
R
|gp(y)||f(x− y)| dy

(∫
R
|f(x− y)| dy

)p−1

= ‖f‖p−1
1

∫
R
|gp(y)||f(x− y)| dy,

and since ‖f ∗ g‖pp ≤
∫
R
(∫

R |g(y)||f(x− y)| dy
)p
dx,

‖f ∗ g‖pp ≤ ‖f‖
p−1
1

∫
R

∫
R
|gp(y)||f(x− y)| dydx = ‖f‖p1‖g‖pp,

here the change of order is valid by Fubini’s Theorem (which can be done if one of∫∫
|f(x, y)| dxdy and

∫∫
|f(x, y)| dydx is finite), so we are done.

When p =∞, one has

|f ∗ g(x)| ≤
∫
R
|f(x− y)g(y)| dy ≤

∫
R
|f(x− y)| dy‖g‖∞ = ‖f‖1‖g‖∞,

as it is true for all x ∈ R,

‖f ∗ g‖∞ =: sup
x∈R
|f ∗ g(x)| ≤ ‖f‖1‖g‖∞.

(b) As |x| → ∞, |f(x)| → 0, there must be x0 ∈ R such that f(x0) = supx∈R |f(x)|,
this can be shown as follows: If f ≡ 0, done. Assume there is x1 ∈ R, |f(x1)| > 0,
then there is δ > 0 so that |x| > δ =⇒ |f(x)| < |f(x1)| (clearly |x1| ≤ δ), and
sup f([−δ, δ]) = max f([−δ, δ]) = |f(x0)| = ‖f‖∞, for some x0 ∈ [−δ, δ].

Now the problem is readily solved. Let |f(x0)| = sup |f(R)|. Set n = 2 in (2.2), the
celebrated Cauchy-Schwarz inequality, with f1 = f2χ[x0,∞) and f2 = f ′2χ[x0,∞), then∫ ∞

x0

|f(x)|2 dx
∫ ∞
x0

|f ′(x)|2 dx =

∫
R
|f1| dx

∫
R
|f2| dx

≥
(∫ ∞

x0

|f(x)||f ′(x)| dx
)2

≥
(∫ ∞

x0

f(x)f ′(x) dx

)2

=
‖f‖4∞

4
,

and of course
∫
R · ≥

∫∞
x0
·, we are done.

87. To be added.
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88. Integrate f ′(t) = 6t +
√

2 + t2 sin2 t from t = 0 to t = x, we have f(x) = 5 + 3x2 +∫ x
0

√
2 + t2 sin2 tdt. Since the last integral is an odd function in x, it follows that

∫ 2

−2

f(x) dx =

∫ 2

−2

(5 + 3x2) dx+

∫ 2

−2

(∫ x

0

√
2 + t2 sin2 tdt

)
dx = 20 + 24 + 0 = 36.

89. The series converges since

1

n(n+ 1) · · · (n+ k)
<

1

n2(k − 1)2
.

We let 1
x(x+1)···(x+k) =

∑k
r=0

ar
x+r , then 1 =

∑k
r=0 ar

∏
0≤j≤k
j 6=r

(x + j), for all x ∈ R. By

choosing suitable x we can deduce that 1 = ar(−1)rr!(k − r)! ⇐⇒ ar =
(−1)r(kr)

k! , which
implies

1

n(n+ 1) · · · (n+ k)
=

1

k!

k∑
r=0

(
k

r

)
(−1)r

n+ r
. (1)

Since desired answer is an integral, for this end by binomial expansion and integration,

k∑
r=0

(
k

r

)
(−1)r

n+ r
= (−1)n

∫ −1

0

(1 + x)kxn−1 dx. (2)

Combining (1) and (2), we have

∞∑
n=1

∞∑
k=1

1

n(n+ 1) · · · (n+ k)
=

∞∑
n=1

∞∑
k=1

1

k!

(
k∑
r=0

(
k

r

)
(−1)r

n+ r

)

=

∞∑
n=1

(−1)n
∞∑
k=1

∫ −1

0

1

k!
(1 + x)kxn−1 dx

(*)
=

∞∑
n=1

(−1)n
∫ −1

0

∞∑
k=1

1

k!
(1 + x)kxn−1 dx

=

∞∑
n=1

∫ 1

0

(ex − 1)(1− x)n−1 dx

(**)
=

∫ 1

0

∞∑
n=1

(ex − 1)(1− x)n−1 dx.

(*) is true because

∣∣∣∣ (1 + x)kxn−1

k!

∣∣∣∣ ≤ 1

k!
. To see (**) is true, it is natural to consider the

inequality ex ≥ 1 + x =⇒ e−x ≥ 1 − x. Before we can take reciprocal, we make sure
that right hand side is positive, so we choose x ∈ [0, 1), then a very nice upper bound

ex − 1 ≤ x

1− x
is obtained, for x ∈ [0, 1), so

(ex − 1)(1− x)n−1 ≤ x

1− x
(1− x)n−1 = x(1− x)n−2,∀x ∈ [0, 1).

We note that this inequality is also true for x = 1, so the above inequality holds for all
x ∈ [0, 1].
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Let fn(x) =
∑n
k=1(ex − 1)(1− x)k−1, clearly fn(0) = 0 and when x 6= 0, we have

|fn(x)| =

∣∣∣∣∣
n∑
k=2

(ex − 1)(1− x)k−1 + (ex − 1)

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑
k=2

x(1− x)k−2

∣∣∣∣∣+ |e− 1|

= e.

This shows that {fn} is uniformly bounded by e and limn→∞ fn exists for each x (point-
wise convergence is justified), so from bounded convergence theorem (which will be
mentioned latter on in measure theory),

lim
n→∞

∫ 1

0

fn(x) dx =

∫ 1

0

lim
n→∞

fn(x) dx,

that is equivalent to saying that

lim
n→∞

n∑
k=1

∫ 1

0

(ex − 1)(1− x)k−1 dx =

∫ 1

0

ex − 1

x
dx.

90. Define g(x) =
(∫ x
a
f(t) dt

)2 − ∫ x
a
f(t)3 dt, differentiate once, we have

g′(x) = 2f(x)

∫ x

a

f(t) dt− f(x)3

= f(x)

(
2

∫ x

a

f(t) dt−
∫ x

a

d(f(t)2)

)
= 2f(x)

∫ x

a

f(t)(1− f ′(t)) dt.

Since f ′(x) ≥ 0 =⇒ f(x) ≥ f(a) = 0, we have g′(x) ≥ 0, and hence

g(x) ≥ g(a) = 0.

Thus the inequality follows.

91. Splitting the integral into two parts, we have∫ 1

0

h

h2 + x2
f(x) dx =

(∫ δ

0

+

∫ 1

δ

)
h

h2 + x2
f(x) dx.

For any ε > 0, there exists a δ such that |x − 0| < δ =⇒ |f(x) − f(0)| < ε
π
2
. We now fix

this δ, it follows that∣∣∣∣∣
∫ δ

0

h

h2 + x2
f(x) dx−

∫ δ

0

h

h2 + x2
f(0) dx

∣∣∣∣∣ ≤
∫ δ

0

h

h2 + x2
|f(x)−f(0)| dx ≤ ε

π
2

∫ δ

0

h

h2 + x2
dx =

ε
π
2

tan−1

(
δ

h

)
< ε.

Also there is σ > h > 0,∣∣∣∣∣
∫ δ

0

h

h2 + x2
f(0) dx− π

2
f(0)

∣∣∣∣∣ = |f(0)|
∣∣∣∣tan−1 δ

h
− π

2

∣∣∣∣ < ε.

Since integrable functions are bounded, so there is σ′ > h > 0,∣∣∣∣∫ 1

δ

h

h2 + x2
f(x) dx

∣∣∣∣ ≤
∣∣∣∣∣
∫ 1

δ

h

δ2
sup
x∈[0,1]

|f(x)|

∣∣∣∣∣ =
h(1− δ)

δ2
sup
x∈[0,1]

|f(x)| dx < ε.
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So adding these 3 inequalities when h < min{σ, σ′}, we have∣∣∣∣∫ 1

0

h

h2 + x2
f(x) dx− π

2
f(0)

∣∣∣∣
≤

∣∣∣∣∣
∫ δ

0

h

h2 + x2
f(x) dx−

∫ δ

0

h

h2 + x2
f(0) dx

∣∣∣∣∣+

∣∣∣∣∣
∫ δ

0

h

h2 + x2
f(0) dx− π

2
f(0)

∣∣∣∣∣+

∣∣∣∣∫ 1

δ

h

h2 + x2
f(x) dx

∣∣∣∣ < 3ε.

92. We prove this by Sandwich Theorem, since
f(x) is continuous on [a, b], it must attend
its maximum value in this interval, we de-
note this value as M , then

(∫ b

a

f(x)n dx

) 1
n

≤M(b− a)
1
n . (*)

On the other hand, there exists at least one
c ∈ [a, b] such that f(c) = M . As f(x) is
continuous at c, for any given ε > 0, there
exists a δ > 0 such that

|x− c| < δ =⇒ |f(x)−M | < ε.

Now we fix this δ and find that(∫ b

a

f(x)n dx

) 1
n

≥

(∫ c+δ

c−δ
f(x)n dx

) 1
n

> (M−ε)(2δ) 1
n .

(**)
Combining (*) and (**) and letting n→∞,
we have

M − ε < lim
n→∞

(∫ b

a

f(x)n dx

) 1
n

≤M < M + ε

=⇒

∣∣∣∣∣∣ lim
n→∞

(∫ b

a

f(x)n dx

) 1
n

−M

∣∣∣∣∣∣ < ε.

we are done.

93. For any a ≥ −1 and n ∈ N, we have (1+a)n ≥ 1+na. We can prove this by induction on n or
by the fact that f(x) = (1+x)n is convex when n ≥ 2 such that f(x) ≥ f(0)+f ′(0)(x−0) =
1 + nx. It follows that∫ 1

−1

(1− x2)n dx ≥
∫ 1

−1

(1− nx2) dx ≥
∫ 1√

n

− 1√
n

(1− nx2) dx =
4

3
√
n
.

94.
[x] ≤ x < [x] + 1 =⇒ a[x] < ax < a[x] + a,

[ax] ≤ ax < [ax] + 1 =⇒ −[ax]− 1 < −ax < −[ax],

sum up these two, we have

a[x]− [ax]− 1 < 0 < −[ax] + a[x] + a

=⇒ −1 < [ax]− a[x] < a,

hence for any x > 0, we have |[ax]− a[x]| < max{1, a} = b. By the substitution x =
1

u
,

∫ 1

0

([a
x

]
− a

[
1

x

])
dx =

∫ ∞
1

([au]− a[u])
du

u2
,

since ∫ ∞
1

|[ax]− a[x]| 1

x2
dx <

∫ ∞
1

b · dx
x2
,

the convergence of

∫ ∞
1

b · dx
x2

implies the convergence of

∫ ∞
1

|[ax]−a[x]| dx, thus

∫ ∞
1

([ax]−

a[x]) dx converges.
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95. (a) The inequalities e−x
2 ≥ 1 − x2 and ex

2

≥ 1 + x2 =⇒ e−x
2

≤ 1

1 + x2
are obvious.

Since limt→∞ I(t) exists, the sequence I(n) also converges to the same limit (this can
be proved by simple ε-N reasoning). Now

In =
√
n

∫ 1

0

e−(
√
nx)2 dx ≥

√
n

∫ 1

0

(1− x2)n dx
x=sin θ

======
√
n

∫ π/2

0

cos2n+1 θ dθ

integration by parts
==============

√
n

2n+ 1
· 1

2n+ 1

(
(2n)!!

(2n− 1)!!

)2

. (*)

In =
√
n

∫ 1

0

e−(
√
nx)2 dx ≤

√
n

∫ 1

0

1

(1 + x2)n
dx

x=tan θ
<∫ π/4

0 <
∫ π/2
0

√
n

∫ π/2

0

cos2n−2 θ dθ =

√
n

2n− 1
(2n− 1)

(
(2n− 3)!!

(2n− 2)!!

)2

· π
2
. (**)

When n→∞, combining (*) and (**) and by Wallis’s formula, we have

√
π

2
≤ lim
λ→∞

∫ λ

0

e−x
2

dx ≤
√
π

2
.

96. In solving first order ODE, we are introduced a tool, integrating factor, we now bring this
tool into play, having∫ 1

0

|f(x)−f ′(x)| dx =

∫ 1

0

ex
∣∣∣∣ ddx (e−xf(x)

)∣∣∣∣ dx ≥ ∫ 1

0

∣∣∣∣ ddx (e−xf(x)
)∣∣∣∣ dx ≥ ∣∣∣∣∫ 1

0

d
(
e−xf(x)

)∣∣∣∣ = e−1.

97. Since both x2 and f(x)2 are positive, we have f ′(x) > 0, this shows that f(x) is strictly
increasing and hence we are left to show that f(x) is bounded. In other words, showing

lim
x→∞

f(x) ≤ 1 +
π

4
implies the first stuff we are asked to prove.

The fact that f ′(x) > 0 implies the fact that f(x) > f(1) = 1, it follows that f ′(x) <
1

x2 + 1
, integrating both sides, we have

f(x)− f(1) <

∫ x

1

1

y2 + 1
dy <

∫ ∞
1

1

y2 + 1
dy =

π

2
− π

4
,

transposing terms, we get

f(x) < 1 +
π

4
,∀x ≥ a =⇒ lim

x→∞
f(x) ≤ 1 +

π

4
.

98. In exactly the same way we are able to deduce that for any (integrable) decreasing function
f(x), g(x) ∈ R, ∫ b

a

f(x)g(x) dx ≥ 1

b− a

∫ b

a

f(x) dx

∫ b

a

g(x) dx,

applying this once, we have∫ b

a

(−x)(−f(x)) dx ≥ 1

b− a
· b

2 − a2

2

∫ b

a

f(x) dx =

(
a+ b

2

)∫ b

a

f(x) dx.



70 CHAPTER 2. SOLUTIONS

99. Note that
∑
f(x∗i )g(x∗∗i )∆xi =

∑∫ xi

xi−1

f(x∗i )g(x∗∗i ) dx, we have

∣∣∣∣∣∑ f(x∗i )g(x∗∗i )∆xi −
∫ b

a

f(x)g(x) dx

∣∣∣∣∣
≤
∑∫ xi

xi−1

|f(x∗i )g(x∗∗i )− f(x)g(x)| dx

≤
∑∫ xi

xi−1

(|f(x∗i )g(x∗∗i )− f(x∗i )g(x)|+ |f(x∗i )g(x)− f(x)g(x)|) dx

=
∑∫ xi

xi−1

(|f(x∗i )||g(x∗∗i − g(x)|+ |g(x)||f(x∗i )− f(x)|) dx

≤
∑∫ xi

xi−1

(
ω[xi−1,xi](g)|f(x∗i )|+ ω[xi−1,xi](f)|g(x)|

)
dx.

The fact that f(x) and g(x) are integrable implies that there exist M and N such that

|f(x)| < M and |g(x)| < N,

and for any ε > 0, there exists a δ such that

‖P‖ < δ =⇒
∑

ω[xi−1,xi](f)∆xi,
∑

ω[xi−1,xi](g)∆xi <
ε

M +N
.

Hence, we conclude that∣∣∣∣∣∑ f(x∗i )g(x∗∗i )∆xi −
∫ b

a

f(x)g(x) dx

∣∣∣∣∣ ≤ ε

M +N
(M +N) = ε.

100. For any x ∈ [0, 1], we see that(
M − f(x)

)( 1

m
− 1

f(x)

)
≥ 0 ⇐⇒ M

m
+ 1 ≥ f(x)

m
+

M

f(x)
,

integrate both sides from 0 to 1, and use AM-GM inequality on right hand side once, we are
done.

101. Define f(t) =
∫ t

0
|x(u)| du, since x(t) is continuous =⇒ |x(t)| is continuous, thus the integral

defined in f makes sense. By the continuity of |x(u)|, we have f ′(t) = x(t), thus

f ′(t) ≤M + kf(t) ⇐⇒ d

dt

(
e−ktf(t)

)
≤Me−kt =⇒ kf(t) ≤M(ekt − 1),

it follows that
|x(t)| ≤M + kf(t) ≤Mekt.

102. Since

∫ 1

−1

f(x)g(x) dx =

(∫ 0

−1

+

∫ 1

0

)
f(x)g(x) dx, by the change of variable y = −x to the

former integral, we have ∫ 1

0

(
f(x) + f(−x)

)
g(x) dx = 0,

for any g such that the integral makes sense.

For the sake of contradiction, suppose there is an a ∈ [0, 1] such that f(a) + f(−a) 6= 0,
it is no loss of generality to suppose that f(a) + f(−a) > 0, then due to continuity of
f(x) + f(−x), there exists a δ > 0 such that

x ∈ [a− δ, a+ δ] =⇒ f(x) + f(−x) > 0.
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Now g(x) is arbitrary if it doesn’t affect integrability (that means it can’t be too crazy), we
are free to take g(x) satisfying

(
f(x) + f(−x)

)
g(x)

{
> 0 x ∈ [a− δ, a+ δ]

≥ 0 x ∈ [0, 1]− [a− δ, a+ δ]

then ∫ 1

0

(
f(x) + f(−x)

)
g(x) dx ≥

∫ a+δ

a−δ

(
f(x) + f(−x)

)
g(x) dx > 0,

a contradiction, thus f(−x) = f(x), for all x ∈ [0, 1].

Remark. Any funny setting of g(x) is fine once you can derive any contradiction. For
example, we can take g(x) > 0 when x ∈ [a−δ, a+δ] and g(x) = 0 when x ∈ [0, 1]−[a−δ, a+δ].
Then the integral will also be bigger than zero, same contradiction arises.

103. Simple computation gives us
∫ 0

−π | sinx| dx = 2 and we observe that

∫ π

0

f(x)| sinnx| dx =

∫ 0

−π

1

n

n∑
k=1

f

(
x

n
+
kπ

n

)
| sinx| dx,

this can be shown by the change of variable x = y/n and breaking the integral
∫ nπ

0
=∑n

k=1

∫ kπ
(k−1)π

. Finally, we shift the integrand and the function to the left by kπ unit.

Now we can “feel” that
1

n

n∑
k=1

f

(
x

n
+
kπ

n

)
︸ ︷︷ ︸

xn

≈ 1

n

n∑
k=1

f

(
kπ

n

)
︸ ︷︷ ︸
yn

≈
∫ 1

0

f(xπ) dx when n is large,

we expect

lim
n→∞

∫ 0

−π

1

n

n∑
k=1

f

(
x

n
+
kπ

n

)
| sinx| dx ∼

∫ 0

−π

(∫ 1

0

f(xπ) dx

)
| sinx| dx =

2

π

∫ π

0

f(x) dx.

We now prove that “∼” is actually a “=”.

Since f is continuous on a closed bounded interval (a compact set), it is uniformly

continuous. For any ε > 0, there is a δ such that |xk − yk| < δ =⇒ |f(xk)− f(yk)| < ε

2π
.

We see that |xk − yk| =
|x|
n

. So for large enough N1,

n > N1 =⇒ |xk − yk| < δ =⇒ |f(xk)− f(yk)| < ε

4
.

As a result, when n > N1,∣∣∣∣∣
∫ 0

−π

1

n

n∑
k=1

f(xk)| sinx| dx−
∫ 0

−π

1

n

n∑
k=1

f(yk)| sinx| dx

∣∣∣∣∣ < ε

4

∫ 0

−π

1

n

n∑
k=1

| sinx| dx =
ε

2
. (1)

On the other hand, as continuity implies integrability on a closed bounded interval, so

for any ε > 0, there is a N2 such that n > N2 =⇒

∣∣∣∣∣ 1n
n∑
k=1

f(yk)−
∫ 1

0

f(x) dx

∣∣∣∣∣ < ε

4
, so

when n > N2,
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∣∣∣∣∣
∫ 0

−π

1

n

n∑
k=1

f(yk)| sinx| dx−
∫ 0

−π

(∫ 1

0

f(xπ) dx

)
| sinx| dx

∣∣∣∣∣ < ε

4

∫ 0

−π
| sinx| dx =

ε

2
. (2)

Adding inequalities (1) and (2) and applying triangle inequality once, we have

n > max{N1, N2} =⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫ 0

−π

1

n

n∑
k=1

f(xk)| sinx| dx︸ ︷︷ ︸
=

∫ π

0

f(x)| sinnx| dx

−
∫ 0

−π

(∫ 1

0

f(xπ) dx

)
| sinx| dx︸ ︷︷ ︸

=
2

π

∫ π

0

f(x) dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
< ε.

104. Let c ∈ [0, 1), |f(x)| ≤M for all x ∈ [0, c], then∣∣∣∣n∫ c

0

f(x)x2n dx

∣∣∣∣ ≤ nM ∫ c

0

x2n dx =
n

2n+ 1
Mc2n+1,

hence

lim
n→∞

n

∫ c

0

f(x)x2n dx = 0,∀c ∈ [0, 1). (*)

Finally, for any ε > 0, there a δ such that 1− δ < x ≤ 1 =⇒ |f(x)− f(1)| < 2ε. Now∣∣∣∣n∫ 1

1−δ
f(x)x2n dx− f(1)

2

∣∣∣∣
≤
∣∣∣∣n∫ 1

1−δ
f(x)x2n dx− n

∫ 1

1−δ
f(1)x2n dx

∣∣∣∣+

∣∣∣∣n∫ 1

1−δ
f(1)x2n dx− f(1)

2

∣∣∣∣
< 2ε

n

2n+ 1

(
1− (1− δ)2n+1

)
+

∣∣∣∣ n

2n+ 1

(
1− (1− δ)2n+1

)
− 1

2

∣∣∣∣ f(1)

now we take n→∞ on both sides, having∣∣∣∣ lim
n→∞

n

∫ 1

1−δ
f(x)x2n dx− f(1)

2

∣∣∣∣ ≤ ε. (**)

We see that by (*) and (**),∣∣∣∣∣ lim
n→∞

(∫ 1−δ

0

+

∫ 1

1−δ

)
f(x)x2n dx− f(1)

2

∣∣∣∣∣ ≤ 0 + ε = ε,

but ε is arbitrarily small, we must have

lim
n→∞

n

∫ 1

0

f(x)x2n dx =
f(1)

2
.

105. Denote In = n2

∫ 1

0

( n
√

1 + xn − 1) dx, let y = xn, then

In = n

∫ 1

0

n
√

1 + y − 1

y
y

1
n dy.
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Now by the fact that for each fixed y there is a cy, 1n between 0 and 1
n such that (Taylor

series of (1 + y)x with remainder term, 3 terms in total)

0 < n( n
√

1 + y − 1)− ln(1 + y) = (1 + y)
c
y, 1
n

(
ln(1 + y)

)2 1

2n
,

we have ∣∣∣∣In − ∫ 1

0

ln(1 + y)

y
y

1
n dy

∣∣∣∣ ≤ 1

2n

∫ 1

0

(1 + y)
1
n

(
ln(1 + y)

)2
y

y
1
n dy

≤ 1

2n

∫ 1

0

(1 + y)
1
n y

1
n+1 dy

≤ 1

2n

∫ 1

0

(
1

n
y + 1

)
y

1
n+1 dy

≤ 1

2n

(
1

n
+ 1

)∫ 1

0

y
1
n+1 dy

=
n+ 1

2n(2n+ 1)
,

here we have used the fact that ln(1 + y) ≤ y and (1 + y)
1
n ≤ 1

ny + 1 (then do direct
integration).

