Midterm Review: More Problems on Limit Superior and Inferior

Ching-Cheong Lee

November 26, 2013

Example 1, 2 and 3 demonstrate the same idea and same technique with increasing level of complexity, these 3 examples may not provide you sufficient technique to tackle the most challenging problems in the midterm exam of this course. Thus Example 4 to Example 7 aim at providing you the examples with various possible technique that may arise in problems related to lim sup and lim inf.

Specifically, in Example 4 and 5 we will try to refine the condition like

$$
\overline{\lim }<? ? ?
$$

for which the problem is not readily solvable without any adjustment on the bound "???". Example 6 and 7 are miscellaneous.

Example 1. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of positive numbers such that $\sum_{n=1}^{\infty} b_{n}=\infty$, show that

$$
\begin{equation*}
\varlimsup \frac{a_{1}+a_{2}+\cdots+a_{n}}{b_{1}+b_{2}+\cdots+b_{n}} \leq \varlimsup \frac{a_{n}}{b_{n}} . \tag{1}
\end{equation*}
$$

Solution. If $\overline{\lim } a_{n} / b_{n}=\infty$, then inequality (1) holds obviously.
Suppose now $\overline{\lim } a_{n} / b_{n}<\infty$, we fix an $\alpha \in \mathbb{R}$ such that $\overline{\lim } a_{n} / b_{n}<\alpha$, then there is an N such that

$$
n>N \Longrightarrow \frac{a_{n}}{b_{n}}<\alpha
$$

Thus we have $a_{n}<\alpha b_{n}$ and

$$
\begin{aligned}
\frac{a_{1}+\cdots+a_{n}}{b_{1}+\cdots+b_{n}} & =\frac{a_{1}+\cdots+a_{N}+a_{N+1}+\cdots+a_{n}}{b_{1}+\cdots+b_{n}} \\
& <\frac{a_{1}+\cdots+a_{N}}{b_{1}+\cdots+b_{n}}+\frac{\alpha\left(b_{N+1}+\cdots+b_{n}\right)}{b_{1}+\cdots+b_{n}} .
\end{aligned}
$$

By taking $\overline{\mathrm{l}}$ on the ends of the above inequality we have

$$
\varlimsup \frac{a_{1}+\cdots+a_{n}}{b_{1}+\cdots+b_{n}} \leq 0+\alpha \cdot 1=\alpha .
$$

Since $\alpha>\overline{\lim } a_{n} / b_{n}$ is arbitrary, we taking $\alpha \rightarrow\left(\overline{\lim } a_{n} / b_{n}\right)^{+}$to get

$$
\varlimsup \frac{a_{1}+\cdots+a_{n}}{b_{1}+\cdots+b_{n}} \leq \overline{\lim } \frac{a_{n}}{b_{n}} . \quad\left(\hat{{ }_{\nabla}} \hat{A^{\prime}}\right)^{\circ} \sim
$$

Example 2 (2003 Midterm (L1)). Let $\left\{a_{n}\right\}$ be a sequence of real numbers. show that

$$
\limsup _{n \rightarrow \infty} \frac{a_{n}}{n^{2}} \leq \limsup _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{2 n+1} .
$$

Solution. If $\overline{\lim } \frac{a_{n+1}-a_{n}}{2 n+1}=\infty$, then we are done.
Suppose now $\frac{2}{\lim } \frac{a_{n+1}-a_{n}}{2 n+1}<\infty$, then we fix an $\alpha \in \mathbb{R}$ such that

$$
\varlimsup \frac{a_{n+1}-a_{n}}{2 n+1}<\alpha,
$$

then there is an N such that

$$
k \geq N \Longrightarrow \frac{a_{k+1}-a_{k}}{2 k+1}<\alpha \Longrightarrow a_{k+1}-a_{k}<\alpha(2 k+1)
$$

Taking $\sum_{k=N}^{n-1}$ on both sides we have for every $n>N$,

$$
\sum_{k=N}^{n-1}\left(a_{k+1}-a_{k}\right)<\sum_{k=N}^{n-1} \alpha(2 k+1)
$$

which is the same as

$$
a_{n}-a_{N}<\alpha((n+N-1)(n-N)+n-N) .
$$

Diving both sides by n^{2} we have

$$
\frac{a_{n}}{n^{2}}-\frac{a_{N}}{n^{2}}<\alpha\left(\frac{(n+N-1)(n-N)}{n^{2}}+\frac{n-N}{n^{2}}\right) .
$$

Finally by taking $\overline{\mathrm{lim}}$ on both sides, we obtain

$$
\varlimsup \frac{a_{n}}{n^{2}} \leq \alpha
$$

but this is true for every (fixed) $\alpha>\overline{\lim } \frac{a_{n+1}-a_{n}}{2 n+1}$, so by taking

$$
\alpha \rightarrow\left(\overline{\lim } \frac{a_{n+1}-a_{n}}{2 n+1}\right)^{+}
$$

we have

$$
\varlimsup \frac{a_{n}}{n^{2}} \leq \varlimsup \frac{a_{n+1}-a_{n}}{2 n+1} . \quad\left(\hat{\mathcal{A}_{\nabla}} \hat{\operatorname{c}}\right)^{\perp \sim}
$$

Example 3 (2011 Midterm).