Finally we can prove that∣∣∣∣∫ 1

0

ln(1 + y)

y
y

1
n dy −

∫ 1

0

ln(1 + y)

y
dy

∣∣∣∣ ≤ ∫ 1

0

(1− y 1
n ) dy =

1

n+ 1
,

then by adding the two inequalies, we get∣∣∣∣In − ∫ 1

0

ln(1 + y)

y
dy

∣∣∣∣ ≤ n+ 1

2n(2n+ 1)
+

1

n+ 1
,

this inequality shows that limn→∞ In exists and the limit is
∫ 1

0
ln(1+y)

y dy. The evaluation of∫ 1

0
ln(1+y)

y dy makes use of uniform convergence. Here is a sketch, first express lnx in power
series, do termwise integration, the resulting series has a well-known limit.

106. We first deal with the integral, by geometric fact,∫ k+1

k

x ln
(
(x− k)(k + 1− x)

)
dx =

∫ 1

0

(x− 1
2 + k + 1

2 ) ln
(
x(1− x)

)
dx.

Observing that

∫ 1

0

(x− 1
2 ) ln

(
x(1− x)

)
dx =

∫ 1/2

−1/2

x log( 1
4 − x

2) dx = 0, we have

∫ k+1

k

x ln
(
(x− k)(k + 1− x)

)
dx = (k + 1

2 )

∫ 1

0

ln
(
x(1− x)

)
dx.

We can evaluate the last integral by first finding its anti-derivative and taking limit, but we
have an aha! way to compute this instead of mundane method. Note that any function is
symmetric about y = x with its inverse function. In our case, we need the inverse function
of f(x) = lnx, namely, f−1(x) = ex, hence∫ 1

0

ln
(
x(1− x)

)
dx = 2

∫ 1

0

lnx dx = −2

∫ 0

−∞
ex dx = −2.
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Plugging in all results in the original sum, and by the particular partition of Riemann sum,
we have

lim
n→∞

{
1

n4

(
n∑
k=1

k2

∫ k+1

k

x ln
(
(x− k)(k + 1− x)

)
dx

)}

= lim
n→∞

n∑
k=1

1

n

(
k

n

)2
1

n
(k + 1

2 )(−2)

= −2 lim
n→∞

n∑
k=1

1

n

(
k

n

)3

= −1

2
.

107. To be added.

2.3 Evaluation of Limit

108. (a) We mainly use the fact that f(x) = Tn(x) + o((x− x0)n). Consider

y =

n∏
k=2

(cos kx)
1
k ,

then when x close to 0, we have

cosx = 1− x2

2!
+ o(x2) and log(1 + x) = x+ o(x)

and hence

log y =

n∑
k=2

1

k
log cos kx =

n∑
k=2

1

k

(
−k

2x2

2
+ o(x2)

)

=

n∑
k=2

−kx2

2
+

n∑
k=2

1

k
o(x2)

=

n∑
k=2

−kx2

2
+ o(x2),

so

y − 1

x2
=

exp(
∑n
k=2

−kx2

2 + o(x2))− 1

x2
=

(1 +
∑n
k=2

−kx2

2 + o(x2))− 1

x2

= −1

2

n∑
k=2

k +
o(x2)

x2

lim
x→0

y − 1

x2
= −1

2

n∑
k=2

k + lim
x→0

o(x2)

x2
=

(n+ 2)(1− n)

4
.

(b) Since
n∏
k=2

k
√

1− kx is continuous at 0 and hence the limit is of 0
0 type, L’hôspital rule
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can be applied.

lim
x→0

n∏
k=2

k
√

1− kx− 1

sinx
= lim
x→0

n∑
r=2

− 1

(1− rx)1− 1
r

∏
k 6=r

(1− kx)
1
k

cosx

= −
n∑
r=2

(1)

= 1− n.

(c) To be added.

(d) We use Taylor expansion with remainder term (just showing the order of infinitesimal).

In = n

(
1α + 2α + ...+ nα

nα+1
− 1

α+ 1

)
=

(α+ 1)(1α + · · ·+ nα)− nα+1

nα(α+ 1)
=
hn
kn
.

Let

Jn =
∆hn
∆kn

=
(α+ 1)nα − nα+1 + (n− 1)α+1

(α+ 1)
(
nα − (n− 1)α

) =
(α+ 1)− n+ (1− 1

n )α(n− 1)

(α+ 1)
(
1− (1− 1

n )α
) .

Recall that (1 + x)α = 1 + αx+ α(α−1)
2 x2 + o(x2), note that we also have

lim
n→∞

(n− 1)o( 1
n2 )

1
n

= 0 =⇒ (n− 1)o

(
1

n2

)
= o

(
1

n

)
,

hence

lim
n→∞

Jn = lim
n→∞

α+ α(α−1)
2

n−1
n +

o( 1
n )
1
n

(α+ 1)
(
α+

o( 1
n )
1
n

) =
α+ α(α−1)

2

(α+ 1)(α)
=

1

2

Stolz theorem
========== lim

n→∞
In.

109. Define pn = (1 + a1)(1 + a2) · · · (1 + an), then

an
(1 + a1)(1 + a2) · · · (1 + an)

=
(an + 1)− 1

pn
=

pn
pn−1

− 1

pn
=

1

pn−1
− 1

pn
.

We see that
m∑
n=2

an
(1 + a1)(1 + a2) · · · (1 + an)

=
1

p1
− 1

pm
.

Since pn = (1 + an)pn−1 > pn−1 =⇒ {pn} is strictly increasing, we have only two possibil-
ities

(a) lim
n→∞

pn = +∞ (e.g.
∏∞
n=1(1 + 1

n ));

(b) lim
n→∞

pn < +∞ (e.g.
∏∞
n=1(1 + 1

n2 )).

In both cases, we can conclude that

∞∑
n=2

an
(1 + a1)(1 + a2) · · · (1 + an)

converges, thus

lim
n→∞

an
(1 + a1)(1 + a2) · · · (1 + an)

= 0.
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110. We see that∣∣∣∣a1bn + · · ·+ anb1
n

− ab
∣∣∣∣

<

∣∣∣∣∣
∑N
k=1 akbn−k+1 − ab

n

∣∣∣∣∣+
1

n

n∑
k=N+1

|akbn−k+1 − abn−k+1 + abn−k+1 − ab|

<

∣∣∣∣∣
∑N
k=1 akbn−k+1 − ab

n

∣∣∣∣∣+

∑n
k=N+1 |bn−k+1||ak − a|

n
+

∑n−N
k=N+1 a|bn−k+1 − b|

n
+

∑n
k=n−N+1 a|bn−k+1 − b|

n

Now N is suitably chosen such that

n > N =⇒



1

n

∣∣∣∣ N∑
k=1

(akbn−k+1 − ab)
∣∣∣∣ < ε

|an − a| < ε
|bn − b| < ε
1

n

n∑
k=n−N+1

a|bn−k+1 − b| < ε

.

Morever, {bn} converges implies that {bn} is a bounded sequence, suppose that |bn| < M ,
for any b ∈ N, then it follows that∣∣∣∣a1bn + · · ·+ anb1

n
− ab

∣∣∣∣ < ε+
n−N
n

Mε+
n− 2N

n
aε+ ε < (M + a+ 2)ε.

111. To be added.

112. Notice that an =
√

1 + a2 + · · ·+ an−1 > 1, for all n ≥ 2, so an+1 >
√
n, thus limn→∞ an =

∞. Note that the recurrence relation can be written as a2
n+1 = a2

n + an, so an+1

an
→ 1, and

by Stolz theorem,

lim
n→∞

an+1 − an
(n+ 1)− n

= lim
n→∞

1

1 + an+1

an

=
1

2
= lim
n→∞

an
an
.

113. Let N ∈ N such that

n > N =⇒
{
|tnk| < ε
|an − a| < ε

.

Since {an} is a convergent sequence, there exists a positive M such that |an−a| < M, ∀n ∈ N.
Then

|xn − a| =

∣∣∣∣∣
n∑
k=1

tnkak −
n∑
k=1

tnka

∣∣∣∣∣ =

∣∣∣∣∣
(

N∑
k=1

+

n∑
k=N+1

)
tnk(ak − a)

∣∣∣∣∣
<

N∑
k=1

|tnk||ak − a|+
n∑

k=N+1

|tnk||ak − a|

< MNε+ ε = (MN + 1)ε.

114. Observe that∣∣∣∣∑n
k=1 kak
n2

− a

2

∣∣∣∣ <
∣∣∣∣∣
∑N
k=1 kak
n2

∣∣∣∣∣+

∣∣∣∣
∑n
k=N+1 k(ak − a)

n2

∣∣∣∣+

∣∣∣∣
∑n
k=N+1 ka

n2
− a

2

∣∣∣∣ .
Since each term on right hand side is arbitrarily small. we are done.
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On the other hand, we can show the result by stolz theorem, since {n2} is strictly
increasing and unbounded, we have

lim
n→∞

(a1 + 2a2 + · · ·+ nan)− (a1 + 2a2 + · · ·+ (n− 1)an−1)

n2 − (n− 1)2
= lim
n→∞

1

2

n

n− 1
2

an =
a

2
,

that shows desired result.

115. To be added.

116. By equivalence of norm, there exist two non-zero constants d1, d2 such that d1‖x‖∞ ≤ ‖x‖ ≤

d2‖x‖∞, in other words, there exists two constants c1, c2 such that c1
f(x, y)

‖~x‖∞
≤ f(x, y)

‖~x‖
≤

c2
f(x, y)

‖~x‖∞
, hence

lim
(x,y)→~0

f(x, y)

‖~x‖
= 0 ⇐⇒ lim

(x,y)→~0

f(x, y)

‖~x‖∞
= 0.

The original limit exists and equals to 0 if and only if

lim
(x,y)→~0

|x|p|y|q

max{|x|, |y|q/k}αk max{|x|, |y|n/m}βm
= 0.

Now we try to study the limit case by case.

lim
(x,y)→~0

|x|p|y|q

max{|x|, |y|q/k}αk max{|x|, |y|n/m}βm
=


|x|p|y|q−lα−nβ if |y|n/m, |y|l/k ≥ |x|
|x|p−αk−βm|y|q if |x| ≥ |y|n/m, |y|l/k

|x|p−βm|y|q−lα if |y|n/m ≤ |x| ≤ |y|l/m

|x|p−αk|y|q−nβ if |y|l/k ≤ |x| ≤ |y|n/m

Combining all results, we have quite a number of possibilities.

i) l
kp+ q − lα− nβ > 0

ii) n
mp+ q − lα− nβ > 0

iii) p−αk−βm+ m
n q > 0

iv) p− αk − βm+ k
l q > 0

v) p−βm+m
n (q−lα) > 0

vi) l
k (p−βm)+q− lα > 0

vii) n
m (p−αk)+q−nβ > 0

viii) p−αk+ k
l (q−nβ) > 0

117. To be added.

2.4 Sequence and Series

118. (a) First note that
√
k(k + 4) + 20 = (k + 2)

√
1 +

(
4/(k + 2)

)2
, it conveys us some mes-

sages. As k increases, we have
√
k(k + 4) + 20 = k+ 2 + f(k), where f(k)→ 0 as k →

∞. But only the integral part deserves our concern, so if k+2 <
√
k(k + 4) + 20 < k+3,

then everything goes smooth and we have [
√
k(k + 4) + 20] = k + 2. But when does

this inequality hold? Just solve the inequality we have k > 5.5, so the inequality is true
of k ≥ 6 and thus the value should be 5 + 5 + 6 + 7 + 8 + 8 + 9 + 10 + · · ·+ 102 = 5256.

(b)

n∑
k=1

[
√
k] =

a∑
j=1

j2−1∑
k=(j−1)2

[
√
k] +

n∑
k=a2

[
√
k] =

a∑
j=1

(2j − 1)(j − 1) + (n − a2 + 1)a. Finally
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we make use of the formulas

n∑
j=1

j2 =
n

6
(n + 1)(2n + 1) and

n∑
j=1

j =
n(n+ 1)

2
, having

n∑
k=1

[
√
k] =

1

6
a(−2a2 − 3a+ 5 + 6n).

119. Denote f(x) = u3 + v3 + w3 − 3uvw, to show that f(x) = 1, we first show that f ′(x) = 0,
then show that f(x) = f(0) = 1.

We know that f(0) = 1, it suffices to show that f ′(x) = 0. Differentiating f once, we
have

f ′(x) = 3
∑
cyc

u2u′ − 3
∑
cyc

u′vw = 3
∑
cyc

u′(u2 − vw).

We also observe that u′ = w, v′ = u, w′ = v, it follows that∑
cyc

u′(u2 − vw) =
∑
cyc

w(u2 − vw) =
∑
cyc

(u2w − vw2) =
∑
cyc

w2v −
∑
cyc

vw2 = 0.

From complex analysis, we know that ez =
∞∑
n=0

zn/n!,∀z ∈ C. Now for any real x, we

have

ex =

∞∑
n=0

xn

n!
=

 ∑
n≡0 (mod 3)

+
∑

n≡1 (mod 3)

+
∑

n≡2 (mod 3)

 xn

n!
,

Re (eωx) =
∑

n≡0 (mod 3)

xn

n!
− 1

2

 ∑
n≡1 (mod 3)

+
∑

n≡2 (mod 3)

 xn

n!
=

3

2

∑
n≡0 (mod 3)

xn

n!
+ ex,

here ω is the cube root of unity. Transposing terms, we have

u =
∑

n≡0 (mod 3)

xn

n!
=

1

3
ex +

2

3
e−x/2 cos

√
3x

2
.

120. Recall the fact that cosx =
eix + e−ix

2
, we have

n−1∑
k=0

(−1)k cosn
(
kπ

n

)
=

n−1∑
k=0

(−1)k
(
eikπ/n + e−ikπ/n

2

)n

=
1

2n

n−1∑
k=0

(−1)k
n∑
r=0

(
n

r

)(
−eiπ(−2r)/n

)k
=

1

2n

n−1∑
k=0

(
n−1∑
r=1

(
n

r

)
(e−2riπ/n)k + 2

)

=
1

2n

(
n−1∑
r=1

(
n

r

)
1− e−2riπ

1− e−2riπ/n
+ 2n

)
=

n

2n−1
.

121. (a), (b) By taylor expansion together with the remainder, we have

|xn − log(1 + xn)| =
∣∣∣∣ 1

2(1 + cn)2
x2
n

∣∣∣∣ , for some cn between 0 and xn. (*)
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Since ex ≥ 1 + x, for any x ∈ R, we have xn − log(1 + xn) ≥ 0, for any xn. Moreover, either
one of convergences of

∑
xn and

∑
x2
n implies that lim

n→∞
xn = 0. Hence for given ε > 0,

there exists N ∈ N such that

n > N =⇒ |xn| < ε =⇒ |cn| < ε.

We require ε < 1, then from (*), we have for n > N ,

1

2(1 + ε)2
x2
n < xn − log(1 + xn) <

1

2(1− ε)2
x2
n.

This inequality is just enough to prove the statements by comparison test.

122. Method 1. Integration goes some way to attacking this problem. A series
∑
un(x) is inte-

grable and its anti-derivative converges to
∑∫ b

a

un(x) dx if
∑
un(x) is uniformly convergent

on [a, b].

Now since for any x, excluding the points at which f(x) is not defined, lim
n→∞

tan
x

2n
= 0,

hence there exists an N such that

n > N =⇒
∣∣∣∣ 1

2k
tan

x

2k

∣∣∣∣ < 1

2k+1
.

By comparison test,
∑

1/2k+1 converges implies
∑ 1

2n
tan

x

2n
converges absolutely, and

hence
∑ 1

2n
tan

x

2n
converges uniformly.

∞∑
k=1

1

2k

∫ x

0

tan
t

2k
dt = −

∞∑
k=1

ln cos
x

2k
= − ln

( ∞∏
k=1

cos
x

2k

)
= − ln

(
lim
n→∞

sinx

2n sin x
2n

)

= − ln

[(
sinx

x

)(
lim
n→∞

sin(x/2n)

x/2n

)−1
]

= ln
x

sinx
,

Now since
∞∑
k=1

1

2k

∫ x

0

tan
t

2k
dt converges and, as proved,

∑ 1

2n
tan

x

2n
converges uniformly,

we differentiate both sides, yielding

∞∑
k=1

1

2k
tan

x

2k
=

sinx− x cosx

x sinx
=

1

x
− cotx.

Method 2. Observe that

tanx− cotx = −2 cot 2x,

replace x by x
2k

and divide both sides by 2k, that gives

1

2k
tan

x

2k
=

1

2k
cot

x

2k
− 1

2k−1
cot

x

2k−1
,

it follows that

∞∑
k=1

1

2k
tan

x

2k
= lim
n→∞

n∑
k=1

(
1

2k
cot

x

2k
− 1

2k−1
cot

x

2k−1

)
= lim
n→∞

(
1

x
cos

x

2n

x
2n

sin x
2n
− cotx

)
=

1

x
−cotx.
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123. We use summation by parts,∑n
k=1 kak
n

= −
∑n−1
k=1

∑k
i=1 ai

n
+

n∑
i=1

ai.

We also know that lim
n→∞

an = L =⇒ lim
n→∞

a1 + a2 + · · ·+ an
n

= L, thus

lim
n→∞

∑n
k=1 kak
n

= −

(
lim
n→∞

∑n−1
k=1

∑k
i=1 ai

n− 1

)(
lim
n→∞

n− 1

n

)
+ lim
n→∞

n∑
i=1

ai = 0.

124. We also use summation by parts,∑n
k=1 akbk
bn

=

∑n−1
k=1

∑k
i=1 ai(bk − bk+1) + bn

∑n
i=1

bn
.

We rewrite bn as
n−1∑
k=1

(bk+1 − bk) + b1, we have

∑n
k=1 akbk
bn

=

∑n−1
k=1(

∑k
i=1 ai −

∑n
i=1 ai)(bk − bk+1)

bn
+
b1
∑n
i=1 ai
bn

,

hence we have∣∣∣∣∑n
k=1 akbk
bn

∣∣∣∣ < 1

|bn|

∣∣∣∣∣
(

N∑
k=1

+

n−1∑
k=N+1

)
n∑
i=k

ai(bk − bk+1)

∣∣∣∣∣+

∣∣∣∣b1∑n
i=1 ai
bn

∣∣∣∣ .
For given ε > 0, there exists an integer N ∈ N such that

m,n > N =⇒



1

|bn|

∣∣∣∣∣
N∑
k=1

n∑
i=k

ai(bk − bk+1)

∣∣∣∣∣ < ε

3∣∣∣∣∣
m∑
k=n

ak

∣∣∣∣∣ < ε

3∣∣∣∣∣ b1bn
n∑
i=1

ai

∣∣∣∣∣ < ε

3

here we do not mention the petty details that how to choose such integer N . Altogether,
we get ∣∣∣∣∑n

k=1 akbk
bn

∣∣∣∣ < ε

3
+
bn − bN+1

bn

ε

3
+
ε

3
=

(
1 +

bn − bN+1

bn
+ 1

)
ε

3
< ε.

125. We obseve that
1

n(n+ 1)
=

1

n
− 1

n+ 1
, then it is reminiscent of the formular of summation

by parts! Write

bn = (a1 + 2a2 + · · ·+ nan)

(
1

n
− 1

n+ 1

)
,

write sk =
k∑
i=1

iai, bk = 1/k, then

bnsn +

n−1∑
k=1

bk =

n−1∑
k=1

sk(bk − bk+1) + bnsn =

n∑
k=1

kakbk =

n∑
k=1

ak
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or
n∑
k=1

bk =

n∑
k=1

ak −
a1 + 2a2 + · · ·+ nan

n
,

since we have shown that lim
n→∞

a1 + 2a2 + · · ·+ nan
n

= 0, by the arithmetic rule of operation

of limit, we are done.

126. (a) To be added.

(b) To be added.

127. The result directly follows from tan−1 1

2n2
= tan−1 1

2n− 1
− tan−1 1

2n+ 1
, if you really

want how to derive this identity, please contact me.

One can also evaluate this by putting n = 1, 2, . . . and guess the value.

128. Having known the way to derive above identity, then this question is also solved directly.

129. Since
n+1∏
k=2

ak
ak−1

= (n+ 1)!

n∏
k=1

(
1 +

1

ak

)
,

we have
n∏
k=1

(
1 +

1

ak

)
=

an+1

(n+ 1)!
=

1

n!
+
an
n!

= · · · = 1

n!
+ · · ·+ 1

2!
+ 1,

by the definition of e, we are done.

130. Replacing x by x
2k

, we have T
(
x
2k

)
− T

(
x

2k+1

)
= b · x

2k
log x

2k
. Now taking summation from

k = 0 to k = n, we have T (x) = T
(

x
2n+1

)
+ bx

n∑
k=0

1
2k

log x
2k
, when n → ∞, T (x) =

T (0) + bx
∞∑
k=0

1
2k

log x
2k
. We are left to evaluate the infinite series whose convergence is a

direct consequence of ratio test.

Note that log 2x = 2 log x − log x
2 , we replace x by x

2k+1 and divide both sides by 2k,
having

∞∑
k=0

1

2k
log

x

2k
= 4

∞∑
k=0

(
1

2k+1
log

x

2k+1
− 1

2k+2
log

x

2k+2

)
= 2 log

x

2
,

hence T (x) = T (0) + 2bx log x
2 , the initial condition tells us T (0), yielding

T (x) = 1 + 2b
(

log 2 + x log
x

2

)
.

131. Observe that (log log k)p log k = ep log k log log log k = (kp)log log log k, the question can be easily

solved. When p ≤ 0, it diverges obviously. For p > 0, since k > ee
e
2
p

=⇒ p log log log k > 2.

Take N =

[
ee
e
2
p

]
+ 1,

∞∑
N

1

kp log log log k
<

∞∑
k=N

1

k2
, right hand side converges, and so does

left hand side.

132. It can be shown by induction that xn ∈ (0, 1) and hence xn+1 = xn(1 − xn) < xn. So
{xn} is decreasing and bounded below by 0, limn→∞ xn = a ∈ [0, 1

4 ]. To show a series
diverges, it suffices to compare

∑
xn with other divergent series. For this end, we tend to

use comparison test or limit comparison test. Recall that
∑

1
n diverges, and the computation

of limit lim
n→∞

xn

/
1

n
= lim

n→∞
n

/
1

xn
= lim

n→∞
(1 − xn) = 1 − a is extremely easy by Stolz’s

theorem. thus the divergence of
∑
xn follows from that of

∑
1
n .
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133. Easy job!

134. To be added.

135. Suppose bn < M , then
1

an+1
− 1

an
< nM , it follows that an+1 >

1

nM + 1
a1

. Since

lim
n→∞

1

n

/
1

nM + 1
a1

= M ∈ R+,
∑n
k=1 ak diverges, a contradiction.

136. The only nontrivial stuff is convergence of the sequence. It can be seen that since a1 =
a2 = 0 ≤ 1, so an ≤ 1 by induction on n. Since it’s bounded above, we hope to prove it’s

monotonically increasing. Observe that an+1 − an = 2
3

(
a2n+b

2 − an
)

, so an+1 ≥ an ⇐⇒
(an− 1)2 ≥ 1− b ⇐⇒ 1− an ≥

√
1− b ⇐⇒ an ≤ 1−

√
1− b. This is true obviously when

n = 1, 2. Suppose that’s true for n = k, k + 1, then

ak+2 =
1

3
(ak+1 + a2

k + b) ≤ 1

3
(1−

√
1− b+ (1−

√
1− b)2 + b) = 1−

√
1− b.

The above equality (right one) also reveal that the limit is 1−
√

1− b.

137. Since ak+1−ak = 1
ak

+ 1
ak+1

, it is tempting to do a summation
∑n−1
k=1 on both sides, yielding

an − a1 + 1
a1

=
∑n−1
k=1

1
ak

+
∑n
k=1

1
ak

. Let’s define Sn =
∑n
k=1

1
ak

, then we get an equality

an − a1 + 1
a1

= Sn + Sn−1.

Now by Stolz theorem,

lim
n→∞

1√
n

(
1

a1
+

1

a2
+ . . .+

1

an

)
= lim
n→∞

√
S2
n

n

if RHS exists
==========

√
lim
n→∞

S2
n − s2

n−1

1

=

√
lim
n→∞

an − a1 + 1
a1

an
.

So it suffices to know the behavier of an, it is clear that {an} is increasing since an+1−an =
1

an+1
+ 1

an
> 0. Then next question is “is it bounded?”. Suppose it were bounded, then

there would be an M such that an < M for all n ≥ 1, so ak+1 − ak = 1
ak+1

+ 1
ak
> 2

M , but

this is already a contradiction since this inequality also implies an − a1 >
2(n−1)
M , i.e. {an}

unbounded.

We get the limit 1.

138. Assume on the contrary there is c ∈ (a, b) such that none of subsequence of {xn} can converge
to c. Then in particular, there is ε > 0 such that {xn : n ∈ N} ∩

(
(c − ε, c + ε) \ {c}

)
= ∅.

Since there are at most finitely many xn = c, and hence there is a K ∈ N,

n ≥ K =⇒ xn 6∈ (c− ε, c+ ε).

Let L = [a, c− ε], R = [c+ ε, b]. Each number in {xn : n ≥ K} lies either in L or R.

(i) If there are infinitely many n ≥ K such that xn ∈ L =⇒ xn+1 ∈ R, then {xn− xn+1}
cannot converge to 0, impossible, hence there are finitely many n ≥ K such that
xn ∈ L =⇒ xn+1 ∈ R. In other words, there is an N ≥ K such that for all n ≥ N ,
xn ∈ L =⇒ xn+1 ∈ L.
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(ii) Similarly the above argument works when R and L are interchanged, and we can
conclude there is N ′ ≥ K such that when n ≥ N ′, xn ∈ R =⇒ xn+1 ∈ R.

Now consider two possibilities of {xn}n≥K , firstly, if there are infinitely many xn’s lying
on L, then there must be n′ ≥ N , xn′ ∈ L, then (i) implies xn ∈ L for all n ≥ n′, in this
case limn→∞ xn = b is impossible. Secondly, if there are infinitely many xn’s lying on R,
then (ii) implies there is an n′′ ≥ N ′ so that n ≥ n′′ =⇒ xn ∈ R, and limn→∞ xn = a
becomes impossible.

139. The recursive relation tells us a2n = a0

∏n
j=1

(2j−2)(2j−1)−`(`+1)
2j(2j−1) , none of an = 0 (due to the

range of `). We expand a bit:

a2n = a0

∏n
j=1

(2j)(2j−1)−(2(2j−1)+`(`+1))
2j(2j−1) = a0

∏n
j=1

(
1−
(

1
j + `(`+1)

2j(2j−1)

)
︸ ︷︷ ︸

:=bj

)
= a0

∏n
j=1(1−bj).

As bj → 0, there is an N such that j ≥ N =⇒ 1− bj > 0. For n ≥ N , we have

∏n
j=N (1− bj) = exp

(
ln
∏n
j=N (1− bj)

)
= exp

(∑n
j=N ln(1− bj)

)
. (2.3)

As x → 0, ln(1 + x) = x − 1
2x

2 + o(x2) (where o(x2)/x2 → 0), so there is δ > 0 such that
|x| < δ =⇒ |o(x2)| < x2. We may assume N is large enough so that |bj | < δ for all j ≥ N .
Thus from (2.3),

∏n
j=N (1− bj) = exp

(∑n
j=N (−bj − 1

2b
2
j + o(b2j ))

)
= exp

(∑n
j=N

(
− 1
j −

`(`+1)
2j(2j−1) −

1
2b

2
j + o(b2j )

))
= exp

(
−
∑n
j=N

1
j +An

)
= exp

(
−
∑n
j=N

1
j

)
exp(An),

where An :=
∑n
j=N (− `(`+1)

2j(2j−1) −
1
2b

2
j + o(b2j )). It is clear that An is convergent, so eAn is

bounded below by a constant C > 0, n ≥ N . And by considering the graph of y = 1
x ,∑n

j=N
1
j ≤

∫ n
N−1

1
x dx = lnn− ln(N − 1),

∏n
j=N (1− bj) ≥ C exp

(
−
∑n
j=N

1
j

)
≥ Celnn−1+ln(N−1) = C(N − 1) 1

n .

Finally ∣∣∣∑n≥N a2n

∣∣∣ =
∣∣∣∑n≥N a0

∏N−1
j=1 (1− bj)

∏n
j=N (1− bj)

∣∣∣
=
∣∣∣a0

∏N−1
j=1 (1− bj)

∣∣∣ ∣∣∣∑n≥N
∏n
j=N (1− bj)

∣∣∣
≥
∣∣∣a0

∏N−1
j=1 (1− bj)

∣∣∣ ∣∣∣∑n≥N C(N − 1) 1
n

∣∣∣
= +∞,

this proves the divergence.
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2.5 Binomial Identity

140. By the fact that

(
2010

k

)
=

2010

k

(
2009

k − 1

)
. We subtract right hand side by left hand side,

2010∑
k=1

(
2010

k

)
(−1)k

k + 2010
−

2009∑
k=1

(
2009

k

)
(−1)k

k + 2011
=

2009∑
k=0

(
2009

k

)
(−1)k

k + 2011

(
2010

k + 1
+ 1

)
+

1

2010

=
1

2010

(
2009∑
k=0

(
2010

k + 1

)
(−1)k+1 + 1− 1

)
+

1

2010
= 0.

141. By infinite binomial series,

(1− 4x)−1/2 =

∞∑
n=0

(
− 1

2

n

)
(−4)nxn =

∞∑
n=0

−(1/2)(−3/2) · · · (−1/2− n+ 1)

n!
(−4)nxn

=

∞∑
n=0

2n
(2n− 1)!!

n!
xn

=

∞∑
n=0

(
2n

n

)
xn.

142. We use diagonal arrangement to arrange the terms formed by multiplication of two series,
i.e. (

n∑
i=0

ai

)(
n∑
i=0

bi

)
=

n∑
k=0

(
k∑
i=0

aibn−k

)
.

(
(1− 4x)−1/2

)2
=

( ∞∑
n=0

(
2n

n

)
xn

)( ∞∑
n=0

(
2n

n

)
xn

)
=

∞∑
n=0

(
n∑
k=0

(
2k

k

)(
2n− 2k

n− k

))
xn.

On the other hand,

(
(1− 4x)−1/2

)2
=

1

1− 4x
=

∞∑
n=0

(4x)n =

∞∑
n=0

22nxn,

thus, we have
n∑
k=0

(
2k

k

)(
2n− 2k

n− k

)
= 22n.

143. To be added.

144. If we do direct expansion, then

k∑
l=1

(−1)l
(
k

l

)
al =

k∑
l=1

l∑
r=1

(−1)l+r
(
k

l

)(
l

r

)
br =

k∑
r=1

k∑
l=r

(−1)l+r
(
k

l

)(
l

r

)
br =

k−1∑
r=1

k∑
l=r

(−1)l+r
(
k

l

)(
l

r

)
br+bk.

The first term vanishes since

k−1∑
r=1

k∑
l=r

(−1)l+r
(
k

l

)(
l

r

)
br =

k−1∑
r=1

k∑
l=r

(−1)l+r
(
k

r

)(
k − r
l − r

)
br =

k−1∑
r=1

(
k

r

)
br

k−r∑
l=0

(−1)l
(
k − r
l

)
︸ ︷︷ ︸

=(1+(−1))k−r

= 0.
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145. Let an =

n∑
k=1

(−1)k+1 1

k

(
n

k

)
, write it as an =

n−1∑
k=2

(−1)k+1 1

k

(
n

k

)
+ n + (−1)n+1 1

n
, then

combining the identities

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
,
(
n
k

)
= n

k

(
n−1
k−1

)
and

n∑
k=0

(−1)k
(
n

k

)
= 0,

we have an = an−1 +
1

n
, so an =

∑n
k=1

1
k .

The last equality follows from problem 144.

146. (a) If we count the number of ways to form a group of k people with m of them being
leaders, this is easily counted as

(
n
k

)(
k
m

)
. On the other way round, we first choose

people to be leaders, then choose remaining people to form a group of k people, this
will be

(
n
m

)(
n−m
k−m

)
.

(b) To be added.

(c) To be added.

147. To be added.

2.6 Basic Counting

148. We denote 2 disjoint sets respectively A and B. For each number in [n] = {1, 2, . . . , n}, they
have only 3 destinies. Either to be abandoned, either to be assigned to A or to be assigned
to B, hence in general we have 3n−1 choice to put them into A and B. However, none of A
and B can be empty, we have 3n − 1− (2n − 1)− (2n − 1). Finally, since grouping C1 to A
and C2 to B is the same as grouping C1 to B and C2 to A, where C1 and C2 are two disjoint

subsets of [n]. We have to divide the number by 2!, hence the number is
3n − 1

2
− 2n + 1.

149. Define sn be number of way of distribution if
exactly n people have present(s), then

sn = (n+ 1)6 −
n−1∑
i=0

(
n

i

)
si,

setting i = 1, 2 and defining s0 = 1, one can
have that

s0 = 1,

s1 = 26 − 1,

s2 = 36 − 2 · 26 + 1,

s3 = 46 − 37 + 3 · 26 − 1 = 2100.

In case that all presents must be dis-

tributed, it turns out to be an easy problem.
With some basic counting technique, we can

have
6!

4!
× 3 +

6!

23
+

6!

3!2!
× 3! = 540.

Alternatively, we define

sn = n6 −
n−1∑
k=1

(
n

k

)
sk.

Setting n = 1, 2, 3 to get 3 linear equations,
solving them we have s3 = 36−3−3(26−2) =
540. I think this particular case can help un-
derstand how I defined such recurrence rela-
tion.

150. We first define a symbol

an = n people has at least 1 prize (n ≤ 20).

Then our desired number is a5.

To distribute one prize to n people, we have n+1 arrangements, that is, either distributing
to n people or abandoning this prize, so distributing 20 prize to them can be in (n + 1)20

ways, including the possibilities that some of them may not have prize.
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But everyone must be awarded, we now construct an identity

an = (n+ 1)20 −N(exactly n− 1 people have prize)−N(exactly n− 2 people have prize)

− · · · −N(exactly 0 people have prize)

= (n+ 1)20 −
(
n

1

)
an−1 −

(
n

2

)
an−2 − · · · −

(
n

n

)
a0

with the convention that a0 = 1,

when n = 1, a1 = 220 − 1,
when n = 2, a2 = 320 − 2a1 − 1,
when n = 3, a3 = 420 − 3a2 − 3a1 − 1,

as you can see if we continue this process, since a5 is expressed in terms of a1, a2, a3, a4

and these four numbers can be found, we can obtain the expression of a5 after tedious works,

a5 = 620 − 21× 520 + 64× 420 − 81× 320 − 48× 220 − 11.

You would find that first 3 questions in this section are intrinsically the same! The

number
s2

2
is actually the number in the first question. For n different numbers, they are

assigned to 2 different groups, giving s0 = 1, s1 = 2n−1, s2 = 3n−s0−2s1 = 3n−2n+1 +1.

Since each possible partition is counted twice, we have
s2

2!
=

3n − 1

2
− 2n + 1. In general,

the number
sk
k!

is the number of ways to form k groups from n people.

151. Let an be such required number. Define a
(#)
n to be the string with length n ending up with

a number, we also let a
(×)
n be a string with length n ending up with an operator. Then

an
∆
= a(#)

n

= 10× a(#)
n−1 + 10× a(×)

n−1

= 10an−1 + 10(3× a(#)
n−2) (a number must precede or follow the operator)

= 10an−1 + 30an−2.

Finally the closed form is a routine calculation, with a1 = 10, a2 = 10× 10 = 100.

152. We first find the probability that
∑6
i=1(ai−bi) = 0. In other words, if we let ai’s be positive

and bi’s be negative, the probability is same as finding the constant term in the following
expression (0 exponent)(

1

6
(x+ x2 + x3 + x4 + x5 + x6)

)6(
1

6
(x−1 + x−2 + x−3 + x−4 + x−5 + x−6)

)6

,

using the property that some function (e.g. (1 − x)−6) is analytic for |x| < 1, one can find

the constant term by special trick. To save time, we use computer to get
36210119

544195584
, so the

probability of
∑6
i=1 ai 6=

∑6
i=1 bi is 1− 36210119

544195584
≈ 0.93346.

As a simple case, we consider the constant term in(
1

6
(x+ x2 + x3 + x4 + x5 + x6)

)2(
1

6
(x−1 + x−2 + x−3 + x−4 + x−5 + x−6)

)2

,
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this will be the probability that a1 + a2 = b1 + b2. By direct expansion, we get
73

648
. If we

count the probability directly, this will be

12∑
k=2

# of possibility that a1 + a2 = k = b1 + b2 (counting permutation)

64

=
1

64
(1 + 22 + 32 + 42 + 52 + 62 + 52 + 42 + 32 + 22 + 1)

=
73

648
.

153. Let the collection of ages of these 10 people be C, define the set

S = {x1+x2+· · ·+xk−(xk+1 + · · ·+ xn)︸ ︷︷ ︸
n− k ages

: xi ∈ C, i 6= j =⇒ xi 6= xj , 1 ≤ k < n, 2 ≤ n ≤ 10}.

Our aim is to prove 0 ∈ S.

Suppose S does not contain {0}, then clearly since maxS ≤ 52 + 53 + · · ·+ 60− 1 = 503
and minS ≥ 1− (52 + 53 + · · ·+ 60) = −503, |S| ≤ 2× 503 = 1006 and

x1 + x2 + · · ·+ xk 6= xk+1 + xk+2 + · · ·+ xn, (*)

where xi’s are distinct and 1 ≤ k < n, 2 ≤ n ≤ 10.

Let x = minC, next define

Aj =
{
x1 + x2 + · · ·+ xj − x > 0 : xi ∈ C \ {x}, h 6= k =⇒ xh 6= xk

}
,

where j = 1, 2, . . . , 9, then |Aj | =
(

9

j

)
, because if there are

{ai ∈ C\{x} : i = 1, 2 . . . , j, h 6= k =⇒ ah 6= ak} and {bi ∈ C\{x} : i = 1, 2 . . . , j, h 6= k =⇒ bh 6= bk}

such that

a1 + · · ·+ aj − x = b1 + · · ·+ bj − x =⇒ a1 + · · ·+ aj = b1 + · · ·+ bj , (**)

then (*) tells us {ai : i = 1, . . . , j} = {bi : i = 1, . . . , j}. Otherwise by cancelling possibly
the same term on both sides of (**), we would get a contradiction to (*). That is to say,
one combination of j elements in C gives us a unique value.

For h 6= k, Ah ∩ Ak = ∅ due to the same reason (we don’t bother to write down the
detail that is messy). We also see that Aj ⊆ S, so the number of “positive” difference is

9∑
k=1

|Ak| =
(

9

1

)
+

(
9

2

)
+ · · ·+

(
9

9

)
=

9∑
k=0

(
9

k

)
− 1 = 29 − 1 = 511.

Likewise, we have negative difference −Aj , {−a : a ∈ Aj} ⊆ S, so S ⊇
9⊔
k=1

(
(−Ak) t Ak

)
,

i.e.

1022 = 2× 511 =

9∑
k=1

(| − Ak|+ |Ak|) ≤ |S| ≤ 1006,

a contradiction.

154. The total possible outcome is

(
6n−1

2

)
− 3
(
(3n− 1)− 1

)
− 1

3!
(

6n
3

) =
3n2 − 3n+ 1

2n (3n− 1) (6n− 1)
.
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2.7 Function and Differentiation

155. Assume there is continuous γ : [0, 1] → M with γ(0) = (0, 0) and γ(1) = (1, sin 1). Let
γ(t) = (x(t), y(t)), then continuity of γ implies both x and y are continuous on [0, 1].
Consider the closed set x−1(0) := {t ∈ [0, 1] : x(t) = 0}, then t0 := supx−1(0) < 1 (since
t0 ∈ x−1(0)).

Now x(t0) = 0 and x(1) = 1, and since t0 is the only point inside [t0, 1] such that
x(t0) = 0, one has by intermediate value theorem,

x(t0, 1] = (0, 1]. (2.4)

For each α ∈ [0, 1], there is a sequence tn > 0 such that tn → 0 and sin 1
tn
→ α. By (2.4)

for each n there is sn > t0, so that x(sn) = tn, and hence

γ(sn) =

(
x(sn), sin

1

x(sn)

)
=

(
tn, sin

1

tn

)
.

Now limn→∞ x(sn) = 0, but {sn} has a convergent subsequence {snk}, lim snk = s for some
s ≥ t0. Hence 0 = limn→∞ x(sn) = limx(snk) = x(s). Since s ∈ x−1(0), s ≤ t0, we conclude
s = t0, and y(t0) = y(s) = limk y(snk) = limn→∞ y(sn) = limn→∞ sin 1

tn
= α. But α is

arbitrary, a contradiction.

156. Since [0, 1] × [0, 1] is compact, f is uniformly continuous on it. Hence for any fixed ε > 0
there is δ such that |x− x′|, |y − y′| < δ =⇒ |f(x, y)− f(x′, y′)| < ε.

For any x, y, x′, y′,
f(x, y)− g(x′) ≤ f(x, y)− f(x′, y′).

Hence if we pick y = yx s.t. f(x, yx) = g(x), then for all x, x′, y′,

g(x)− g(x′) ≤ f(x, yx)− f(x′, y′).

So we can now choose y′ = yx,

g(x)− g(x′) ≤ f(x, yx)− f(x′, yx).

Similarly, from f(x′, y′)−g(x) ≤ f(x′, y′)−f(x, y) for all x, y, x′, y′, one can choose y′ = yx′

(as defined above) and y = yx′ so that

g(x′)− g(x) ≤ f(x′, yx′)− f(x, yx′).

These two inequalities say that when |x− x′| < δ, |g(x)− g(x′)| < ε.

157. (a) To be added

(b) To be added

158. Let K be a compact set such that f |R\K ≡ 0, then the inequality is trivial on R \ K and
thus it suffices to show it for x ∈ K. Since we have finitely many such ai’s and si’s, we then
invoke the property of compact set that any open cover has finite subcover.

Fix an x ∈ K, there must be a s ∈ R such that g(x− s) 6= 0, and hence there is a a > 0
so that f(x) < ag(x− s), which means that

x ∈ {x ∈ R : f(x) < ag(x− s),∃a > 0,∃s ∈ R}

=
⋃
a>0

⋃
s∈R
{x ∈ R : f(x) < ag(x− s)}

=
⋃

(a,s)∈(0,∞)×R

{x ∈ R : 0 < ag(x− s)− f(x)︸ ︷︷ ︸
:=Fa,s(x)

}

=
⋃

(a,s)∈(0,∞)×R

F−1
a,s (0,∞).



2.7. FUNCTION AND DIFFERENTIATION 89

It is clear that for each a, s, Fa,s is continuous and hence F−1
a,s (0,∞) is open. The above

inclusion is true for all x ∈ K, we conclude

K ⊆
⋃

(a,s)∈(0,∞)×R

{x ∈ R : f(x) < ag(x− s)},

but RHS is an open cover, it can be thinned into a finite subcover, which implies there are
(ai, si) ∈ (0,∞)× R, i = 1, 2, . . . , n such that

K ⊆
n⋃
i=1

{x ∈ R : f(x) < aig(x− si)}.

Finally for each y ∈ K, y ∈ {x ∈ R : f(x) < ajg(x − sj)}, for some j = 1, 2, . . . , n, and
hence

f(y) < ajg(y − sj) =⇒ f(y) ≤
n∑
j=1

ajg(y − sj),

and the last inequality is true for all y ∈ K, and we are done.

159. To be added.

160. (a) Direct consequence of mean-value theorem.

(b) Let x1, x2 be two consecutive roots of g, the cases x1 < x2 ≤ 0 and 0 ≤ x1 < x2 can
be solved by observing that x1g(x1) = x2g(x2) = 0 (in that cases there is c 6= 0 such
that cf(c) = 0).

The story is similar in the case x1 < 0 < x2, there is still c ∈ (x1, x2) such that
cf(c) = 0. Recall that xf(x) = d

dx (xg(x)) = xg′(x) + g(x) =⇒ 0 = cg′(c) + g(c), if
c = 0, then g(c) = 0, contradicting that x1, x2 are already a pair of consecutive roots.
Hence c 6= 0 and hence f(c) = 0, as desired.

161. Consider the Taylor expansion of f at a,

f(x) = f(a) + f ′(a)(x− a) +
f ′′
(
θ(x, a)

)
2!

(x− a)2 (♥)

where θ(x, a) is a point lying between x and a. We mainly focus on x ∈ [0, 1] and a ∈ (0, 1).

Taking x = 0 and x = 1 in (♥), we get

0 = f(a) + f ′(a)(−a) +
f ′′
(
θ(0, a)

)
2!

(a)2, (1)

0 = f(a) + f ′(a)(1− a) +
f ′′
(
θ(1, a)

)
2!