(a) Let $\left\{x_{n}\right\}$ be a sequence of real numbers. Prove that

$$
\limsup _{n \rightarrow \infty} \frac{n x_{n+1}+(n+1) x_{n}}{n+1} \leq \limsup _{n \rightarrow \infty}\left((n+1) x_{n+2}+2 x_{n+1}-(n+1) x_{n}\right) \text {. }
$$

(b) Give an example of a sequence $\left\{x_{n}\right\}$ of reals s.t. $\lim _{n \rightarrow \infty} \frac{n x_{n+1}+(n+1) x_{n}}{n+1}$ exists but $\lim _{n \rightarrow \infty}\left((n+1) x_{n+2}+2 x_{n+1}-(n+1) x_{n}\right)$ does not exist.

Solution. (a) If $\limsup _{n \rightarrow \infty}\left((n+1) x_{n+2}+2 x_{n+1}-(n+1) x_{n}\right)=\infty$, then we are done.

Suppose now $\limsup _{n \rightarrow \infty}\left((n+1) x_{n+2}+2 x_{n+1}-(n+1) x_{n}\right)<\infty$, then we fix an $\alpha \in \mathbb{R}$ such that

$$
\limsup _{n \rightarrow \infty}\left((n+1) x_{n+2}+2 x_{n+1}-(n+1) x_{n}\right)<\alpha
$$

so there is an N such that

$$
k \geq N \Longrightarrow(k+1) x_{k+2}+2 x_{k+1}-(k+1) x_{k}<\alpha .
$$

How is the term on the LHS related to $A_{k}:=k x_{k+1}+(k+1) x_{k}$? We note that LHS is nothing but $A_{k+1}-A_{k}$, thus we have

$$
A_{k+1}-A_{k}<\alpha,
$$

therefore we have $A_{n}-A_{N}=\sum_{k=N}^{n-1}\left(A_{k+1}-A_{k}\right)<(n-N) \alpha$, and hence

$$
\frac{A_{n}}{n}-\frac{A_{N}}{n}<\frac{n-N}{n} \alpha,
$$

by taking $\bar{\varlimsup}$ on both sides, we have

$$
\overline{\lim } \frac{A_{n}}{n} \leq \alpha
$$

Now the rest is routine!
(b) We choose $x_{n}=(-1)^{n}$, then

$$
\frac{n x_{n+1}+(n+1) x_{n}}{n+1}=\frac{-n(-1)^{n}+(n+1)(-1)^{n}}{n+1}=\frac{(-1)^{n}}{n+1}
$$

and

$$
(n+1) x_{n+2}+2 x_{n+1}-(n+1) x_{n}=(-1)^{n}(n+1-2-(n+1))=-2(-1)^{n} .
$$

The former one converges to 0 but the later one diverges.

Example 4 (2004 Midterm (L2)). Let $a_{k} \geq 0$ for $k=1,2,3, \ldots$ and

$$
\limsup _{k \rightarrow \infty} a_{k}^{1 / \ln k}<\frac{1}{e}
$$

prove that $\sum_{k=1}^{\infty} a_{k}$ converges.
Solution. First attempt: Since $\overline{\lim } a_{k}^{1 / \ln k}<1 / e$, there is a K such that

$$
k>K \Longrightarrow a_{k}^{1 / \ln k}<1 / e
$$

And thus $k>K \Longrightarrow a_{k}<1 / k$, which provides no information to the convergence of $\sum_{k=1}^{\infty} a_{k}$. We notice that the bound $1 / e$ can be shrink slightly.

Second attempt: By continuity, there is an $\epsilon>0$ such that $\overline{\lim } a_{k}^{1 / \ln k}<\frac{1}{e^{1+\epsilon}}<$ $\frac{1}{e}$, hence there is a K,

$$
k>K \Longrightarrow a_{k}^{1 / \ln k}<\frac{1}{e^{1+\epsilon}}
$$

and hence $k>K \Longrightarrow a_{k}<1 / k^{1+\epsilon}$, and thus $\sum_{k=1}^{\infty} a_{k}$ converges. $\quad\left(\hat{\theta}_{\nabla} \hat{\mathcal{A}^{\circ}}{ }^{\circ} \sim\right.$
Example 5. Let $\left\{a_{n}\right\}$ be strictly increasing and unbounded, we define

$$
s=\varlimsup_{n \rightarrow \infty} \frac{\ln n}{\ln a_{n}}
$$

Let $t>0$, show that the series $\sum_{n=1}^{\infty} a_{n}^{-t}$ converges for $t>s$ and diverges for $t<s$.

Solution. Let $t>0$. If $s=\infty$, then none of $t \in \mathbb{R}$ can satisfy $t>s$, it follows that the statement has nothing to prove.

Suppose now that $s<\infty$ and $t>s=\varlimsup_{n \rightarrow \infty} \ln n / \ln a_{n}$.
First attempt: By definition there is an N such that

$$
n>N \Longrightarrow t>\frac{\ln n}{\ln a_{n}}
$$

It follows that $t \ln a_{n}>\ln n$, and thus $a_{n}^{-t}<1 / n$. But then no conclusion can be made since $\sum 1 / n=\infty$.

Second attempt: We need to refine the condition that $t>s$, we find that by continuity there is an $\epsilon>0$ such that $\frac{t}{1+\epsilon}>s$, hence there is an N,

$$
n>N \Longrightarrow \frac{t}{1+\epsilon}>\frac{\ln n}{\ln a_{n}}
$$

On simplification, the last inequality becomes $a_{n}^{-t}<1 / n^{1+\epsilon}$, so $\sum a_{n}^{-t}$ converges by Comparison Test.

Suppose now $t<s$, then since s is a subsequential limit, we can find $\left\{n_{k}\right\}$ such that for every $k, t<\ln n_{k} / \ln a_{n_{k}}$. Therefore

$$
a_{n_{k}}^{-t}>1 / n_{k} \Longleftrightarrow n_{k} a_{n_{k}}^{-t}>1 .
$$

Since $\left\{a_{n}^{-t}\right\}$ is decreasing sequence of positive numbers, by the fact that

$$
\left\{b_{n}>0\right\} \text { decreasing and } \sum b_{n}<\infty \Longrightarrow \lim _{n \rightarrow \infty} n b_{n}=0
$$

from Example 1 of tutorial note 4.5. We conclude $\sum a_{n}^{-t}$ diverges. $\left(\hat{\sim}_{\nabla} \hat{\sim}\right)^{\Delta \sim}$
Example 6 (2006 Midterm). Let $\left\{x_{n}\right\}$ be a bounded sequence of real numbers such that

$$
\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=0, \quad \liminf _{n \rightarrow \infty} x_{n}=a \quad \text { and } \quad \limsup _{n \rightarrow \infty} x_{n}=b .
$$

Show for every $c \in[a, b]$, there is a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ with $\lim _{i \rightarrow \infty} x_{n_{i}}=c$.
Solution. Let $c \in[a, b]$. We further assume $c \neq a, b$ as otherwise we are done. Now we need to show that in every small ${ }^{1}$ neighborhood $(c-r, c+r)$ of c, we can always find an element in $\left\{x_{1}, x_{2}, \ldots\right\}$.

To do this, let's for the sake of contradiction suppose there is a small neighborhood ($c-r, c+r$) of c which contains none of x_{n} 's. Then by the condition $\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=0$, there is an $N \in \mathbb{N}$,

$$
n>N \Longrightarrow\left|x_{n+1}-x_{n}\right|<r .
$$

Now the sequence $\left\{x_{n}\right\}_{n>N}$ cannot jump too far away from x_{n} to x_{n+1}.
Case $1\left(x_{N+1} \in[a, c-r]\right)$. In this case,

$$
\begin{aligned}
x_{N+1} \in[a, c-r] & \Longrightarrow x_{N+2} \in[a, c-r] \\
& \Longrightarrow x_{N+3} \in[a, c-r] \\
& \Longrightarrow \cdots \\
& \Longrightarrow x_{n} \in[a, c-r]
\end{aligned}
$$

for every $n \geq N+1$, so $\left\{x_{n}\right\}_{n \geq N+1}$ is trapped in $[a, c-r]$, then $\overline{\lim } x_{n} \leq c-r<b$, a contradiction.
cannot jump!

there can't be any x_{n}

[^0]Case $2\left(\boldsymbol{x}_{N+\boldsymbol{1}} \in[\boldsymbol{c}+\boldsymbol{r}, \boldsymbol{b}]\right)$. In this case the argument in case 1 carries over, and we arrive to the contradiction that $\underline{\lim } x_{n} \geq c+r>a$.

In conclusion, every small neighborhood of c contains one of x_{n} 's. Let $K \in \mathbb{N}$ be such that

$$
i>K \Longrightarrow\left(c-\frac{1}{i}, c+\frac{1}{i}\right) \subseteq[a, b],
$$

then there is an $x_{n_{i}} \in\left(c-\frac{1}{i}, c+\frac{1}{i}\right)$. Now $\lim _{i \rightarrow \infty} x_{n_{i}}=c$.