(1− a)2, (2)

next we do the operation (1)× (1− a) + (2)× (a),

−f(a) =
a(1− a)

2

(
f ′′
(
θ(0, a)

)
a+ f ′′

(
θ(1, a)

)
(1− a)

)
. (**)

Now we are almost done, take a ∈ [0, 1] such that f(a) = sup f([0, 1]) = 2, clearly a 6= 0, 1
(i.e. a ∈ (0, 1)), so dividing a(1− a) on both sides of (**), we see that

−4

a(1− a)
= f ′′

(
θ(0, a)

)
a+ f ′′

(
θ(1, a)

)
(1− a),

let c = min{f ′′
(
θ(0, a)

)
, f ′′
(
θ(1, a)

)
} and observe a simple fact that a(1− a) ≤ 1

4 ,

−16 =
−4
1
4

≥ −4

a(1− a)
= f ′′

(
θ(0, a)

)
a+ f ′′

(
θ(1, a)

)
(1− a) ≥ c.
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162. We observe something simple first. There must be a fixed point of f on R (we will prove
later). That is, there is x0 ∈ R such that f(x0) = x0, after that taking x0 = b = c, we see
that (x0, x0, x0) ∈ R3 is indeed a solution.

The solution for such kind of requirement must be unique. If there are two solutions
(a1, b1, c1) and (a2, b2, c2), then a1 = f ◦ f ◦ f(a1) and a2 = f ◦ f ◦ f(a2), however, x− f ◦
f ◦ f(x) is a strictly increasing function (since the monotonicity of x is strict), so the root
of x− f ◦ f ◦ f(x) must be unique, therefore, a1 = a2. Similarly, b1 = b2, c1 = c2, as was to
be shown.

So we see the key point of this problem is to show existence of fixed point.

Method 1. Since x − f(x) is strictly increasing with limx→±∞(x − f(x)) = ±∞, so
there is x0 ∈ R such that x0 − f(x0) = 0.

Method 2. Let’s suppose there were no such kind of number. Then either f(x) > x or
f(x) < x for all x ∈ R. Let’s assume the former case, then f(x) < x, taking f ◦ f on both
sides,

f ◦ f ◦ f(x) ≤ f ◦ f(x),

however, f(x) < x =⇒ f ◦ f(x) ≥ f(x)
x→f(x)

=⇒ f ◦ f ◦ f(x) ≥ f ◦ f(x), a contradiction.

The case that f(x) > x for all x ∈ R is essentially the same.

163. Let’s for the sake of contradiction assume there are just finitely many discontinuous points.
It can be seen that discontinuity must occur at the zero of f(x) (otherwise it is not injective),
let’s call this x0 (i.e. f(x0) = 0).

There can’t be only 1 discontinuous point otherwise f
(
(−∞, x0) ∪ (x0,+∞) ∪ {x0}

)
=

[−0,∞) =⇒ f
(
(−∞, x0) ∪ (x0,+∞)

)
= (0,∞), impossible (as left hand side is discon-

nected). So there have to be at least 2 discontinuous points.

Let D = {x1, x2, . . . , xn} with x1 < x2 < · · · < xn be the collection of all discontinuous
points (n ≥ 2), then f is unbounded either on the left of x1 or the right of xn (this is
due to piecewise continuity of f on [x1, xn]), let’s WLOG assume it is unbounded on the
right. Then since f is increasing and continuous on (xn,+∞), letting y = limx→x+

n
f(x),

f |(−∞,xn] : (−∞, xn]→ [0, y] is bijective.

By “surjective” we mean

f
(
(−∞, x1) ∪ (x1, x2) ∪ · · · ∪ (xn−1, xn) ∪ {x1, x2, . . . , xn}

)
= [0, y]

=⇒ f
(
(−∞, x1) ∪ (x1, x2) ∪ · · · ∪ (xn−1, xn)

)
= [0, y] \ {f(x1), . . . , f(xn)}

Here f(xi) = 0 and f(xj) = y, for some distinct xi, xj ∈ D (if one of equalities is false, then
from the last set equality left hand side is an open set in R (with the usual topology) while
right hand side is not). This implies

f
(
(−∞, x1)

)
∪ f
(
(x1, x2)

)
∪ · · · ∪ f

(
(xn−1, xn)

)
= (0, y) \ {f(xk1), . . . , f(xkn−2

)},

i.e. disjoint union of n intervals = disjoint union of n − 1 intervals, impossible. Hence a
contradiction arises.

164. Simplifying a little bit, we see that f(x) + f
(
1− 1

x

)
= 1 + x, now x→ 1− 1

x , we have

f

(
1− 1

x

)
+ f

(
− 1

x− 1

)
= 2− 1

x
,

to see what is f
(
− 1
x−1

)
, we let x→ − 1

x−1 in the original functional equation, yielding

f

(
− 1

x− 1

)
+ f(x) = 1− 1

x− 1
,
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so

1 + x− f(x) + 1− 1

x− 1
− f(x) = 2− 1

x
=⇒ f(x) =

x3 − x2 − 1

2x(x− 1)
.

165. Since X is compact, f(X) is also compact and hence if f−1 is continuous on f(X), then
f−1 must be uniformly continuous. So let’s suppose the continuity of f−1 is not uniform,
then there is ε > 0 such that for any n ∈ N, there are xn, yn satisfying ‖xn − yn‖ < 1

n and
‖f−1(xn)−f−1(yn)‖ ≥ ε. Since X is bounded and closed, there are convergent subsequences
{f−1(xnk)}, {f−1(ynk)} with respectively the limits x and y. Closedness of X implies
x, y,∈ X and from the assumption, ‖x− y‖ ≥ ε. So

x = lim
k→∞

f−1(xnk) =⇒ f(x) = f

(
lim
k→∞

f−1(xnk)

)
= lim
k→∞

f
(
f−1(xnk)

)
= lim
k→∞

xnk .

Similarly, f(y) = limk→∞ ynk , since ‖xnk − ynk‖ < 1
nk

, f(y) = f(x), hence x = y, a
contradiction.

166. (a) The uniform continuity implies that limx→0+ f(x) exists, define the function

g(x) =

{
f(x) x > 0

lim
x→0+

f(x) x = 0
,

we see that g is a uniformly continuous surjective map on [0,∞).

Suppose that there is a a such that there are only finitely many b’s, f(b) = a,
then there are only finitely many b’s. g(b) = a. Call the largest one of such b’s be
b′. Then for all x > b′, g(x) 6= a, that implies either ¬: g((b,∞)) = (a,∞) or :
g((b,∞)) = (−∞, a).

Now g[0, b] is bounded and closed, g([0,∞)) = g[0, b] ∪ g((b,∞)), that implies{
g([0,∞)) = g[0, b] ∪ (a,∞) if ¬ is true, g is bounded below

g([0,∞)) = g[0, b] ∪ (−∞, a) if  is true, g is bounded above
,

both cases lead to contradiction.

(b)
√
x sin

√
x is such an example.

167. We only have 5 possible cases,

(a) 0 < a, b < 1

(b) 0 < a < 1, b = 1

(c) 0 < a < 1, b > 1

(d) a = 1, b > 1

(e) 1 < a, b

Among these cases, only the case 0 < a < 1, b > 1 is possible, other cases will lead to

contradiction. In this case, the identity given is equivalent to
1

a
−1 = 1− 1

b
⇐⇒ ab =

a+ b

2
.

We know that
a+ b

2
>
√
ab, thus

ab >
√
ab =⇒

√
ab(
√
ab− 1) > 0 =⇒ ab > 1.

168. Since that f is differentiable cannot imply the continuity of f ′. Intermediate value theorem
fails to work here. We on the contrary define a new continuous function, g(x) = f(x)− y0x.
It can be easily varified that g′(a) = f ′(a) − y0 < 0 and g′(b) = f ′(b) − y0 > 0, then the
minimum value cannot be attained at the end point, the minima must lie somewhere else in
the interval (a, b), hence there exists c ∈ (a, b) such that

g′(c) = 0 (as attained minima) =⇒ f ′(c) = y0.
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169. It is often easy to prove the converse to be impossible for this kind of problems. We on
the contrary suppose that f(x) 6= 0, ∀x ∈ [a, b], then either f(x) > 0 or f(x) < 0 for all
x ∈ [a, b].

We assume that f(x) > 0, due to continuity there exists x0 such that

(∗) : f(x) ≥ f(x0) > 0,∀x ∈ [a, b]

However, we have the following observation.

∃y1 ∈ [a, b], f(y1) ≤ 1

2
f(y0)

∃y2 ∈ [a, b], f(y2) ≤ 1

2
f(y1)

...

∃yn ∈ [a, b], f(yn) ≤ 1

2
f(yn−1).

thus f(yn) ≤ 1

2
f(yn−1) ≤

(
1

2

)2

f(yn−2) ≤ · · · ≤
(

1

2

)n
f(y0). Since right hand side tends

to 0 as n→∞, there exists an N such that n > N =⇒ f(yn) < ε < f(x0), a contradiction
with (*). The case that f(x) < 0 is essentially the same, hence there exists c ∈ [a, b] such
that f(c) = 0.

Alternatively, if we know that any bounded sequence have a convergent subsequence,
then this problem can be solved in a much neater way. As above we show that

|f(yn)| ≤ 1

2
|f(yn−1)| ≤

(
1

2

)2

|f(yn−2)| ≤ · · · ≤
(

1

2

)n
|f(y0)|,∀n ∈ N ∪ {0},

then since there exists a convergent subsequence {ynk} with lim
k→∞

ynk = c ∈ [a, b], thus

taking limit on the proved inequality, we get

0 ≤ lim
k→∞

|f(ynk)| =
∣∣∣∣f ( lim

k→∞
ynk

)∣∣∣∣ = |f(c)| ≤ lim
k→∞

(
1

2

)nk
|f(y0)| = 0,

here we used the fact that a composite of continuous function is still continuous, we are
done.

170. Suppose on the contrary for all x ∈ (x0, x1), g(x) 6= 0.

Define
G(x) = g(x)f ′(x)− f(x)g′(x).

The map x
L7→ 1

x is differentiable, for all x 6= 0 and the composition of differentiable functions
L ◦ g(x) = 1

g(x) is differentiable, moreover, the multiplication of two differentiable functions

f(x) · 1
g(x) is also differentiable, that means the first order derivative of f(x)

g(x) exists and its

formula is given by

G(x)

g(x)2
=
g(x)f ′(x)− f(x)g′(x)

g(x)2
=

d

dx

(
f(x)

g(x)

)
.

Now since f(x)/g(x) is continuous on [x0, x1], differentiable on (x0, x1) and f(x0)/g(x0) =
f(x1)/g(x1) = 0, by Rolle’s theorem, there exists a c′ ∈ (x0, x1) such that

d

dx

(
f(x)

g(x)

)∣∣∣∣
x=c′

=
G(c′)

g(c′)2
= 0 =⇒ G(c′) = 0,

a contradiction with G(x) 6= 0 for all x ∈ (a, b). Thus the assumption is wrong and there
exists a c ∈ (x0, x1) such that g(c) = 0.
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171. Suppose f ′′(x) 6= 0 for all real x, then we have either f ′′ > 0 or f ′′ < 0 for all x.

Case that f ′′ > 0:
f ′′ > 0 =⇒ f is convex on R. Let u < x < v < w, then we have

f(x)− f(u)

x− u
<
f(v)− f(x)

v − x
⇐⇒ f(u) > f(x) +

u− x
v − x

(f(v)− f(x)) (1)

f(v)− f(x)

v − x
<
f(w)− f(v)

w − v
⇐⇒ f(w) > f(v) +

w − v
v − x

(f(v)− f(x)) . (2)

Case 1. If there exist x and v such that f(v)− f(x) < 0, then by using inequality (1), we
have as u→ −∞, f(u)→ +∞.

Case 2. If there exist x and v such that f(v)− f(x) > 0, then by using inequality (2), we
have as w → +∞, f(w)→ +∞.

Case 3. Unfortunately if f(x) = f(v), then take a suitable value v∗, u < x < v < v∗ < w,
such that f(x) 6= f(v∗), same conclusion as above.

Hence a function which is convex on the whole real line must be unbounded on R, a contra-
diction with boundedness of f .

Case that f ′′ < 0:
Let g = −f , then g is a convex function on R. We have proved that a convex function is
unbounded, hence g is unbounded, and hence f is also unbounded, again a contradiction
with boundedness of f .

172. To be added.

173. Let F (x) =
∫ x

0
f(t) dt, consider Taylor expansion about α, then

F (x) = F (α) + f(α)(x− α) +
f ′(c)

2
(x− α)2, (*)

for some c lies between x and α. Since F (0) = F (1) = 0, let x = 0 and x = 1 in (*), denoting
respectively the constant c by c0 and c1 respectively, we get

F (α) + f(α)(−α) +
f ′(c0)

2
(α)2 = 0 = F (α) + f(α)(1− α) +

f ′(c1)

2
(1− α)2

getting rid of the term f(α), we get∣∣∣∣∫ α

0

f(x) dx

∣∣∣∣ = |F (α)|(α+ (1− α)) =

∣∣∣∣f ′(c0)

2
α2(1− α) +

f ′(c1)

2
(1− α)2α

∣∣∣∣
≤ max0≤x≤1 |f ′(x)|

2
|(1− α)(α)|

≤ max0≤x≤1 |f ′(x)|
2

· |1
4
|

=
1

8
max

0≤x≤1
|f ′(x)|.

174. Just make good use of the expansion f(x+h) = f(x)+f ′(x)h+ 1
2f
′′(x)h2 + 1

3!f
′′′(x+θh)h3,

for some θ ∈ (0, 1).

175. For the first fact, we again use the taylor expansion f(x+h) = f(x)+f ′(x)h+ 1
2f
′′(x+θh)h2,

for some θ ∈ (0, 1), replace h by −h to construct another equation (remember to choose
different θ’s), subtract two equations, observe that 0 ≤ 2M0 +2M1h+M2h

2 for any h, while
discriminant ≤ 0, we are done.
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For the second fact, in exactly the same manner we conclude that Mj+1 ≤
√

2MjMj+2

for all j ≤ p− 2. Now we take product
∏n
j=m on both sides, having

√
Mn+1Mm+1 ≤ (

√
2)n−m+1

√
Mn+2Mm. (*)

Before we proceed, we first consider two cases. If Mk = 0, then the inequality we are
asked to prove obviously holds since right hand side is always non-negative. In case if
Mk > 0, then we take the product

∏k−1
m=0 on both sides of (*), it results in

Mk
n ≤

(
M0

Mk
2k(2n−k+1)/2

)
Mk
n+1.

(n is repalced by n− 1 for making the inequality seem better) We are interested in this
because it is a beautiful (in the sense of solving the problem) recurrence relation, we have a
direct consequence

Mk
n ≤

(
M0

Mk

)p−k
2
∑n+p−k−1
j=n k(2j−k+1)/2Mk

n+p−k

=

(
M0

Mk

)p−k
2k(p−k)(2n−2k+p)/2Mk

n+p−k.

Finally, we take n = k, Mp
k ≤M

p−k
0 2

k(p−k)p
2 Mk

p , done.

Remark. We have to take care that k − 1 is the value that m can take, recall that at the
beginning we introduce the product

∏n
j=m, that means m ≤ n, so k− 1 ≤ n ⇐⇒ k ≤ n+ 1,

hence the choice k = n is possible.

176. f ′(0) = m ⇐⇒ limx→0
f(x)−f(0)−mx

x = 0. We define g(x) = f(x)− f(0)−mx, then given
equality can be simplified to

lim
x→0

g(2x)− g(x)

x
= 0.

Our next target is to show limx→0 g(x)/x = 0, this is left as exercise.

177. Observe that |f − f ′| = ex
∣∣∣∣ ddx (e−xf)

∣∣∣∣, to tackle the problem, we have something to work

on the function e−xf , define g(x) = e−xf(x), then

g′(t) = e−t
(
f ′(t)− f(t)

)
≤ e−t|f ′(t)− f(t)| ≤ e−t,

it follows that ∫ x

0

g′(t) dt ≤
∫ x

0

e−t dt =⇒ f(x) ≤ −(1 + e−x)ex < −ex,

this shows that limx→∞ f(x) = −∞.

178. It is easy to prove that
f(x0) = x0,∃x0 ∈ [0, 1]. (*)

Suppose for all x ∈ [0, 1], h(x) = f(x) − g(x) 6= 0, then either 1©: h(x) > 0 or 2©:

h(x) < 0 for all x ∈ [0, 1].

For case 1©, It follows from (*) that g
(
f(x0)

)
= g(x0) = f

(
g(x0)

)
, that implies if x0 is

a solution of
f(x) = x, (**)
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then g(x0) is also a solution of f(x) = x, moreover, we assume that 1© holds, that means
x0 = f(x0) > g(x0). If x0 = 0, then 0 = x0 > g(x0), a contradiction.

Suppose now x0 > 0, again, since x1 = g(x0) is a solution, x2 = g(x1) is also a solution,
while x1 = f(x1) > g(x1) = x2, it tells us we can inductively define a sequence xn+1 = g(xn)
that satisfies

f(xn) = xn

xn > xn+1 (due to the fact that f > g)

xn > 0 (if one of them is zero, then we get 0 = xk > xk+1, impossible).

Since {xn} is decreasing and bounded below, it is convergent with limit a ∈ [0, 1). Now
there exists u ∈ [0, 1] such that h(x) ≥ h(u) > 0, by taking x = xn, we get for any ε > 0,
there exists an N ∈ N such that

n > N =⇒ 0 < h(u) ≤ h(xn) = |xn − xn+1|
≤ |xn − a|+ |xn+1 − a| < ε.

That means a fixed positive number can be arbitrarily small, a contradiction. The case 2©
also leads to a similar contradiction, we are done.

179. If f ′(0)f ′(1) ≤ 0, then from mean value theorem,

|f ′(0)|+ |f ′(1)| = |f ′(0)− f ′(1)| = |f ′′(l)||0− 1| ≤ 2010.

Suppose now f ′(0)f ′(1) > 0, say f ′(0), f ′(1) > 0, then by Taylor’s expansion with
remainder term, {

f ′(x) = f ′(0) + f ′′(c1)x . . . (1)

f ′(x) = f ′(1) + f ′′(c2)(x− 1) . . . (2)

adding (1) and (2), we have

f ′(0) + f ′(1) + f ′′(c1)x+ f ′′(c2)(x− 1) = 2f ′(x). (*)

It is given that there exists a c ∈ (0, 1) such that f(c) > f(1), it follows that f ′(L)
∃L∈(c,1)

=======
f(c)−f(1)

c−1 < 0, let x = L in (*) such that its right hand side becomes less than 0, we have

0 ≤ f ′(0) + f ′(1) ≤ −f ′′(c1)L+ f ′′(c2)(1− L) ≤ 2010(L) + 2010(1− L) = 2010.

Similarly, when both f ′(0), f ′(1) < 0, by the fact that there exists a c ∈ (0, 1) such that

f ′(K) = f(c)−f(0)
c−0 > 0, we can put x = K in (*) to make right hand side become positive,

this yields

0 < −f ′(0)−f ′(1) ≤ f ′′(c′1)K+f ′′(c′2)(K−1) ≤ |f ′′(c′1)|K+|f ′′(c′2)||K−1| ≤ 2010(K+1−K) = 2010.

180. We see that wp(w) = 1, letting g(x) = xp(x)− 1, we have g(x) = 0 for x = 1, 2, . . . , 2n. As
g(x) is a polynomial of degree n + 1 possessing 1, 2, . . . , 2n as its roots, for some non-zero
constant C, we have

g(x) = C

n∏
k=0

(x− 2k) = xp(x)− 1 ⇐⇒ p(x) =

C

n∏
k=0

(x− 2k) + 1︸ ︷︷ ︸
Call this H(x).

x
.
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Now H(0) = C
∏n
k=0(−2k) + 1 = C(−1)n+1

∏n
k=0 2k + 1 = C(−1)n+12n(n+1)/2 + 1. As

p(x) is a polynomial, its constant term must be zero, hence H(0) = 0, this implies

C(−1)n+12n(n+1)/2 + 1 = 0 ⇐⇒ C = (−1)n2−n(n+1)/2.

As p(x) is continuous everywhere, p(0) = p(limx→0 x) = limx→0 p(x), but the limit

limx→0
H(x)
x now is of 0

0 form, we apply L’hôspital’s rule once, this yields

p(0) = lim
x→0

H ′(x) = C lim
x→0

d

dx

(
n∏
k=0

(x− 2k)

)

= C

n∑
p=0

n∏
k=0
k 6=p

(−2k) = C

(
(−1)n

n∑
p=0

2
∑n
k=0 k2−p

)

=
(

(−1)n2−n(n+1)/2
)(

(−1)n2n(n+1)/2
n∑
p=0

2−p

)

=

n∑
p=0

2−p = 2− 2−n.

181. • Let y = 0, we have 0 ≤ f(0).

• While taking y = −x, we have f(0) ≤ f(x) + f(−x) =⇒ f(0) ≤ x
(
f(x)
x −

f(−x)
(−x)

)
for

all x \ {0}, so x→ 0 =⇒ f(0) ≤ 0 (for otherwise, f(0) > 0 implies 0 < f(0) ≤ 0 when
x→ 0, a contradiction).

• Altogether we get f(0) = 0, this also implies from the above inequality,

f(x) ≥ −f(−x). (*)

• Observe that f(2nx) ≤ 2nf(x), we get f(x) ≤ x

(
f( x2n )
x
2n

)
, taking n → ∞, we get

f(x) ≤ cx, for all x ∈ R \ {0}. But in addition, f(0) = 0, so for all x ∈ R,

f(x) ≤ cx. (**)

• From (*) and (**), f(x) ≥ −f(−x) ≥ cx, we have f(x) = cx.

182. • By taking everything zero, we get f ◦ f(0) = 0.

• If x = 0, then f ◦ f(y) = f(0)− y. (*)

• Let x = f(0), y = 0, then f
(
2f(0)

)
= f(0), by using the identity just above,

f(0)− 2f(0) = f
(
f
(
2f(0)

))
= f

(
f(0)

)
=⇒ −f(0) = f(0) =⇒ f(0) = 0.

Now (*) becomes f ◦ f(y) = −y. (**)
Taking f on (**) once, we see that −y = f(−y), i.e. f is odd.

• Replacing y by −f(y),
f(x+ y) = f(x) + f(y),

so f satisfies Cauchy functional equation, in particular,

f(x) = f(1)x, ∀x ∈ Z.

Finally, by taking x = f(1), we get from (**) that f(1)2 = −1, a contradiction.
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183. What we are asked to prove is the same as proving there is a a interval (−δ′, δ′) such that
f(x) ≥ f(0) = 0.

Case 1. Suppose that x ≥ 0, then consider Taylor’s expansion about 0,

g(x) = g′(0)x+ g′′(hx)
x2

2
, for some hx lies between 0 and x. (*)

Now there is M such that |g′′| ≤M for all x ∈ J , so (*) tells us

g(x) ≥ g′(0)x−Mx2

2
.

Now choose x > 0 such that g′(0)x −M x2

2 ≥ 0 ⇐⇒ δ = 2g′(0)
M ≥ x. While since clearly

when x = 0 the inequality still holds, altogether

g(x) ≥ 0,∀x ∈ [0, δ).

Let’s replaced x by x2t, but we still need x2t < δ. Since t ≤ x in the integration domain, if
we choose x < δ1/3, then x2t ≤ x3 < δ, so when x ∈ [0, δ1/3),

g(x2t) ≥ 0 =⇒ f(x) =

∫ x

0

g(x2t) dt ≥ 0 = f(0).

Case 2. Suppose now x < 0, let u > 0 and let’s replace x by −u, then we need to show

f(−u) =

∫ −u
0

g(u2t) dt ≥ 0.

This is quite clear since f(−u) = −
∫ 0

−u g(u2t) dt, but g(u2t) ≤ 0 for sufficiently small u > 0.

It remains to find such u (easy from (*) again). And this is true when u ∈ (0, δ1/3), i.e.
x ∈ (−δ1/3, 0), so f(x) ≥ 0 when x ∈ (−δ1/3, δ1/3).

184. Since f(r + 1/n) = f(r) and f(r − 1/n) = f(r), for all r ∈ Q and n ∈ N, so

f
(
r +

m

n

)
= f

(
r +

m− 1

n

)
= · · · = f(r)

and

f
(
r − m

n

)
= f

(
r − m− 1

n

)
= · · · = f(r),

for all r ∈ Q and m,n ∈ N, so f(y + x) = f(y), for all x, y ∈ Q. As a result, f(x) = f(0),
for all x ∈ Q. As f is continuous, f(x) = f(0), for all x ∈ R.

185. Method 1. Observe that

|f(x)| ≤
∫ x

0

f(x1) dx1 ≤
∫ x

0

|f(x1)| dx1 ≤
∫ x

0

∫ x1

0

f(x2) dx2dx1

≤ · · · ≤
∫ x

0

∫ x1

0

· · ·
∫ xn−1

0

|f(xn)| dxndxn−1 · · · dx1. (*)

Since |f(x)| is continuous whose domain [0, 1] is compact (closed and bounded on R), so
supx∈[0,1] |f(x)| < +∞, hence from (*),

|f(x)| ≤ xn sup
x∈[0,1]

|f(x)|,
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so for each x ∈ [0, 1), f is forced to be zero by letting n→∞. Due to continuity, f(1) = 0
since

f(1) = f

(
lim
n→∞

(
1− 1

n

))
= lim
n→∞

f

(
1− 1

n

)
= 0.

Method 2. Suppose f(a) 6= 0, for some a ∈ (0, 1], we choose x0 ∈ [0, a] such that
|f(x0)| = supx∈[0,a] |f(x)|. For x ∈ [0, a],

|f(x)| ≤
∫ x

0

|f(t)| dt ≤ |f(x0)|x ≤ |f(x0)|a,

putting x = x0 in above inequality, we deduce that a ≥ 1, but a ≤ 1, so a = 1.

Hence by contrapositive, if x 6= 1, f(x) = 0, once again due to continuity f(1) = 0, a
contradiction.

186. WLOG we assume the leading coefficient of P is positive.

When r = 0, we are done. Suppose r 6= 0, we write

Qr(x) = −rex/r(P (x)e−x/r)′. (*)

The proof constitutes 3 claims.

• We always get a biggest root of Qr(x) that is larger than biggest root of P (x).

• Between two nearest distinct roots h, k (h < k), there is c ∈ (h, k) so that (P (x)e−x/r)′|x=c =
0.

• Root with multiplicity e of P will give root with multiplicity at least e− 1 of Qr.

The 3rd claim is easy, 2nd claim is direct consequence of mean value theorem.

Proof of 1st claim. From the graph it is intuitive that after the line (x, P (x)e−x/r) passes
through the biggest root, we always get a point such that (P (x)e−x/r)′ vanishes.

Let’s make it precise. Let α be the biggest root of P (x). If (P (x)e−x/r)′ 6= 0, for all
x > α, then due to continuity (P (x)e−x/r)′ > 0 or (P (x)e−x/r)′ < 0, for all x > α. The
former case implies limx→+∞ P (x)e−x/r 6= 0, the latter case implies P (x)e−x/r < 0 for all
x > α, both are contradictions. So there is α′ > α such that (P (x)e−x/r)′|x=α′ = 0, i.e.
Qr(α

′) = 0.

We can now solve the problem. Let P = A(x − α1)e1(x − α2)e2 · · · (x − αr)er , αi’s are
distinct,

∑r
i=1 ei = n and ei ≥ 1. WLOG, suppose that e1, . . . , ek ≥ 2 and ek+1, · · · , er = 1,

then Qr can be factorized into a product of linear factors with degree at least

k∑
i=1

(ei − 1)︸ ︷︷ ︸
due to multiplicity

+ r − 1︸ ︷︷ ︸
r distinct roots

+ 1︸︷︷︸
largest root

=

k∑
i=1

ei + (r − k) = n.

So we get all the roots we need, they are indeed real.
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187. Method 1. We show by sequential continuity theorem. Suppose there is xn → a, due to
differentiability, for any ε > 0, there is always a yn ∈

(
(xn − 1

n , xn + 1
n ) \ {xn}

)
∩ I, such

that ∣∣∣∣f ′(xn)− f(yn)− f(xn)

yn − xn

∣∣∣∣ < ε

2
,

now the following estimate will do

|f ′(xn)− f ′(a)| ≤
∣∣∣∣f ′(xn)− f(yn)− f(xn)

yn − xn

∣∣∣∣+

∣∣∣∣f(yn)− f(xn)

yn − xn
− f ′(a)

∣∣∣∣
since with the chosen ε above, we can find an N such that when n > N , |f ′(xn)−f ′(a)| < ε.

Method 2. We imitate the proof of sequential continuity theorem! Suppose f ′ is not
continuous at a, then there is ε > 0 such that for each n ∈ N, there is xn ∈

(
a− 1

n , a+ 1
n

)
∩I,

|f ′(xn)− f ′(a)| ≥ ε. Define

g(x) =


∣∣∣∣f(xn)− f(x)

xn − x
− f ′(a)

∣∣∣∣ , x 6= xn,

|f ′(xn)− f ′(a)|, x = xn,

it is obviously continuous when x 6= xn, and it is also continuous when x = xn due to
differentiability at this point. Since g(xn) ≥ ε > ε/2, so there is δn > 0 such that when
y ∈ (xn − δn, xn + δn) ∩ I, we still have g(y) > ε/2.

Let {Kn ∈ N} be strictly increasing such that 1
Kn

< δn, then if we take y = yn ∈

(xn − 1
Kn
, xn + 1

Kn
)∩ I \ {xn}, we also have g(yn) > ε/2, or

∣∣∣∣f(xn)− f(yn)

xn − yn
− f ′(a)

∣∣∣∣ > ε/2,

for all n ≥ 1, this is a contradiction as both xn, yn → a, xn 6= yn.

188. (a) Let’s assume on the contrary there is x ∈ (a, b) such that f(x) > f(b). Let x0 ∈ [x, b]
such that f(x0) = max f([x, b]). Then for sure

f(x0) ≥ f(x) > f(b),

but that means x0 6= b, hence x0 ∈ [x, b). But then since x0 is a shadow point, there
is x′ > x0 so that f(x′) > f(x0). If x′ > b then b becomes a shadow point, that is
impossible. So we know that x′ ∈ (x0, b] ⊆ (x, b]. But we have f(x0) ≥ f(x′) > f(x0),
a contradiction.

(b) If f(a) < f(b), then a is a shadow point, not allowed, so f(a) ≥ f(b). Now for
each x ∈ (a, b), f(x) ≤ f(b) ≤ f(a), so f(a) = limx→a+ f(x) ≤ f(b) ≤ f(a) implies
f(a) = f(b).

189. Let ak =
√

2kπ, bk =
√

2kπ + π
4 , then we repeatedly use mean value theorem on the interval

[ak, bk] to get
f(bk)− sin b2k − (f(ak)− sin a2

k) = f ′(ck)− 2ck cos c2k,

where ck ∈ (ak, bk). We rearrange the terms to get f ′(ck) = f(bk)− f(ak)− sin b2k + sin a2
k +

2ck cos c2k. Since ck ∈ (ak, bk), hence c2k ∈ (2kπ, 2kπ + π
4 ) and cos c2k ≥ 1√

2
. Moreover,

|f(bk)| ≤ 1
4 + | sinx2| ≤ 5

4 , we get

f ′(ck) ≥ 2ck ·
1√
2
− 5

4
× 2− 1× 2 = ck

√
2− 9

2
,

hence limk→∞ f ′(ck) = +∞.

190. To be added.

191. To be added.
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192. Let Z(f) = f−1(0), we will prove that f is holomorphic on C \ Z(f) and Z(f) respectively,
let z0 6∈ Z(f), then there is δ > 0 such that f(z) 6= 0 on B(z0, δ), since B(z0, δ) is simply
connected and doesn’t contain zero of f , we can define a holomorphic branch of log f2 on
B(z0, δ) by

log f2(z) =

∫ z

z0

(f2)′

f2
dz + log f2(z0)

with fixing a choice of log f2(z0). Now g = 1
2 log f2 is also holomorphic, so is h = eg. We

notice that h is a holomorphic square root of f2, that is, h2 = f2 =⇒ h(z0) = ±f(z0).

If h(z0) = f(z0), we hope that in a neighborhood of z0, h(z) = f(z), this is indeed true
since

0 = f2 − h2 = (f + h)(f − h),

as h(z0) + f(z0) 6= 0 (we assumed z0 6∈ Z(f) at the beginning), so near z0, h(z) + f(z) 6= 0
=⇒ near z0, f(z)− h(z) = 0 =⇒ f is holomorphic near z0.

The case that h(z0) = −f(z0) is essentially the same.

As z0 is arbitrary in G \ Z(f), we conclude that f is holomorphic away from its root.

By considering the restriction of f to G \ Z(f), then f |G\Z(f) is a holomorphic function
with singularity on Z(f), since f is continuous, for each z1 ∈ Z(f), limz→z1 f(z) ∈ C, hence
z1 is a removable singularity, and hence f is holomorphic on Z(f), we are done.

Remark. We can also argue f = h near z0 by seeing that

for any neighborhood of z0, there is z in that neighborhood such that h(z) 6= f(z),

is wrong.

193. Method 1. We claim that f (n)(x) ∈ R for any x ∈ R. Let x ∈ R. We first prove that

f ′(x) is real, this is because f ′(x) = limR3h→0
f(x+h)−f(x)

h ∈ R. Suppose f (n−1)(x) is real

for every x ∈ R, then f (n)(x) = limR3h→0
f(n−1)(x+h)−f(n−1)(x)

h ∈ R due to the same reason,
so we have proved our claim. In particular,

f (2n)(0) ∈ R,∀n ∈ N. (*)

Let g(z) = f(z) + f(−z), then since f is entire, the power series representation f(z) =∑∞
n=0

f(n)(0)
n! zn holds for all z ∈ C. So g(z) =

∑∞
n=0

2f(2n)(0)
(2n)! z2n. Let y ∈ R, consider z = iy,

from (*),

iR 3 f(iy) + f(i(−y)) = g(iy) =

∞∑
n=0

2f (2n)(0)

(2n)!
(−1)ny2n ∈ R,

this can only happen when g(iy) = 0. Replace y by 1
n with large enough n ∈ N, then

g(i 1
n ) = 0 and 1

n → 0, so g(z) = 0 for all z.

Method 2. Alternatively, since an entire function which takes real value on the real
axis must satisfy f(z) = f(z) by Schwarz reflection principle, so by taking z = i 1

n , n ∈ N,
we are done.

194. To be added.

195. Since f(z)eiα+g(z)eiβ as a function in z is holomorphic on B(0, 1) (in particular, continuous
on the boundary), for any fixed α, β, there is wα,β ∈ ∂B(0, 1) such that

|f(z)eiα + g(z)eiβ | ≤ |f(wα,β)eiα + g(wα,β)eiβ | ≤ |f(wα,β)|+ |g(wα,β)|
≤ sup
w∈∂B(0,1)

(|f |+ |g|)(w),
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for all z ∈ B(0, 1). By the compactness of ∂B(0, 1), supw∈∂B(0,1)(|f |+|g|)(w) = (|f |+|g|)(z0)

for some z0 ∈ ∂B(0, 1), so the last inequality implies for all z ∈ B(0, 1),

|f(z)eiα + g(z)eiβ | ≤ (|f |+ |g|)(z0).

However, for each z ∈ B(0, 1), there is αz, βz such that f(z)eiαz = |f(z)| and g(z)eiβz =
|g(z)|, so the last inequality implies for all z ∈ B(0, 1),

|f(z)|+ |g(z)| ≤ (|f |+ |g|)(z0),

and the upper bound is attained when z = z0.

196. Let H = {z : Re z > 0}, the right half space. Then we can define a conformal map
T : B(0, 1) → H by T (z) = 1−z

1+z . Then g , T−1 ◦ f ◦ T : B(0, 1) → B(0, 1) satisfies

g(0) = T−1
(
f(T (0))

)
= T−1(f(1)) = T−1(1) = 0 and holomorphic on B(0, 1). By Schwarz’s

lemma, one has |g(z)| ≤ |z|. By putting z = − 1
3 ,∣∣∣∣1− f(2)

1 + f(2)

∣∣∣∣ =
∣∣T−1

(
f(2)

)∣∣ =

∣∣∣∣g(−1

3

)∣∣∣∣ ≤ 1

3
.

197. If f ≡ 0, then clearly fg is holomorphic. If f 6≡ 0, then there is z0 ∈ U such that f(z0) 6= 0,
continuity of |f | implies there is δ > 0 such that f(z) 6= 0, for all z ∈ B = B(z0, δ) ⊂ U , so

|g|2 = gg = (fg)g
f is also holomorphic on B. However, the only real-valued holomorhpism is

constant function. So |g|2 is constant. But |g| is continuous, |g| must be constant, so from
Cauchy-Riemann equation, g is constant on B. In other words, the following equation holds

g

(
z0 +

1

n

)
= const.,∀n ≥

[
1

δ

]
+ 1,

but 1
n → 0, so g ≡ const. on U .

198. To be added.

199. To be added.

200. If f is constant function, let f ≡ a, then a = 0 or a = 1.

Suppose now f is nonconstant, then f(0) = 0 or f(0) = 1. Since f(z) = 2f(2z)
1+f(2z) , taking

z = 1
4 ,

1
8 , . . . , we can guess f

(
1

2n

)
= 2n

2n+1 = 1
1+ 1

2n
, this can proved by induction. Since

1
2n → 0 and both f and 1

1+z are holomorphic on B(0, 1), f(z) = 1
1+z on B(0, 1).

To sum up, f(z) = 1
1+z is the only solution.

201. Let’s write z in the problem by z′. Define T = z+w
1+wz , S = z+z′

1+z′z
, then g = S−1 ◦ f ◦ T :

B(0, 1) → B(0, 1) is holomorphic with g(0) = S−1 ◦ f ◦ T (0) = S−1 ◦ f(w) = S−1(z′) = 0.
So by Schwarz lemma, |g′(0)| ≤ 1 =⇒ |(S−1)′(z′)f ′(w)T ′(0)| ≤ 1. Since

S−1(z) =
z − z′

1− zz′
,

T ′(z) =
1 + wz − (z + w)w

(1 + wz)2
,

=⇒

(S−1)′(z′) =
1

1− |z′|2
,

T ′(0) = 1− |w|2.

Plugging in all results, we have |f ′(w)| ≤ 1− |z′|2

1− |w|2
.

202. To be added.



102 CHAPTER 2. SOLUTIONS

203. On the contrary let’s suppose there is z0 ∈ U such that |f(z0)| > M .

Let {δn} be a increasing sequence defined by δn = (1 − 1
n )d(z0, ∂U), n ≥ 2. Define

Cn = ∂B(z0, δn) and let zn ∈ Cn satisfies f(zn) = max
z∈B(z0,δn)

|f(z)|, then {|f(zn)|} is

strictly increasing, hence |f(zn)| > |f(z0)|, for all n ≥ 2, so lim
n→∞

|f(zn)| ≥ |f(z0)| > M , a

contradiction.

Remark. We extract from the second paragraph a fact that if there is z0 in a domain U
such that |f(z0)| > M , then there is a sequence {zn ∈ U} converging to ∂U such that
lim
n→∞

|f(zn)| > M with the same construction as above.

204. With the experience of problem 202 and the result in problem 203, this can be easily

done. Consider g(z) , f(z)

/
n∏
k=1

z − zk
1− zkz

, then g is continuous on B(0, 1). Since f is

holomorphic at zi, so there are small enough δi’s such that on Bi = B(zi, δi) ⊂ B(0, 1),

f |Bi =
∑∞
n=0

f(n)(zi)
n! (z − zi)n and Bi ∩ Bj = ∅ when i 6= j. It is clear that on each Bi,

f |Bi
(z−zi)ki

is holomorphic, where ki is the multiplicity of the root zi, so g is holomophic on

both B(0, 1)− ∪iBi and ∪iBi, hence g is holomorphic on B(0, 1).

Now since |f | < 1 and lim|z|→1

∏n
k=1 |

z−zk
1−zkz | = 1n = 1, so for any {zn} which converges

to a point in the boundary of B(0, 1),

lim
n→∞

|g(zn)| ≤ 1

1
= 1,

and hence |g| ≤ 1.

Remark. We extract from the first paragraph a useful fact, let U be a domain and ai ∈ U ,
i = 1, 2, . . . , n. If f is continuous on U , holomorphic on U−∪ni=1{ai}, then f is holomorphic
on U .

205. Let z0 ∈ C, then f (n)(z0) = 0, for some n ≥ 0, hence z0 ∈ ∪n≥0Z(f (n)). In other words,
∪n≥0Z(f (n)) = C, but C is complete, it is of second category, hence there is n ≥ 0 s.t.

(Z(f (n)))◦ = (Z(f (n)))◦ 6= ∅, but then f (n) ≡ 0, the result follows.

206. The only if (⇒) direction is clear. For the if direction, since f can only have countably many
zeros in D, let Z(f) = {z1, z2, . . . } be the collection of its roots with order 2ki repsectively.
Then g = f∏

i=1(z−zi)2ki
will be nonvanishing holomorphic function on D. As each root zi is

isolated, any zi can be seen as a removable singularity of g|D\Z(f) and hence g is holomorphic
on each of the zero of f .

Claim. Any nonvanishing holomorphic function h on a simply connected domain D has a
holomorphic sqaure root on D.

Proof. This is a simple observation that if f is nonvanishing on D, take z0 ∈ D, then the
function h defined by

h(z) =

∫ z

z0

f ′(w)

f(w)
dw + log f(z0)

is a holomorphic branch of log f by fixing a value of log f(z0). Now F = e
1
2h is holomorphic

and clearly F 2 = f(z), hence F is desired square root.

Finally by the last claim we see g = f∏
i=1(z−zi)2ki

= G2 for some holomorphic function

G on D, so f =
(
G
∏
i=1(z − zi)ki

)2
.
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Remark. The claim above can be modified to be “Any nonvanishing holomorphic function h
on D has a holomorphic n-th root on D”.

207. (a) Consider g = 1 +
∑∞
n=2 nanz

n, let z ∈ B(0, 1), then since |nanzn| ≤ n|an|, by the

Weierstrass M-test
∑N
n=1 nanz

n converges uniformly on B(0, 1), and hence we can do
termwise integration to get f(z) =

∫ z
0
g(t) dt. Which implies for each z ∈ B(0, 1),

we have power series representation (with radius of convergence at least 1), so it is
differentiable everywhere in D.

(b) Let z0 ∈ D, then for each r ∈ (|z0|, 1), on |z| = r,

|f(z)− f(z0)− (z − z0)| =

∣∣∣∣∣∣
∑
n≥2

an(zn − zn0 )

∣∣∣∣∣∣ ≤ |z − z0|
∑
n≥2

n|an|rn < |z − z0|,

so f(z)− f(z0) and z − z0 share the same number of root, which is 1.

208. |
∑n
i=1 εizi|2 ≤ |

∑n
i=1 εiwi|2 implies∑

i,j εiεjzizj ≤
∑
i,j εiεjwiwj

��
���:

A∑n
i=1 |zi|2 +

∑
i<j εiεj(zizj + zizj) ≤���

���:
B∑n

i=1 |wi|2 +
∑
i<j εiεj(wiwj + wiwj)

A+
∑n−1
i=1 εi

��
���

���
��:Ai(εi+1,...,εn)∑n

j=i+1 εj2 Re(zizj) ≤ B +
∑n−1
i=1 εi

���
���

���
�:Bi(εi+1,...,εn)∑n

j=i+1 εj2 Re(wiwj)

A+
∑n−1
i=1 εiAi ≤ B +

∑n−1
i=1 εiBi.

It is explicit that Ai and Bi are independent of ε1, . . . , εi. Now if we take (ε1, ε2, . . . , εn) =
(1, ε2, . . . , εn) and (ε1, ε2, . . . , εn) = (−1, ε2, . . . , εn), then one has respectively

A+A1(ε2, . . . , εn) +

n−1∑
i=2

εiAi ≤ B +B1(ε2, . . . , εn) +

n−1∑
i=2

εiBi,

A−A1(ε2, . . . , εn) +

n−1∑
i=2

εiAi ≤ B −B1(ε2, . . . , εn) +

n−1∑
i=2

εiBi,

they add up to A+
∑n−1
i=2 εiAi ≤ B +

∑n−1
i=2 εiBi. Now all Ai and Bi are independent of ε2,

we repeat the process to get A+
∑n−1
i=3 εiAi ≤ B +

∑n−1
i=3 εiBi. We finally arrive to A ≤ B,

as desired.

209. Let K ⊆ B(0, 1) be compact. Let r = sup{|z| : z ∈ B(0, 1)}, by compactness of K,
r = |z0|, for some z0 ∈ K. Define C = ∂B(0, 1+r

2 ), then C is also compact. Moreover,
d := inf{|c− k| : c ∈ C, k ∈ K} = |c− k| > 0, for some c ∈ C, k ∈ K. So for each z ∈ K,

|f ′m(z)− f ′n(z)| = 1

2π

∣∣∣∣∫
C

fm(w)− fn(w)

(w − z)2
dw

∣∣∣∣
≤ 1

2π

∫
C

|fm(w)− fn(w)|
|w − z|2

|dw|

≤ 1

2π
·

supw∈C |fm(w)− fn(w)|
d2

· 2π · 1 + r

2

<
supw∈C |fm(w)− fn(w)|

d2
.

Since {fn} converges uniformly on every compact subset of B(0, 1) (in particular, C), so
{f ′n} converges uniformly on K (recall that {fn} converges uniformly on X iff it is uniformly
Cauchy on X).
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2.8 Real Analysis

210. Observe that both g(x) = m∗(E∩[−x, 0]) and f(x) = m∗(E∩[0, x]) are continuous functions
for x ≥ 0. Let’s check it for f , let x ≥ y, then

f(x) = m∗(E ∩ ([0, y]∪ [y, x])) ≤ m∗(E ∩ [0, y]) +m∗(E ∩ [y, x]) =⇒ f(x)− f(y) ≤ |x− y|.