Example 7 (2008 Midterm).

(a) Give an example of a sequence $\left\{a_{n}\right\}$ of real numbers such that

$$
\lim _{n \rightarrow \infty}\left(a_{n}-2 a_{n+1}+a_{n+2}\right)=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left(a_{n}-a_{n+1}\right) \neq 0
$$

(b) Let $\left\{a_{n}\right\}$ be a bounded sequence of real numbers and

$$
\lim _{n \rightarrow \infty}\left(a_{n}-2 a_{n+1}+a_{n+2}\right)=0
$$

(i) Prove that $\limsup _{n \rightarrow \infty}\left(a_{n}-a_{n+1}\right) \leq 0$.
(ii) Using (i) or otherwise, prove that $\liminf _{n \rightarrow \infty}\left(a_{n}-a_{n+1}\right) \geq 0$. Determine $\lim _{n \rightarrow \infty}\left(a_{n}-a_{n+1}\right)$.

Solution. (a) The example $a_{n}=n$ will do.
(b) (i) Suppose that $\overline{\lim }\left(a_{n}-a_{n+1}\right)>0$, then there is an $\epsilon_{0}>0$ such that

$$
\overline{\lim }\left(a_{n}-a_{n+1}\right)>\epsilon_{0} .
$$

Since $\overline{\lim }\left(a_{n}-a_{n+1}\right)$ is a subsequential limit, there is $\left\{n_{k}\right\}$ such that

$$
\begin{equation*}
a_{n_{k}}-a_{n_{k}+1}>\epsilon_{0} \tag{2}
\end{equation*}
$$

for every k.
On the other hand, by the hypothesis for every $\epsilon>0$ there is an $N=N(\epsilon)$ such that

$$
\begin{equation*}
n>N \Longrightarrow a_{n}-a_{n+1}<a_{n+1}-a_{n+2}+\epsilon . \tag{3}
\end{equation*}
$$

We will apply the estimate (3) successively to (2). To this end, we choose K large so that $k>K=K(\epsilon) \Longrightarrow n_{k}>N$, then we have,

$$
k>K, j \in \mathbb{N} \quad \Longrightarrow \quad \begin{aligned}
\epsilon_{0} & <a_{n_{k}}-a_{n_{k}+1} \\
& <a_{n_{k}+1}-a_{n_{k}+2}+\epsilon \\
& <\cdots \\
& <a_{n_{k}+j}-a_{n_{k}+j+1}+j \epsilon
\end{aligned}
$$

Therefore ignoring the index n_{k} we get a telescoping sequence in j.

For a fixed $p \in \mathbb{N}$, it is temping to do $\sum_{j=1}^{p}$ on both sides of the last inequality. By doing that we get for every $k>K$,

$$
p\left(\epsilon_{0}-\frac{p+1}{2} \epsilon\right)=p \epsilon_{0}-\frac{p(p+1)}{2} \epsilon<a_{n_{k}+1}-a_{n_{k}+p+1} .
$$

We can choose $\frac{p+1}{2} \epsilon=\frac{\epsilon_{0}}{2}$ at the beginning, then for $k>K(\epsilon)$ we get

$$
\frac{p \epsilon_{0}}{2}<a_{n_{k}+1}-a_{n_{k}+p+1} .
$$

Note that the choice of ϵ depends on p, thus K depends on p, we conclude for every p, there is an index k_{p} such that

$$
\frac{p \epsilon_{0}}{2}<a_{k_{p}+1}-a_{k_{p}+p+1}
$$

this contradicts the boundedness of $\left\{a_{n}\right\}$.
(ii) We can replace the sequence in (b) (i) by $-a_{n}$ to get

$$
-\underline{\lim }\left(a_{n}-a_{n+1}\right)=\varlimsup \overline{\lim }\left(\left(-a_{n}\right)-\left(-a_{n+1}\right)\right) \leq 0,
$$

and this becomes $\underline{\lim \left(a_{n}-a_{n+1}\right) \geq 0 \text {. Therefore we have } 0 \leq \underline{\lim }\left(a_{n}-a_{n+1}\right) \leq}$ $\overline{\lim }\left(a_{n}-a_{n+1}\right) \leq 0$, and thus

$$
\lim _{n \rightarrow \infty}\left(a_{n}-a_{n+1}\right)=0 . \quad\left(\hat{\nabla_{\nabla}} \hat{\theta^{\circ}} \sim\right.
$$

[^0]: ${ }^{1}$ Let's define, by small, to mean $(c-r, c+r) \subseteq[a, b]$ such that $a<c-r$ and $c+r<b$.