And the checking of g being continuous is the same.

Finally since one of I = E∩[0,+∞) and J = E∩(−∞, 0] must be positive, let’s say I > 0,
then by continuity for any c ∈ [0,m∗(E)), there is a ∈ [0,+∞) such that f(a) = c <∞.

211. Let In = [n ε2 , (n+ 1) ε2 ), then E ∩ In’s are disjoint, the convergence of
∑∞
n=1m(E ∩ In) and∑∞

n=1m(E ∩ I−n) imply we can take N1, N2 such that

m (E ∩ ∪n≥N2+1I−n) ,m (E ∩ ∪n≥N1+1In) < ε,

and since each m(A ∩ In) ≤ ε
2 < ε, the decomposition

E ∩ ∪n≥N2+1I−n, E ∩ I−N2
, E ∩ I−N2+1, . . . , E ∩ IN1

, E ∩ ∪n≥N1+1In

will do.

212. Assume E is measurable, there there is an open set O and a closed set F such that F ⊆ E ⊆
O and m∗(O\E),m∗(E\F ) < ε

2 , then since (O\E)∪(E\F ) = (O∪E)∩(O\F )∩(E∩F )c ⊇
O ∩ (O \ F ) ∩ F c = O \ F , hence

m∗(O \ F ) ≤ m∗((O \ E) ∪ (E \ F )) < ε.

Conversely, observe that E ⊇ F , O \ E ⊆ O \ F and use the outer measure property in
the remark.

213. Let A = {x ∈ [a, b] : f(x) = g(x)}, A′ = [a, b] \ A (then [a, b] = A t A′ and m(A′) = 0) and
a′ ∈ A′. We claim that

for any neighborhood U of a′ that is open in [a, b], there is an a ∈ A such that a ∈ U .

Suppose it’s wrong, that is, there is an open neighborhood U such that A∩U = ∅, it follows
that x ∈ U =⇒ x ∈ A′, this implies U ⊆ A′. However U is open in [a, b], there is an open
set U ′ in R such that U = U ′ ∩ [a, b], so A′ ⊇ U = U ′ ∩ [a, b] ⊇ U ′ ∩ (a, b), but U ′ ∩ (a, b) is
open in R which doesn’t have measure 0, contradiction.

Now by the claim we know that for each a′ ∈ A′, there is a sequence {an} in A such that
limn→∞ an = a′, so

f(a′) = f
(

lim
n→∞

an

)
= lim
n→∞

f(an) = lim
n→∞

g(an) = g
(

lim
n→∞

an

)
= g(a′),

hence f = g on [a, b].

With the same proof [a, b] can be replaced by (a, b), however, general measurable set
cannot replace the interval. Let x0, x1 ∈ [a, b] such that f(x0) = g(x0) but f(x1) 6= g(x1).
On G = {x0} ∪ {x1}, f = g almost everywhere (except x1) and f |G and g|G are continuous
(with respect to the subspace topology), but it doesn’t imply f |G(x1) = g|G(x1).

214. (a) Let’s denote A = {x ∈ R : x lies in infinitely many of Ak’s}. Since x lying in infinitely
many of Ek’s is equivalent to say that for any k ∈ N, there is a natural number n ≥ k,
x ∈ En. Hence

A =

∞⋂
k=1

{x : ∃n ≥ k, x ∈ En} =

∞⋂
k=1

∞⋃
n=k

{x : x ∈ En}.
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(b) Since A ⊆ ∪∞n=kEn, for all k ∈ N, hence

m(A) ≤ m (∪∞n=kEn) ≤
∞∑
n=k

m(En),

by the convergence of
∑
m(En) in the hypothesis, we get m(A) = 0 by letting k →∞.

215. Give an ε > 0, we note that

x ∈ [a, b] =⇒ x ∈
⋂
ε>0

∞⋃
N=1

⋂
n≥N

{x ∈ [a, b] : |f(x)− fn(x)| < ε}

=⇒ x ∈
∞⋃
N=1

{x ∈ [a, b] : |f(x)− fN (x)| < ε}︸ ︷︷ ︸
=EN

,

the logic above means exactly the inclusion [a, b] ⊆ ∪∞N=1EN . We note that f − fN is a
continuous function, hence EN = {x ∈ [a, b] : (f−fN )(x) < ε} =

(
(f−fN )−1

(
(−ε, ε)

))
∩[a, b]

is open in [a, b]. Since [a, b] is compact, there is an integer N such that [a, b] ⊆ ∪Nk=1Ek.
Hence for all x ∈ [a, b] (there is kx ∈ {1, 2, . . . , N}, x ∈ Ekx), when n > N ,

|f(x)− fn(x)| = f(x)− fn(x) < f(x)− fkx(x) < ε,

that is, the choice of ε is independent of x.

216. No! Let A ⊂ [0, 1) be nonmeasurable. Recall that any open interval is homeomorphic
to the real line R (allowing one end of the interval to be be infinity), that is, there is a
homeomorphism h : R→ (−1, 0), we then construct f : R→ (−1, 1) by

f(x) =

{
x, x ∈ A,
h(x), x ∈ R \A.

Clearly f is injective on both A and R \ A, hence for each c ∈ R, f−1({c}) is measurable,
but f−1

(
[0,+∞)

)
= A is not measurable, meaning that f is not measurable.

217. Let ε > 0 be given. Since E is of finite measure, by the first principle there is a finite
disjoint union of bounded open intervals U = tni=1Ii such that m(U∆E) < ε. Let’s define
h = χU =

∑n
i=1 χIi we claim that this h will do.

We try to prove that h = χE except a set of measure at most ε. Since y ∈ {x ∈ I : h(x) 6=
χE(x)} ⇐⇒ y ∈ I and h(y) 6= χE(y). However, h(y) 6= χE(y) ⇐⇒ y ∈ (U \E)t (E \U),
thus

{x ∈ I : h(x) 6= χE(x)} = I ∩ (U∆E).

Hence if we let F = {x ∈ I : h(x) = χE(x)}, then h = χE on F and m(I \ F ) = m(I ∩
(U∆E)) ≤ m(U∆E) < ε.

218. Let ψ =
∑n
i=1 aiχAi , tni=1Ai = I, then for each χAi , there is an Fi ⊆ I and a step function

hi such that

hi = χAi on Fi and m(I \ Fi) <
ε

n
.

Now we take F = ∩ni=1Fi, then m(I \ F ) < ε and hi = χAi on F for i = 1, 2, . . . , n, so∑n
i=1 aihi =

∑n
i=1 aiχAi on F . Finally, a linear combination of step function is still a step

function.

219. As f is bounded measurable function, there is a simple function ψ such that |f − ψ| < ε
on I. Define ψ =

∑n
i=1 aiχAi , where Ai = ψ−1(ai) and ai 6= 0 for all i (if ai = 0, the

term 0 · χψ−1(0) is redundant). We now try to approximate ψ by a step function h. This
is made easy with the help of problem 218, we can construct h such that ψ = h on F and
m(I \ F ) < ε, hence we are done.



106 CHAPTER 2. SOLUTIONS

220. As f is measurable, there is a sequence of simple functions {φn} such that φn → f pointwise
on E. By Egoroff’s theorem, given an ε > 0, there is a measurable subset (can be chosen to
be closed) F of E such that φn ⇒ f on F and m(E \ F ) < ε. Hence we are able to find an
N such that |f − φN | ≤ 1 on F , this implies |f | ≤ 1 + |φN | on F . But simple functions are
always bounded, hence f is bounded on F with m(E \ F ) < ε.

221. Assume f
m→ g. A , {x ∈ E : f(x) 6= g(x)} = ∪∞k=1{x ∈ E : |f(x) − g(x)| > 1

k}. Observe
that

|f(x)− g(x)| > 1

k
=⇒ ∀n ∈ N, |f(x)− fn(x)|+ |fn(x)− g(x)|

2
>

1

2k
,

this then implies for all n ∈ N, |f(x)− fn(x)| > 1
2k or |fn(x)− g(x)| > 1

2k , hence

A ⊆
∞⋃
k=1

∞⋂
n=1

({
x ∈ E : |f(x)− fn(x)| > 1

2k

}
∪
{
x ∈ E : |g(x)− gn(x)| > 1

2k

})
.

Given 1
2k , ε > 0, there is an nk such that both

m

{
x ∈ E : |f(x)− fnk(x)| > 1

2k

}
,m

{
x ∈ E : |g(x)− gnk(x)| > 1

2k

}
<

ε

2k+1
,

observe also thatA ⊆
⋃∞
k=1

({
x ∈ E : |f(x)− fnk(x)| > 1

2k

}
∪
{
x ∈ E : |g(x)− gnk(x)| > 1

2k

})
,

hence

m(A) ≤
∞∑
k=1

( ε

2k+1
+

ε

2k+1

)
= ε.

But ε > 0 is arbitrary, m(A) = 0.

Conversely assume f = g a.e. on E. We define E0 = {x ∈ E : f(x) 6= g(x)}, then
m(E0) = 0 and

m{x ∈ E : |g(x)− fn(x)| > η} ≤ m{x ∈ E : |f(x)− fn(x)| > η},

this implies fn
m→ g.

222. The first one follows easily from the fact that
∣∣|fn(x)|− |f(x)|

∣∣ > η =⇒ |fn(x)− f(x)| > η.

The second one follows form the observation that A+B
2 > C =⇒ A > C or B > C.

The last one is a kind of complicated (maybe my proof is messy). Anyhow, it works!
Observe that fngn − fg = f(gn − g) + (fn − f)(gn − g) + g(fn − f). Let η, ε > 0 be given,
then (everything is evaluated at x)

|fngn − fg| > η =⇒ |f ||gn − g|+ |fn − f ||gn − g|+ |g||fn − f | > η,

this implies

|f ||gn − g| > η/3, |g||fn − f | > η/3 or

 |fn − f ||gn − g| > η/3
⇓

|fn − f | >
√
η/3 or |gn − g| >

√
η/3

 .

Let P (x) be a property satisfied by x and we denote m{x ∈ E : P (x)} by m{P}. For
example, m{x ∈ E : f(x) > 0} = m{f > 0}. Then from the above logic,

m{|fngn − fg| > η} ≤ m
,A︷ ︸︸ ︷

{|f ||gn − g| > η/3}+m

,B︷ ︸︸ ︷
{|g||fn − f | > η/3}

+m{|fn − f | >
√
η/3}+m{|gn − g| >

√
η/3}.
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From hypothesis the last two terms can be small when n large. We apply problem 220 to
get uniform bound of f and g on “large” enough subsets of E such that we can also estimate
the first two terms. By problem 220, given ε/6 > 0, we can find subsets F,G ⊆ E such that
there is M > 0,

|f | < M on F , m(E \ F ) < ε/6 and |g| < M on G, m(E \G) < ε/6.

That is to say, on F , |f(x)||gn(x) − g(x)| > η/3 =⇒ |gn(x) − g(x)| > η/(3M). On G,
|g(x)||fn(x)− f(x)| > η/3 =⇒ |fn(x)− f(x)| > η/(3M), hence

m(A) +m(B) = m(A ∩ F ) +m(A \ F ) +m(B ∩G) +m(B \G)

< m{x ∈ F : |gn(x)− g(x)| > η/(3M)}+m{x ∈ G : |fn(x)− f(x)| > η/(3M)}+ ε/6 + ε/6

≤ m{|gn − g| > η/(3M)}+m{|fn − f | > η/(3M)}+ 2 · ε/6,

recall once the abbreviation is adopted, we mean all elements x in E having property P (x).
Now we can find an N such that when n > N , all 4 remaining terms become less than ε/6,
hence

m{|fngn − fg| > η} < 6 · ε/6 = ε.

223. (⇒) Assume fn
m→ f , let {nk : k ≥ 1} ⊆ N, then fnk

m→ f , hence having a further
subsequence {fnkp} that converges pointwise to f a.e. on E.

(⇐) Assume fn 6
m→ f , then there are η, ε0 > 0 and a subsequence {fnk} of {fn} such that

m{|fnk − f | > η} ≥ ε0. But by hypothesis, there is a further subsequence {fnkp} such that
fnkp → f pointwise a.e. on E. By Egoroff’s theorem we can find a measurable subset F of

E such that fnkp ⇒ f on F and m(E \ F ) < ε0/2, now

ε0 ≤ m{|fnkp − f | > η} = m
{
{|fnkp − f | > η} ∩ F

}
+m

{
{|fnkp − f | > η} \ F

}
< m

{
{|fnkp − f | > η} ∩ F

}
+ ε0/2.

However, by uniform convergence on F we can find a P such that |fnkP − f | ≤ η on F , and
at p = P the above inequality implies ε0 < ε0/2, a contradiction.

224. (⇒) If fn
m→ f , then given ε > 0, there is an N such that n ≥ N =⇒ m{|fn − f | >

ε
2(m(E)+1)} < ε/2, hence when n ≥ N ,∫

E

|fn − f |
1 + |fn − f |

=

∫
{|fn−f |> ε

2(m(E)+1)
}

|fn − f |
1 + |fn − f |

+

∫
{|fn−f |≤ ε

2(m(E)+1)
}

|fn − f |
1 + |fn − f |

≤ m
{
|fn − f | >

ε

2(m(E) + 1)

}
+

ε
2(m(E)+1)

1 + ε
2(m(E)+1)

m(E)

<
ε

2
+

ε

2(m(E) + 1)
m(E)

< ε.

(⇐) Assume limn→∞ ρ(fn, f) = 0, then if fn 6
m→ f , there are η, ε0 > 0 and a subsequence

{fnk} of {fn} such that m{|fnk − f | > η} ≥ ε0, hence∫
E

|fnk − f |
1 + |fnk − f |

≥
∫
{|fn−f |>η}

|fnk − f |
1 + |fnk − f |

>
η

1 + η
ε0,

that’s a contradiction.
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225. Define for n = 1, 2, . . . , Xn =
{
x ∈ E : ‖f‖∞2n < |f(x)| ≤ ‖f‖∞2n−1

}
, thenXn ⊆

{
x ∈ E : ‖f‖∞2n < |f(x)|

}
,

hence ∫
Xn

|f(x)| ≤ ‖f‖∞
2n−1

m(Xn) ≤ ‖f‖∞
2n−1

· C(
‖f‖∞

2n

)α = 2C‖f‖1−α 1

(21−α)n
.

Here Xn’s are disjoint and tnXn = E.

226. By part (b) of problem 214, for almost all x0 ∈ E, there is an index K(x0) ∈ N such that
x 6∈ {x ∈ E : |fn(x)| > αn} when n > K(x0). That is, whenever n > K(x0),

|fn(x0)| ≤ αn =⇒ −1 ≤ fn(x0)

αn
≤ 1.

The result follows from taking lim and lim in the inequality. And it is obvious from
definition that lim ≤ lim.

227. Since x ∈ [a, b] =⇒ x ∈ {f > 0} = ∪p≥1{f > 1
p}, hence [a, b] = ∪p≥1

,Kp︷ ︸︸ ︷
{x : [a, b] : f(x) > 1

p}.
Let K ′1 = K1, K ′p = Kp \ ∪p−1

i=1Ki, then ∪pK ′p = [a, b] and for all p ≥ 1,∫
[a,b]

fχEn ≥
∫
K′p

fχEn ≥
1

p

∫
K′p

χEn =
1

p
m(En ∩Kp),

this implies limn→∞m(En ∩K ′p) = 0 for each p. Now observe that

m(En) = m
(
En ∩ (∪p≥1K

′
p)
)

=

∞∑
p=1

m(En ∩K ′p) ≤
P∑
p=1

m(En ∩K ′p) +

∞∑
p=P+1

m(K ′p).

Let ε > 0 be given, we can fix a P such that
∑∞
p=P+1m(K ′p) <

ε
2 , after that we can

choose an N such that for each p = 1, 2, . . . , P , when n > N , m(En∩K ′p) < ε
2P , hence when

n > N ,

m(En) < P · ε
2P

+
ε

2
= ε.

228. To apply Fatou’s lemma
∫
E

limun ≤ lim
∫
E
un, we need the integrand un to be nonnegative

and measurable. So it is natural to consider un = g − fn, hence∫
E

(g − f) =

∫
E

lim(gn − fn) ≤ lim

∫
E

(gn − fn) = lim

∫
E

gn − lim

∫
E

fn,

the last equality follows from the fact that lim(−an) = − lim an. Cancelling
∫
E
g on both

sides, we have

lim

∫
E

fn ≤
∫
E

f. (*)

By letting un = g + fn this time,
∫
E
g +

∫
E
f ≤

∫
E
g + lim

∫
E
fn, combined with (*), we

obtain

lim

∫
E

fn ≤
∫
E

f ≤ lim

∫
E

fn =⇒ lim

∫
E

fn =

∫
E

f.

229. (a) Without loss of generality let’s assume f(x) is bounded on each of x ∈ R. We also
assume f ≥ 0, then by integrability, there is a bounded measurable function fε/2 with
fε/2 ≤ f and with finite support E0 (i.e. f |E0 6= 0 and f |R\E0

≡ 0) such that∫
R
|f − fε/2| =

∫
R
f −

∫
R
fε/2 <

ε

2
. (*)
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On E0 since fε/2 is bounded and measurable, let’s assume m(E0) > 0, there is a
simple function η such that 0 ≤ fε/2 − η < ε

2m(E0) , we can also require η|R\E0
≡ 0

(hence its support is contained in E0), and hence∫
R
|fε/2 − η| =

∫
E0

|fε/2 − η| <
ε

2
. (**)

Finally by (*) and (**),∫
R
|f − η| ≤

∫
R
|f − fε/2|+

∫
R
|fε/2 − η| < ε.

The same argument also shows that the last inequality holds when m(E0) = 0 (in fact
the second integral vanishes). And the extension to general measurable function is
obvious.

(b) We also do that for f nonnegative, and its extension to general measurable function is
obvious. By part (a) there is a simple function η with finite support E0 such that∫

R
|f − η| < ε

2
.

Let’s assume I is a closed interval such that I ⊇ E0, then on I since η is simple. Let
also |η| < M for some M > 0, by problem 218, given any ε > 0, we can find a step
function s on I and measurable subset F of I such that

η = s on F and m(I \ F ) <
ε

4M
.

Recall that such simple functions can be chosen such that the maximum of s is the
maximum of η, let’s assume also |s| < M , define ŝ = sχI , then ŝ is also a step function
such that ∫

R
|f − ŝ| ≤

∫
R
|f − η|+

∫
R
|η − ŝ| < ε

2
+

∫
I\F
|η − s|+

∫
F

|η − s|

<
ε

2
+ 2Mm(I \ F ) < ε.

(c) Just linearize the step function in part (b).

230. To be added.

231. (⇒) Since E has measure zero, for each k ∈ N, there must be an open set Ok such that

Ok ⊇ E with m(Ok) < 1
2k

. Write Ok = t∞p=1I
(k)
p (in case if Ok is a finite union of

disjoint open sets, let I
(k)
p with large enough p be empty set). Then clearly for each p,

m(I
(k)
p ) < m(Ok) < 1

2k
. We claim that the collection I = {I(k)

p : p, k ≥ 1} will do.

Let e ∈ E, then e ∈ I
(1)
p1 , for some p1. We can find k2 such that 1

2k2
< m(I

(1)
p1 ), and

there is p2 such that e ∈ I
(k2)
p2 . Since m(I

(k2)
p2 ) < 1

2k2
< m(I

(1)
p1 ), they must be distinct

intervals. Inductively we can take kn+1 such that 1
2kn+1

< m(I
(kn)
pn ) and find a pn+1 such

that e ∈ I(kn+1)
pn+1 , hence e ∈ I(1)

p1 , I
(kn)
pn for n ≥ 2 and they are all different intervals.

Finally we check that
∑
I∈Im(I) ≤

∑∞
k=1m(Ok) = 1 <∞.

(⇐) Since x ∈ E implies x ∈ ∩k≥1 ∪n≥k In, i.e. x ∈ ∪n≥kIn, for all k, hence m(E) ≤
m(∪n≥kIn) ≤

∑∞
n=km(In)→ 0.
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232. Let e ∈ E,
f(e+ t)− f(e)

t
=

∞∑
k=1

λ
(
(ck, dk) ∩ [e, e+ t)

)
t

. Let e ∈ (ckp , dkp) for p = 1, 2, . . . ,

for each n ≥ 1,

f(e+ t)− f(e)

t
≥

n∑
p=1

λ
(
(ckp , dkp) ∩ [e, e+ t)

)
t

.

We can take tn ∈ (0, 1
n ) small such that e+ tn < dkp , for p = 1, 2, . . . , n, it follows that

f(e+ tn)− f(e)

tn
≥ n · tn

tn
= n,

but this is true for all n, hence lim
n→∞

f(e+ tn)− f(e)

tn
=∞.

233. (a) Since ∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ ≤ TV (f[x,x+h])

h
=
TV (f[a,x+h])− TV (f[a,x])

h

=
v(x+ h)− v(x)

h
,

this implies |f ′| ≤ v′, hence
∫ b
a
|f ′| ≤

∫ b
a
v′ ≤ v(b)− v(a) = TV (f). The last inequality

follows from the fact that v is increasing.

(b) Assume the equality holds, then since
∫ v
u
|f ′| ≤ TV (f[u,v]) and(∫ x

a

|f ′| − TV (f[a,x])

)
+

(∫ b

x

|f ′| − TV (f[x,b])

)
= 0,

but both of them are nonpositive, hence
∫ x
a
|f ′| = TV (f[a,x]) for all x ∈ [a, b], it follows

that
∫ v
u
|f ′| =

∫ v
a
|f ′| −

∫ u
a
|f ′| = TV (f[u,v]).

For each ε > 0 there is a δ > 0 such that whenever m(E) < δ,
∫
E
|f ′| < ε. Hence

if {(ci, di)}ni=1 is a disjoint collection of open intervals in [a, b] with
∑n
i=1(di − ci) < δ,

then

n∑
i=1

|f(di)− f(ci)| ≤
n∑
i=1

TV (f[ci,di]) =

n∑
i=1

∫ di

ci

|f ′| =
∫
tni=1(ci,di)

|f ′| < ε.

Conversely if f is absolutely continuous, then f(x) = f(a) +
∫ x
a
f ′. It is enough

to show TV (f) ≤
∫ b
a
|f ′|. This is obvious since for every partition P of [a, b], P =

{a0, a1, . . . , an} with a = a0 < a1 < a2 < · · · < an = b,

n∑
i=1

|f(ai)− f(ai−1)| =
n∑
i=1

∣∣∣∣∣
∫ ai

ai−1

f ′

∣∣∣∣∣ ≤
n∑
i=1

∫ ai

ai−1

|f ′| =
∫ b

a

|f ′|,

and the result follows from taking supremum over all possible partitions.

234. If m∗(A) = ∞, we are done. Suppose m∗(A) < ∞, then given ε > 0 we can find an open
U ⊇ A such that m(U) < m∗(A) + ε. A simple if-then statement shows the following
inclusion

f(B(a, r)) ⊆ B(f(a), Lr),

for any a ∈ R and r > 0. Hence by writing U = t(ai, bi), then A = U ∩A = t((ai, bi)∩A),
we see that f((ai, bi) ∩ A) ⊆ f((ai, bi)) = f

(
B(ai+bi2 , bi−ai2 )

)
⊆ B

(
f(ai+bi2 ), L( bi−ai2 )

)
, and
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hence

f(A) = f
(
ti ((ai, bi) ∩A)

)
⊆ ∪iB

(
f(ai+bi2 ), L( bi−ai2 )

)
m∗ (f(A)) ≤ m∗

(
∪iB

(
f(ai+bi2 ), L( bi−ai2 )

))
≤
∑
im
∗ (B (f(ai+bi2 ), L( bi−ai2 )

))
=
∑
i L(bi − ai) = Lm(U).

It follows that
m∗ (f(A)) ≤ Lm(U) ≤ Lm∗(A) + Lε,

we let ε→ 0+ to complete the proof.

Assume A is bounded and measurable. It is obvious that f is continuous, hence for
any compact K, f(K) is compact and hence measurable. By measurability of A there is
a Fσ set F = ∪iKi ⊆ A such that each Ki is compact and m(A \ F ) = 0. Observe that
A = F ∪ (A \ F ), this implies

f(A) = f(F ) ∪ f(A \ F ),

by what we have just proved, f(A \ F ) is measurable since it has measure zero. f(F ) =
∪if(Ki) is a countable union of closed sets which is also measurable.

It follows that f maps measurable set E to measurable set f(E) = ∪n∈Nf(E ∩ [−n, n]),
a countable union of measurable sets.

235. As f, g are integrable, there is E0 ⊆ E such that f, g are finite on E \ E0 with m(E0) = 0.

On E \ E0, since f(x)g(x) ≥ 1, then f(y)g(x) ≥ f(y)
f(x) , for any x, y on E \ E0. And by

interchanging x, y in the inequality, we get f(x)g(y) ≥ f(x)
f(y) . Adding them up and applying

AM-GM inequality once,

f(y)g(x) + f(x)g(y) ≥ f(y)

f(x)
+
f(x)

f(y)
≥ 2.

Now the result follows by integrating respect to x and y respectively.

236. Let ε > 0 be given. Assume Lusin’s theorem holds on a finite measure space. Let f be
real-valued measurable on E with m(E) = ∞. Define En = E ∩ (n, n + 1), where n ∈ Z,
then we can find a continuous gn : R→ R and a measurable (in fact closed in the theorem)
Fn ⊆ En such that

f = gn on Fn and m(En \ Fn) < ε/2|n|+3.

Clearly

m(E \ tnFn) =
∑
i∈Z

m(Ei \ tnFn) ≤
∑
i∈Z

m(Ei \ Fi) < ε
(
1/23 + 1/23 + 1/23

)
< ε/2.

We construct g =
∑
i∈Z giχFi , then g|tnFn = f |tnfn , we claim that g : tnFn → R is

continuous with respect to the subspace topology. Fix a x ∈ tnFn, then there is an n such
that x ∈ Fn. Hence by continuity of gn on R, given ε > 0 there is a δ > 0 such that
gn(B(x, δ)) ⊆ B(gn(x), ε). Since x ∈ Fn ⊆ (n, n + 1), we can choose δ > 0 small such that
B(x, δ) ⊆ (n, n+ 1), therefore B(x, δ) ∩ (tkFk) = B(x, δ) ∩ Fn, hence

g(B(x, δ) ∩ tkFk) = g(B(x, δ) ∩ Fn)

= gn(B(x, δ) ∩ Fn)

⊆ B(gn(x), ε)

= B(g(x), ε),
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this proves our claim. Now measurability of tnFn enables us to construct its closed subset
F such that m(tnFn \ F ) < ε/2, thus

m(E \ F ) ≤ m(E \ tnFn) +m(tnFn \ F ) < ε.

It is clear now that g|F is continuous w.r.t. subspace topology of F , so we are done with
the help of problem 25.

237. We only prove the general case. By the simple approximation theorem, there is a sequence of
simple functions {φn} such that φn → f pointwise on R and |φn(x)| ≤ |f(x)|. The integral
comparison test shows that each φn is integrable and by Lebesgue dominated convergence
theorem,

lim
n→∞

∫
R
φn(x)g(tx) dm =

∫
R
f(x)g(tx) dm and lim

n→∞

∫
R
φn(x) dm =

∫
R
f(x) dm.

Hence it suffices to prove the given identity holds for simple function, to this end, it suffices to
prove it holds for characteristic function which has finite support (as the above convergence
is uniform, interchange of limit processes is permitted).

Let A be measurable and m(A) <∞, we will prove that

lim
t→∞

∫
R
χA(x)g(tx) dm =

m(A)

T

∫
[0,T ]

g(x) dm. (*)

Since m(A) < ∞, there is a descending collection of open set {On} for which On ⊇ A
and m(∩On \A) = 0, hence

lim
t→∞

∫
R
χA(x)g(tx) dm = lim

t→∞

∫
A

g(tx) dm = lim
t→∞

∫
∩On

g(tx) dm = lim
t→∞

lim
n→∞

∫
On

g(tx) dm,

since g is bounded, the convergence limn→∞
∫
On g(tx) dm is then uniform, which implies it

is enough to prove the limit

lim
t→∞

∫
On

g(tx) dm(x)

exists and is equal to m(On)
T

∫ T
0
g(x) dm (as the limit process can be interchanged). This

motivates us to prove (*) is true when A = (a, b), an bounded open interval (we will transit

the result to open set). Consider when A = (a, b), we aim to show limt→∞
∫ b
a
g(tx) dm =

b−a
T

∫ T
0
g(x) dm. We first observe that

I(t) :=

∫ b

a

g(tx) dm(x) =

∫
R
g(tx)χ(a,b)(x) dm(x) =

1

t

∫
R
g(x)χ(a,b)(x/t) dm(x) =

1

t

∫ tb

ta

g(x) dm(x).

We take t large so that t(b− a) > 2T , then we can choose n1(t), n2(t) ∈ Z so that

ta ≤ n1(t)T < (n1(t) + 1)T < · · · < n2(t)T ≤ tb (**)

with
n1(t)T − ta < T and tb− n2(t)T < T. (***)

Now

I(t) =
1

t

n2(t)−1∑
k=n1(t)

∫ (k+1)T

kT

g(x) dm+

(∫ n1(t)T

ta
+
∫ tb
n2(t)T

)
g(x) dm

t︸ ︷︷ ︸
:=R(t)

=
1

t

n2(t)−1∑
k=n1(t)

∫ T

0

g(x) dm+R(t)

=
(n2(t)− n1(t))T

t(b− a)
· (b− a)

T

∫ T

0

g(x) dm+R(t). (****)
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Since R(t) ≤
2
∫ T

0
|g(x)| dm
t

, limt→∞R(t) = 0. Moreover, by (**) and (***),

1 ≥ (n1(t)− n2(t))T

t(b− a)
≥ t(b− a)− 2T

t(b− a)
= 1− 2T

t(b− a)
,

these shows, continued from (****) that

lim
t→∞

∫ b

a

g(tx) dm(x) = lim
t→∞

I(t) =
(b− a)

T

∫ T

0

g(x) dm.

Thus for open set O with m(O) < ∞, O = t∞i=1Ii where Ii is bounded open interval (in
case when O is just a finite union, we let the extra indexed intervals be ∅), once again by

boundedness of g, the convergence limk→∞
∑k
i=1

∫
Ii
g(tx) dm is uniform, thus

lim
t→∞

∫
O
g(tx) dm = lim

t→∞
lim
k→∞

k∑
i=1

∫
Ii

g(tx) dm = lim
k→∞

lim
t→∞

k∑
i=1

∫
Ii

g(tx) dm

= lim
k→∞

k∑
i=1

m(Ii)

T

∫ T

0

g(x) dm

=
m(O)

T

∫ T

0

g(x) dm,

it follows, continued from the previous result, that

lim
t→∞

∫
R
χA(x)g(tx) dm = lim

t→∞
lim
n→∞

∫
On

g(tx) dm(x)

= lim
n→∞

lim
t→∞

∫
On

g(tx) dm(x)

= lim
n→∞

m(On)

T

∫ T

0

g(x) dm

=
m(A)

T

∫ T

0

g(x) dm.

238. To be added.

2.9 Fourier Analysis

239. To be added

240. To be added

241. To be added

242. To be added

243. To be added

244. We first show existence. Pick gn ∈ A so that inf{‖f − g‖ : g ∈ A} = limn→∞ ‖f − gn‖. If
{gn : n ≥ 1} is finite, then we are done as one of the gi’s must satisfy the the equality in the
above limit. Let’s assume {gn : n ≥ 1} is infinite. Starting from i = 2, if gi can be expressed
as a linear combination of {g1, . . . , gi−1}, we weed it out, and the remaining list of elements
{gn1

, gn2
, . . . } can be made into an orthonormal sequence of functions. Explicitly,

e1 =
gn1

‖gn1‖
, ek =

gnk −
∑k−1
j=1 〈gnj , ej〉ej

‖gnk −
∑k−1
j=1 〈gnj , ej〉ej‖

.
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Since f ∈ L2(Q), the sequence {
∑n
k=1 f̂(k)ek}∞k=1 is Cauchy in L2(Q), so this sequence

converges to a F ∈ L2(Q) by completeness.

We claim that F :=
∑∞
k=1 f̂(k)ek will do. Now we still have limk→∞ ‖f − gnk‖ =

inf{‖f − g‖ : g ∈ A}, and since gnN =
∑N
i=1 cNiei,

‖f − F‖ ≤

∥∥∥∥∥f −
N∑
k=1

f̂(k)ek

∥∥∥∥∥+

∥∥∥∥∥∑
k>N

f̂(k)ek

∥∥∥∥∥ ≤
∥∥∥∥∥f −

N∑
k=1

cNkek

∥∥∥∥∥+
∑
k>N

|f̂(k)|2

= ‖f − gnN ‖+
∑
k>N

|f̂(k)|2,

the result follows from taking N → ∞, since ek ∈ A,∀k =⇒ F ∈ A, thus existence is
established.

Finally we have to show that such F is unique, so that Pf is well-defined. Assume both
F,G ∈ A are closest to f , the polynomial P (ε) := ‖f − εF − (1 − ε)G‖2 has minimum at
ε = 0 and ε = 1, hence P ′(0) = P ′(1) = 0, which implies P ′(ε) ≡ 0. Since

P (ε) = ‖f −G+ ε(G− F )‖2 = ‖f −G‖2 + ε2‖G− F‖2 + 2εRe〈f −G,G− f〉,

P ′′(ε) = 0 =⇒ ‖G− F‖ = 0, i.e., F = G a.e. on Q.

245. Let g ∈ A, we use the same trick as before, k1(ε) := ‖f − PAf + εg‖2 is a polynomial in ε
for which minima occurs at ε = 0, hence k′1(ε) = 0. Since k1(ε) = ‖f − PAf‖2 + ε2‖g‖2 +
2εRe〈f − PAf, g〉, k′1(0) =⇒ Re〈f − PAf, g〉 = 0.

Similarly, k2(ε) := ‖f − PAf + iεg‖2 = ‖f − PAf‖2 + ε2‖g‖2 + 2ε Im〈f − PAf, g〉 is
minimum at ε = 0, k′2(0) = 0 =⇒ Im〈f − PAf, g〉 = 0, we conclude 〈f − PAf, g〉 = 0.

246. For part (a), let f ∈ L2(Q). By definition, PAf−P 2
Af ∈ A, and since PAf−PA(PAf) ∈ A⊥,

we have PA = P 2
A; For part (b), 〈f1, PAf2〉 = 〈PAf1 + (f1 − PAf1), PAf2〉 = 〈PAf1, PAf2〉,

and similarly,

〈PAf1, f2〉 = 〈PAf1, PAf2 + f2 − PAf2〉 = 〈PAf1, PAf2〉;

For part (c), ‖f‖2 = ‖PAf + (f − PAf)‖2 = ‖PAf‖2 + ‖f − PAf‖2 ≥ ‖PAf‖2; For part (d),
when f ∈ A, f−PAf ∈ A∩A⊥, so PAf = f . When f ∈ A⊥, PAf = f−(f−PAf) ∈ A∩A⊥,
so PAf = 0.

It remains to show PA is linear. For each α ∈ C and f, g ∈ L2(Q),

A 3 PA(f + αg)− PAf − αPAg = [PA(f + αg)− f − αg] + [f − PAf ] + α[g − PAg] ∈ A⊥.

247. To be added

248. Assume T ∈ [L2(Q)]∗. Since T is continuous,

A := kerT

is closed subspace of L2(Q). If T ≡ 0, then we are done. Assume T 6≡ 0, then there must be
a h ∈ L2(Q) so that Th 6= 0. In other words, h 6∈ A, and hence u := h− PAh ∈ A⊥ \ {0}.

We observe that dimA⊥ = 1. For each g ∈ A⊥,

T

(
g − Tg

Tu
u

)
= Tg − Tg

Tu
Tu = 0,

which means that g − Tg
Tuu ∈ A ∩A

⊥ and hence g = Tg
Tuu. So spanC{u} = A⊥.
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Finally for each f ∈ L2(Q), f − PA = T (f−PAf)
Tu u =⇒ 〈f − PAf, u〉 = Tf

Tu‖u‖
2, and

hence

Tf =
Tu

‖u‖2
〈f − PAf, u〉 =

Tu

‖u‖2
(〈f, u〉 − 〈PAf, u〉)

=
Tu

‖u‖2
(〈f, u〉 − 〈f, PAu〉︸ ︷︷ ︸

= 0 as u ∈ A⊥

) =

〈
f,

(
Tu

‖u‖2

)
u

〉
,

we conclude Tf = 〈f, g〉, for some g ∈ L2(Q). Conversely, any linear functional of this form
is bounded.

249. To be added

250. To be added

251. To be added

252. To be added

253. To be added

254. To be added

2.10 Number Theory

255. Since (2, n) = 1, 2a1, 2a2, . . . , 2aφ(n) also form a reduced residue system modulo n, hence
ai ≡ 2af(i) (mod n) for i = 1, 2, . . . , φ(n), here f is a bijection from {1, 2, . . . , φ(n)} to
{1, 2, . . . , φ(n)}. Finally, we make use of the formula sin 2x = 2 sinx cosx and let 2aj =
hin+ ai, we are done.

256. Observe that (4a2 − 1)2 = (4a2 − 1)(4a2 − 1) = (4a2 − 1)(2a + 1)(2a− 1). Now in modulo
4ab− 1,

(4a2−1)2 ≡ (4a2−1)(4ab+2b)(4ab−2b) ≡ (4a2−1)(1+2b)(1−2b) ≡ (4a2−1)(4b2−1) ≡ 0, (mod 4ab−1)

on expansion and making use of the fact that 4ab ≡ 1 (mod 4ab− 1) again, we can deduce
that the original divisibility actually implies 4ab− 1|(a− b)2, this is equivalent to say that
(a− b)2

4ab− 1
∈ N.

Define S =

{
(x, y) ∈ N2 :

(x− y)2

4xy − 1
∈ N, x 6= y

}
, We now suppose, for the sake of con-

tradiction, there is a solution (x′, y′) ∈ S with x′ 6= y′, then S is not empty, clearly there

is a smallest a and b such that (a, b) ∈ S, let’s say
(a− b)2

4ab− 1
= k ∈ N, then by rearranging

terms in this equation into a quadratic equation of a, we see that if a is a solution, then

from product of root, a′ =
b2 + k

a
∈ N is another solution, by the minimality of a, we deduce

that a′ ≥ a, this implies
(a− b)2

4ab− 1
= k ≥ b2 − a2, this implies a − b ≥ (a + b)(4ab − 1), a

contradiction.

257. To be added.

258. To be added.

259. To be added.
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260. To be added.

261. To be added.

262. To be added.

263. To be added.

264. To be added.

265. To be added.

266. To be added.

267. To be added.

268. To be added.

269. (a) Suppose that (u, v) is the smallest positive solution of x2 −Dy2 = 1, then we need to
show that u ≥ x2 (this implies v ≥ y2 as u2 − x2

2 = D(v2 − y2
2)), then we write

x2 +
√
Dy2 = (u+

√
Dv)k,

for some k ∈ N.

If k = 2n, n ≥ 1, then x1 +
√
Dy1 = (u+

√
Dv)n, this is a contradiction as

(x1 +
√
Dy1)(x1 −

√
Dy1) = (u+

√
Dv)n(u−

√
Dv)n =⇒ −1 = 1.

So k must be odd and write k = 2n+ 1, n ≥ 0, then we have

(x1 +
√
Dy1)2 = (u+

√
Dv)2n+1 ⇐⇒ (x1 +

√
Dy1)2(u−

√
Dv)2n = (u+

√
Dv),

this is the same as (x1 +
√
Dy1)(u −

√
Dv)n =

√
u+
√
Dv, so there must be some

a, b ∈ Z such that√
u+
√
Dv = a+

√
Db ⇐⇒ u+

√
Dv = (a+

√
Db)2 . (*)

Since 2ab = v > 0, so a, b must be both positive or negative, but since
√
u+
√
Dv > 0,

a, b are both positive. Next

(a+
√
Db)2(a−

√
Db)2 = (u+

√
Dv)(u−

√
Dv) = 1

=⇒ (a+
√
Db)(a−

√
Db) = d, d = ±1.

Case 1. If d = 1, then since from (*), u = a2 +Db2 > a, so contradiction arises as
(u, v) are smallest such solution. We must have d = −1.

Case 2. When d = −1, then by the minimality, a ≥ x1 and b ≥ y1, as a result,

u = a2 +Db2 ≥ x2
1 +Dy2

1 = x2.

(b) It is known that (x2, y2) is smallest integer solution of x2 −Dy2 = 1, so all solutions
are given by (un, vn) defined by

un +
√
Dvn = (x2 +

√
Dy2)n = (x1 +

√
Dy1)2n,

and hence (u′n, v
′
n) defined by u′n +

√
Dv′n = (x1 +

√
Dy1)2n+1 will give all solutions of

x2 −Dy2 = −1.

270. To be added.
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271. Clearly when n = 1, a = b = c = 2 is a solution.

We will show that the equation has no solution when n ≥ 2, we first see that a, b can’t
be both even for such n. If they are even (i.e. = 2), then c is also even (i.e. c = 2), but

2n + 2n = 2n+1 = 22

is impossible.

If n is odd, recall that

an + bn = (a+ b)(an−1 − an−2b+ · · ·+ (−1)n−1bn−1),

we also note that these two factors are different. Suppose it were true that a+ b = (an−1 −
an−2b+ · · ·+ (−1)n−1bn−1), then an + bn = (a+ b)2. However, an + bn ≥ a3 + b3 > (a+ b)2

for a, b ≥ 2 and a, b not both 2. So c2 = an + bn implies c2 can be factorized into two
different numbers. So a + b = 1 or a + b = c2. a + b = 1 is impossible and a + b = c2 =⇒
c2 = an + bn > a+ b = c2, it’s also impossible.

So n must even, let n = 2m, then

(am)2 + (bm)2 = c2.

By the theorem on Pythagorean triple, there is u, v ∈ N, u > v such that

(am, bm, c) = (u2 − v2, 2uv, u2 + v2).

Now bm = 2uv, 2|bm =⇒ 2|b and b is prime implies b = 2, so 2m−1 = uv, so u = 2a and
v = 2b, a+ b = m− 1 with a > b ≥ 0. am = (u+ v)(u− v) = (2a + 2b)(2a− 2b), so a is even
and hence a = 2. But a = b = 2 is also impossible in this case!

2.11 Metric Spaces

272. To be added.

273. Let En = {x : fn(x) = 0}, then

∞⋃
n=1

En = R. Now R◦ 6= ∅ =⇒ R is of second category

=⇒ R is not of first category =⇒ for positive positive integer n, En is not nowhere dense,
then

(En)◦ 6= ∅. (*)

What’s more, En is closed, let x ∈ En, then there is a sequence {xn ∈ En} that tends to
x, then f (n)(x) = f (n)(limn→∞ xn) = limn→∞ f (n)(xn) = 0, thus x ∈ En. As a result, (*)
tells us E◦n 6= 0, take x0 ∈ E◦n, then there is an open ball in En. As a ball on R is an open
interval, we have shown that there is a open interval (a, b) such that

f (n)(x) = 0,

integrating it n times will give us a polynomial of n− 1 degree.

274. Method 1. The first part is easy. For the second part, let L = L, prove the claim that

L =

∞⋂
n=1

(⋃
x∈L

B

(
x,

1

n

))
.

Method 2. Let f(x) = d(x,A), then f is continuous, now x ∈ A ⇐⇒ f(x) = 0 ⇐⇒
x ∈ f−1(0). But {0} = ∩∞n=1[0, 1

n ) and [0, 1
n ) is open in [0,∞), for all n ∈ N. So

A = A = f−1

( ∞⋂
n=1

[
0,

1

n

))
=

∞⋂
n=1

f−1

[
0,

1

n

)
.
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275. Direct use of Contraction mapping theorem.

276. Suppose on the contrary, for all ∀r > 0,∃x ∈M,∀U ∈ U = {Uα : α ∈ A}, B(x, r) * Ui.

Let r = 1
n , there is xn ∈ M , B(xn,

1
n ) * Uα, for all α ∈ A. As M is compact, xnk

converges to x, for all ε > 0, there is K1 such that

k > K1 =⇒ d(xnk , x) <
ε

2
.

But the compactness tells us x ∈M , so x ∈ Uα,∃α. ∃r > 0, B(x, r) ⊆ Uα.

Let y ∈ B(xnk ,
1
nk

), d(y, x) ≤ d(y1, xnk) + d(xnk , x) < 1
nk

+ ε
2 . Choose k large so that

d(y, x) < ε, take ε = r, y ∈ B(x, r), thus

B

(
xnk ,

1

nk

)
⊆ B(x, r) ⊆ Uα ∈ U ,

a contradiction.

277. Suppose on the contrary for all x ∈ X, d
(
x, f(x)

)
> 0, by compactness and continuity, there

is a x0 ∈ X, such that c = f
(
x0, f(x0)

)
= inf{d

(
x, f(x)

)
: x ∈ X}. As a result, for all

x ∈ X, d
(
x, f(x)

)
≥ c. Take x = xn = f (n)(x0), we have

c = d
(
x0, f(x0)

)
> d
(
xn, f(xn)

)
≥ c,

a contradiction.

278. Write

R \ S =

( ∞⋃
k=1

Wk

)
\

( ∞⋃
n=1

(Wn)◦

)
=

∞⋃
k=1

(
Wk \

( ∞⋃
n=1

(Wn)◦

))
,

since Wk is closed,
⋃∞
n=1(Wn)◦ is open, we see that Wk \

(⋃∞
n=1(Wn)◦

)
is closed, henceWk \

( ∞⋃
n=1

(Wn)◦

)◦ =

(
Wk \

( ∞⋃
n=1

(Wn)◦

))◦
⊆
(
Wk \W ◦k

)◦
= ∅,

so R \ S is of the first category, and hence S is dense in R.

279. To be added.

280. Since {(−∞, c), (c,∞) : c ∈ (a, b)} is a topological subbasis for Tusual ∩ [a, b], it suffices to
check that f−1(−∞, c) and f−1(c,∞) are open for all c ∈ (a, b). Let’s fix c ∈ (a, b). λ0

always means some element in Λ.

Suppose f(x) > c, by density there is λ0 > c so that f(x) > λ0. Note that f(x) >
λ0 =⇒ x ∈ X − Oλ0

. Combined with our assumption, f(x) > c =⇒ ∃λ0 > c, x ∈
X −Oλ0

. Conversely, suppose ∃λ0 > c, x 6∈ Oλ0
, then for all λ ≤ λ0, x 6∈ Oλ, meaning that

{λ ∈ Λ : x ∈ Oλ} ⊆ (λ0,∞), so f(x) ≥ λ0 > c. Combining the above two directions, we
conclude

f−1(c,∞) = ∪λ∈(c,b)(X −Oλ) = X − ∩λ∈(c,b)Oλ.

Now f−1(c,∞) is open iff ∩λ∈(c,b)Oλ is closed. But we always have ∩λ∈(c,b)Oλ ⊆ ∩λ∈(c,b)Oλ.

And by normal ascending property, ∩λ∈(c,b)Oλ ⊆ ∩λ∈(c,b)Oλ, we conclude that ∩λ∈(c,b)Oλ ⊆
∩λ∈(c,b)Oλ, proving that f−1(c,∞) is open.

Similarly, if f(x) < c, then there is λ0 < c, f(x) < λ0. So there must be λ < λ0,
x ∈ Oλ ⊆ Oλ0

, for some λ0 < c. Conversely, if x ∈ Oλ0
, for some λ0 < c, then f(x) ≤ λ0 < c,

hence f−1(−∞, c) = ∪λ∈(a,c)Oλ, which is of course open.
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2.12 Linear Algebra

281. Suppose there are n eigenvalues λ1, λ2, . . . , λn of T , then let v1, v2, . . . , vn be the correspond-
ing eigenvectors. Since

x ∈ rangeT |span(v1,...,vn) ⇐⇒ ∃ai ∈ F, x = T

(
n∑
i=1

aivi

)
⇐⇒ ∃ai ∈ F, x =

n∑
i=1

aiλivi

⇐⇒

x ∈ span(v1, . . . , vn), all λi 6= 0,

x ∈ span
i 6=j

vi, λj = 0,

we conclude rangeT |span(v1,...,vn) = spani vi or spani6=j vi, in either case we have

k = dim rangeT ≥ dim rangeT |span(v1,...,vn) ≥ n− 1 =⇒ k + 1 ≥ n.

282. To be added.

283. To be added.

284. To be added.

285. If T = cI, for some c ∈ F, then clearly ST = TS for all S ∈ L(V ).

Conversely, assume ST = TS for all S ∈ L(V ). If T ≡ 0, we are done since T = 0I.
Let’s further assume T 6≡ 0.

Now it suffices to prove every v ∈ V is an eigenvector of T (then by problem 283, T = cI
for some c ∈ F). Let v ∈ V , suppose v and Tv are linearly independent (automatically
implying that v, Tv 6= 0), we try to show it is absurd (and the proof is completed). We can
define a linear map S ∈ L(span(v, Tv)) by

S
(
a(v) + b(Tv)

)
= a(αv) + b(Tv), a, b ∈ F, α 6= 0,

then since TSv = STv, we conclude T (αv) = Tv =⇒ (α − 1)Tv = 0, taking α = 2, a
contradiction arises. So for any v ∈ V , v and Tv are linearly dependent, we are done.

286. To be added.

287. If dimV = 1, then it is trivial without the hypothesis. For dimV ≥ 2 we try to use problem
283. For convenience, let n = dimV . Let v ∈ V \{0}, assume (v, Tv) is linearly independent,
we try to derive a contradiction (hence (v, Tv) is always linearly dependent and hence all
nonzero v ∈ V is an eigenvalue, we are done). We extend the list to (v, Tv, v1, v2, . . . , vn−2),
the basis of V . Now U = span(v, v1, v2, . . . , vn−2) is an n − 1 dimensional subspace and
hence invariant under T from our hypothesis. In particular, v ∈ U , so Tv ∈ U , i.e. U is at
least n dimensional, a contradiction.

288. To be added.

289. Clearly nullT ⊆ nullST . If nullT = nullST , we are done. Otherwise let (t1, t2, . . . , tm) be
a basis of nullT , extend it to

(t1, t2, . . . , tm, u1, . . . , un),

the basis of nullST . Clearly Tui 6= 0, if not nullT will be of dimension at least m + 1,
impossible. Now S(Tui) = 0 (iff Tui ∈ nullS), for all i, it is natural to ask whether
(Tu1, . . . , Tun) is linearly independent.

Now∑n
i=1 aiTui = 0,∃ai =⇒ T (

∑n
i=1 aiui) = 0,∃ai =⇒

∑n
i=1 aiui ∈ nullT, ∃ai,
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hence
∑n
i=1 aiui ∈ span(t1, t2, . . . , tm), but (t1, t2, . . . , tm, u1, . . . , un) is linearly indepen-

dent, ai = 0, for all i. So span(Tu1, . . . , Tun) ⊆ nullS =⇒ n ≤ dim nullS, and hence

dim nullST = m+ n = dim nullT + n ≤ dim nullT + dim nullS.

290. To be added.

291. To be added.

292. To be added.

293. To be added.

294. (a) Clearly the intersection is non-empty. Now rangeT = rangeT 2 and nullT = nullT 2

(why? both derived from the same reasoning). We let v ∈ nullT ∩ rangeT , then we see
that Tu = v,∃u ∈ V =⇒ T 2u = 0, so u ∈ nullT 2 = nullT , i.e. Tu = 0, thus v = 0.
So the intersection is trivial.

If V = nullT or V = rangeT , then we are done. Ignoring these two trivial cases,
we suppose dimV = n, let (v1, v2, . . . , vk) be the basis of nullT , expand the list such
that (v1, . . . , vk, u1, . . . , un−k) is the basis of V . Then clearly u1, . . . , un−k are not
necessarily vectors in rangeT , we claim that

(v1, . . . , vk, Tu1, . . . , Tun−k) is the basis of V .

We see that∑
aivi +

∑
biTui = 0 =⇒

∑
biT

2ui = 0 =⇒ T 2 (
∑
biui) = 0

=⇒
∑
biui ∈ nullT 2 = nullT =⇒

∑
biui =

∑
civi

=⇒ bi = 0,∀i =⇒
∑
aivi = 0

=⇒ ai = 0,∀i.

Indeed (v1, . . . , vk, Tu1, . . . , Tun−k) is a list of linearly independent vectors, so V =
nullT +rangeT , but their intersection is trivial, we conclude that V = nullT⊕rangeT .

(b) Take k = dimV , then rangeT dimV = rangeT dimV+1, repeat all the statements above,
we are done.

295. Let (v1, v2, . . . , vk) be the basis of nullA.

For any u ∈ nullQAP , we have QAPu = 0 =⇒ APu = 0 =⇒ Pu ∈ nullA, so

Pu =

k∑
i=1

aivi =⇒ u =

k∑
i=1

aiP
−1vi,

this tells us the list of vectors B = (P−1v1, P
−1v2, . . . , P

−1vk) spans nullQAP . It remains
to show that B is linearly independent. Suppose that

∑
aiP

−1vi = 0, then

P−1
(∑

aivi

)
= 0 =⇒

∑
aivi = 0 =⇒ ai = 0.

So dim nullQAP = dim nullA, noting that both domains of A and QAP is Rn, by rank-
nullity theorem, we are done.

296. Note that A is an m× n matrix implies ATA is an n× n matrix, so both the domain of A
and ATA is Rn, thus by rank-nullity theorem,

rankATA = rankA ⇐⇒ dim nullATA = dim nullA.
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To prove so, we either prove that their null spaces are the same or prove their null spaces are
spanned by the same number of linearly independent vector(s). Clearly nullATA ⊇ nullA.
To prove nullA ⊇ nullATA, let v ∈ nullATA, then ATAv = 0, so

0 = 〈v, 0〉 = 〈v,ATAv〉 = 〈Av,Av〉 = ‖Av‖2,

hence v ∈ nullA, we conclude that nullA = nullATA.

297. Assume (I + S)x = 0, then it is easy to deduce that x = 0, meaning that I + S is injective,
and hence invertible.

298. The (⇒) direction is clear since when λ ∈ σ(A), one has Av = λv for some v 6= 0, then
Akv = λkv → 0 =⇒ |λ| < 1 (we can find an k so that |λk|‖v‖ < ‖v‖), and as σ(A) is at
most finite, we conclude ρ(A) < 1.

For the (⇐) direction, we upper triangulize A by some P ∈ GLn(C), i.e.,

U := PAP−1 =


λ1 b12 · · · b1n
0 λ2 · · · b2n

0 0
. . .

...
0 0 · · · λn

 ,

then Ue1 = λ1e1, and U je1 = λj1e1 and hence |λ1| < 1 =⇒ Uke1 → 0. We complete the
proof by induction, assume there is k ∈ N so that

lim
j→∞

U j(e1), . . . , lim
j→∞

U j(ek−1) = 0.

Then since U(ek) =
∑k−1
i=1 bikei + λkek, we have U j+1(ek) =

∑k−1
i=1 bikU

j(ei) + λkU
j(ek).

For a vector v ∈ Cn let’s denote [v]` to be its `th coordinate w.r.t. the usual basis, then one
has

[U j+1(ek)]` =

k−1∑
i=1

bik[U j(ei)]`+λk[U j(ek)]` =⇒
∣∣[U j+1(ek)]`

∣∣ ≤ k−1∑
i=1

|bik|
∣∣[U j(ei)]`∣∣+|λk|∣∣[U j(ek)]`

∣∣,
so limj→∞

∣∣[U j+1(ek)]`
∣∣ ≤ ∣∣λk∣∣ limj→∞

∣∣[U j(ek)]`
∣∣ =⇒ limj→∞

∣∣[U j(ek)]`
∣∣ = 0 =⇒

limj→∞[U j(ek)]` = 0. As this is true for ` = 1, 2, . . . , n, so limj→∞ U j(ek) = 0.

We conclude by induction that limj→∞ U j(ek) = 0 for k = 1, 2, . . . , n. Since each vector
in Rn is spanned by {ei}ni=1, we conclude U j → 0. Since Aj = P−1U jP , we conclude
Aj → 0.

299. To be added.

300. To be added.

301. The equivalence of (ii), (iii) is obvious, what is left is (i) ⇔ (ii). Let P be the orthogonal
projector onto rangeA4. Assume x0 solves the LSP, write r := b−Ax0, then

‖r‖2 = ‖Pr‖22 + ‖r − Pr‖22
= ‖Pr‖22 + ‖b−Ax0 − Pr‖22
≥ ‖Pr‖22 + ‖b−Ax0‖22
= ‖Pr‖22 + ‖r‖22,

4Not assuming A has full rank.
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we conclude Pr = 0, i.e., r = b − Ax0 ∈ (rangeA)⊥. Conversely, assume b − Ax0 ∈
(rangeA)⊥, then for each x ∈ Cn,

‖b−Ax0‖2 ≤
√
‖b−Ax0‖22 + ‖Ax‖22 = ‖b−A(x0 − x)‖2,

this shows that x0 does solve the LSP.

We prove the last assertion now. Suppose A has full rank, let x1, x2 solve the LSP. By
considering the polynomial

P (ε) := ‖b− [εAx1 + (1− ε)Ax2]‖22 = ‖(Ax1 −Ax2)ε+Ax2 − b‖22

in5 ε, it is not hard to show P ′′(ε) = 0, hence Ax1 = Ax2, and thus A∗Ax1 = A∗Ax2. But
A has full rank, x1 = x2. Conversely, assume A does not have full rank, then A∗A is not
injective, thus there is nonzero x ∈ Cn, A∗Ax = 0, so Ax = 0. Now x + x0 also solves the
LSP, the solution to LSP is not unique.

302. To be added.

303. To be added.

304. To be added.

305. To be added.

306. To be added.

307. To be added.

308. To be added.

309. To be added.

310. To be added.

311. To be added.

312. To be added.

313. To be added.

2.13 Algebra

314. Let A,B be two proper subgroups of a group G, then A\B is nonempty (otherwise B = G).
Let a ∈ A \B, take g ∈ G, if g ∈ A, then clearly ga ∈ A. If g ∈ B, then ga ∈ B =⇒ a ∈ B,
a contradiction. Hence ga ∈ A, this means Ga ⊆ A. But Ga is just a permutation of
elements in G, i.e. Ga = G, hence G ⊆ A, a contradiction.

315. (a) Answer is 25, see (b) to get the general idea.

(b) Let L(n, k) = |{σ ∈ Sn : |σ| = k}|,

L(n, 2) =

(
n

2

)
+

(
n
2

)(
n−2

2

)
2!

+

(
n
2

)(
n−2

2

)(
n−4

2

)
3!

+ · · ·+
(
n
2

)(
n−2

2

)
· · ·
(
n−2k

2

)
(k + 1)!

.

We are left to determine such least possible k, we need n − 2k ≥ 2, so k + 1 ≤ n

2
,

thus the range of k is

1 ≤ k + 1 ≤
[n

2

]
=⇒ 0 ≤ k ≤

[n
2

]
− 1,

5One can expand by the formula ‖a+ b‖22 = ‖a‖22 + ‖b‖22 + 2 Re〈a, b〉.
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so the number is precisely

L(n, 2) =

[n2 ]−1∑
k=0

1

(k + 1)!

k∏
r=0

(
n− 2r

2

)
.

(c) In general for 2 ≤ p ≤ n, when we have chosen a permutation (i1 i2 · · · ip), we get total
distinct permutations by multiplying (p− 1)!, namely,

i1 → (p− 1) choices→ (p− 2) choices→ · · · → 1 choice (back to i1),

we generalize L(n, 2) by

L(n, p) =

[np ]−1∑
k=0

1

(k + 1)!

k∏
r=0

((
n− pr
p

)
(p− 1)!

)
=

[np ]∑
k=1

(
(p− 1)!

)k
(k)!

k−1∏
r=0

(
n− pr
p

)
.

To “verify” the result, lets count L(n, 3) in another way, we count this by considering
an defined by

an =
1

3
×

(
n

2

)
︸︷︷︸

choose 2 elements
to form permutation

(
2

1

)
︸︷︷︸

choose 1 of the first two
chosen numbers

(
n− 2

1

)
︸ ︷︷ ︸

choose another 1 to form permutation
with the number in 2C1

.

The factor 1
3 is left there because we observe that every length 3 permutation can

be written as product of 2 transpositions in exactly 3 ways.

Then clearly the number of ways to form order 3 permutation by multiplying k
disjoint length 3 cycles is given by∏k−1

r=0 an−3r

(k)!
=

2k

(k)!

k−1∏
r=0

(
n− 3r

3

)
,

exactly the same summand appears.

316. The map a(H ∩K)
ϕ7→(aH, aK) is a group isomorphism between G/(H ∩K) and (G/H)×

(G/K). Well-definedness and injectivity are easy to check. We need to argue a little bit on
surjectivity.

Let (aH, bK) ∈ (G/H) × (G/K), since HK = G = G−1 = KH, we can write a = k1h1

and b = h2k2, hi ∈ H and ki ∈ K, i = 1, 2,

(aH, bK) = (k1h1H,h2k2K) = (k1H,h2K) = (k1h2H,Kh2) = (k1h2H, k1h2K) = ϕ(k1h2H∩K).

Thus the map ϕ is surjective.

Remark. From above let H,K be normal subgroups of a group G, if HK forms a group, then

HK = KH. Conversely, if HK = KH, then HK forms a group. So HK is a group if and only if HK = KH .

317. To be added.

318. Let N = A ∩ B. We can check N is a subgroup of A and B. Let x, y ∈ N , then there are
ai ∈ A, bi ∈ B such that x = a1 = b1, y = a2 = b2, then clearly xy−1 = a1a

−1
2 = b1b

−1
2 , so

xy−1 ∈ N .

It is natural to decompose AB as follows.

AB =

[A:N ]⋃
i=1

aiN

B =

[A:N ]⋃
i=1

aiNB =

[A:N ]⋃
i=1

aiB,
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here [H : K] denotes the number of left co-sets in H/K, we also let {ai}[A:N ]
i=1 = A′.

Let ap, aq ∈ A′. Suppose apB ∩ aqB 6= ∅, we let br, bs ∈ B, such that

apbr = aqbs =⇒ a−1
q ap = bsb

−1
r ,

this tells us a−1
q ap ∈ N = A ∩ B =⇒ apN = aqN =⇒ ap = aq, as the representatives of

co-sets have been fixed. We have proved all aiB’s are disjoint.

Since aiB’s are disjoint and |aiB| = |B| (elements inside aiB are still distinct), the
number of element(s) is

[A : A ∩B]|B| = |A||B|
|A ∩B|

.

319. To be added.

320. It is clear that for each x ∈ Sa, xak ∈ Sa, so x〈a〉 is contained in Sa, as a result,

Sa ⊇ x〈a〉 ⊇ {x} =⇒ Sa ⊇
⋃
x∈Sa

x〈a〉 ⊇ Sa,

so Sa = tNi=1xi〈a〉 =⇒ |Sa| = Nn (exactly the same idea in Lagrange’s theorem).

321. To be added.

322. To be added.

323. To be added.

324. To be added.

325. To be added.

326. To be added.

327. Observe that H ⊆ Z(G) ⇐⇒ ghg−1 = h,∀g ∈ G,∀h ∈ H ⇐⇒ |Orb(h)| = 1,∀h ∈ H.
Here Orb(h) = {ghg−1 : g ∈ G} and the action is conjugate action. Normality of H implies
that Orb(h) ⊆ H, so to prove |Orb(h)| = 1, it suffices to prove that Orb(h) 6= H.

Now Orb(h) = H implies there is g ∈ G such that ghg−1 = e ∈ H, so h = e. That is to
say, if H 3 h 6= e, then Orb(h) = 1. So clearly Z(G) ⊇ H \ {e}. However it is clear that
e ∈ Z(G), so Z(G) ⊇ H.

Remark. We can also consider the action of group H on G, but in this way we see the
assumption that H is normal becomes unhelpful.

328. To be added.

329. We show that if ~a,~b and ~a′,~b′ are pairs of linearly independent vectors in R2 such that they
generate the same discrete subgroup in R2 in the sense that

Z~a+ Z~b = Z~a′ + Z~b′,

then the transition matrix from (~a,~b) to (~a′,~b′) has determinant ±1.

For simplicity we identify ~a,~b,~a′,~b′ with the symbol a, b, a′, b′ ∈ R2 respectively. Since
there are A,B,C,D ∈ Z such that

a′ = Aa+Bb and b′ = Ca+Db,

we are left to show that P :=

(
A C
B D

)
has determinant ±1.
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By assumption one has

Za+ Zb = Za′ + Zb′

= Z(Aa+Bb) + Z(Ca+Db)

= ∪m,n∈Z{(mA+ nC)a+ (mB + nD)b}, (*)

this is the same as saying that for any u, v ∈ Z, we can find m,n ∈ Z such that{
u = mA+ nC

v = mB + nD
⇐⇒

(
u
v

)
=

(
A C
B D

)(
m
n

)
= P

(
m
n

)
,

this shows that P : Z2 → Z2 is surjective.

We first assume A,B,C,D are nonzero, for the case some of them are zero, the same
approach will do. We observe that

P

(
D
−B

)
= D

(
A
B

)
−B

(
C
D

)
=

(
DA−BC

0

)
.

and also that

Pu ∈ Z× {0} ⇐⇒ u ∈ Z
(
D
−B

)
,

this is because for u = (xy) ∈ Z2, Pu ∈ Z× {0} ⇐⇒ xB + yD = 0 ⇐⇒ y = −xB/D ⇐⇒
x = Dn, y = −nB for some n ∈ Z, the last one follows from the observation that gcd(B,D) =
1 (by (*), otherwise P cannot be surjective). Now we take an x0 ∈ Z2 such that Px0 = (1

0),
then there is an integer k such that x0 = k( D−B), thus(

1
0

)
= Px0 = kP

(
D
−B

)
= k

(
DA−BC

0

)
,

and hence 1 = k(DA−BC) =⇒ |DA−BC| = 1.

330. (a) Let Γ be a subgroup of R under addition. If Γ is dense in R, we are done. Otherwise,
there is a point x0 ∈ R that is neither a point nor a limit point of Γ, i.e. there is ε > 0
such that B(x0, ε)∩Γ = ∅. If Γ = {0}, then it is clearly discrete. Let’s assume Γ is not
trivial. If there are distinct a, b ∈ Γ such that |a− b| < ε/2, then there will be a k ∈ Z
such that a + k(a − b) ∈ B(x0, ε), a contradiction. We conclude |a − b| ≥ ε/2, for all
distinct a, b ∈ Γ, hence Γ is discrete.

(b) If Z + Z
√

2 is not dense in Z, then it must a discrete subgroup of (R,+), and any
additive discrete subgroup of R must be of the form Za, for some a > 0, thus there is
a > 0 such that Z+ Z

√
2 = Za. Clearly there are nonzero integers m,n such that

1 + 0
√

2 = ma and 0 + 1
√

2 = na =⇒ a ∈ Q ∩ (R \Q),

a contradiction.

(c) It suffices to construct H ′ = {θ ∈ R : ρθ ∈ H} and G′ = {θ ∈ R : ρθ ∈ G}.

331. (a) Let G be a finite subgroup of F×. Observe that u :=
∏
g∈G g has order L := lcm{|g| :

g ∈ G}. That is, u is an element in G which has largest order. Now 〈u〉 := {uk : k ∈
Z} ⊆ {x ∈ G : xL = 1}. Since F is a field, there are at most L solutions in F for the
equation xL = 1, hence 〈u〉 = {x ∈ G : xL = 1}. For each g ∈ G, |g||L, so gL = 1, thus
g ∈ 〈u〉. We conclude G = 〈u〉.

(b) It suffices to show the statement for cyclic subgroups of F×. The statement is trivial
for n = 1. We prove by induction on n. Let there be at most one cyclic subgroup
of order 1, 2, . . . , n − 1. Assume |〈x〉| = |〈y〉| = n, then |x| = |y| and for each k ≥ 2,
we have 〈xk〉 = 〈yk〉. So x = x3(x2)−1 ∈ 〈x3〉〈x2〉 = 〈y3〉〈y2〉 ⊆ 〈y〉 =⇒ 〈x〉 ⊆ 〈y〉.
Interchanging x and y, we have 〈x〉 = 〈y〉, as desired.

The end of this pdf.
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