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Example 1, 2 and 3 demonstrate the same idea and same technique with increasing
level of complexity, these 3 examples may not provide you sufficient technique to
tackle the most challenging problems in the midterm exam of this course. Thus
Example 4 to Example 7 aim at providing you the examples with various possible
technique that may arise in problems related to lim sup and lim inf.

Specifically, in Example 4 and 5 we will try to refine the condition like

lim <‹‹‹

for which the problem is not readily solvable without any adjustment on the bound
“???”. Example 6 and 7 are miscellaneous.

Example 1. Let fang and fbng be sequences of positive numbers such thatP1
nD1 bn D1, show that

lim
a1 C a2 C � � � C an

b1 C b2 C � � � C bn
� lim

an

bn
: (1)

Solution. If lim an=bn D1, then inequality (1) holds obviously.
Suppose now lim an=bn < 1, we fix an ˛ 2 R such that lim an=bn < ˛, then

there is an N such that
n > N H)

an

bn
< ˛:

Thus we have an < ˛bn and

a1 C � � � C an

b1 C � � � C bn
D
a1 C � � � C aN C aNC1 C � � � C an

b1 C � � � C bn

<
a1 C � � � C aN

b1 C � � � C bn
C
˛.bNC1 C � � � C bn/

b1 C � � � C bn
:

By taking lim on the ends of the above inequality we have

lim
a1 C � � � C an

b1 C � � � C bn
� 0C ˛ � 1 D ˛:
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Since ˛ > lim an=bn is arbitrary, we taking ˛ ! .lim an=bn/
C to get

lim
a1 C � � � C an

b1 C � � � C bn
� lim

an

bn
: . O�5 O�/��

Example 2 (2003 Midterm (L1)). Let fang be a sequence of real numbers.
show that

lim sup
n!1

an

n2
� lim sup

n!1

anC1 � an

2nC 1
:

Solution. If lim
anC1 � an

2nC 1
D1, then we are done.

Suppose now lim
anC1 � an

2nC 1
<1, then we fix an ˛ 2 R such that

lim
anC1 � an

2nC 1
< ˛;

then there is an N such that

k � N H)
akC1 � ak

2k C 1
< ˛ H) akC1 � ak < ˛.2k C 1/:

Taking
Pn�1
kDN on both sides we have for every n > N ,

n�1X
kDN

.akC1 � ak/ <

n�1X
kDN

˛.2k C 1/;

which is the same as

an � aN < ˛ ..nCN � 1/.n �N/C n �N/ :

Diving both sides by n2 we have

an

n2
�
aN

n2
< ˛

�
.nCN � 1/.n �N/

n2
C
n �N

n2

�
:

Finally by taking lim on both sides, we obtain

lim
an

n2
� ˛;

but this is true for every (fixed) ˛ > lim anC1�an
2nC1

, so by taking

˛ !

�
lim

anC1 � an

2nC 1

�C
we have

lim
an

n2
� lim

anC1 � an

2nC 1
: . O�5 O�/��
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Example 3 (2011 Midterm).

(a) Let fxng be a sequence of real numbers. Prove that

lim sup
n!1

nxnC1 C .nC 1/xn

nC 1
� lim sup

n!1

�
.nC1/xnC2C2xnC1� .nC1/xn

�
:

(b) Give an example of a sequence fxng of reals s.t. lim
n!1

nxnC1 C .nC 1/xn

nC 1
exists but lim

n!1

�
.nC 1/xnC2 C 2xnC1 � .nC 1/xn

�
does not exist.

Solution. (a) If lim sup
n!1

�
.n C 1/xnC2 C 2xnC1 � .n C 1/xn

�
D 1, then we are

done.
Suppose now lim sup

n!1

�
.nC 1/xnC2C 2xnC1� .nC 1/xn

�
<1, then we fix an

˛ 2 R such that

lim sup
n!1

�
.nC 1/xnC2 C 2xnC1 � .nC 1/xn

�
< ˛;

so there is an N such that

k � N H) .k C 1/xkC2 C 2xkC1 � .k C 1/xk < ˛:

How is the term on the LHS related to Ak WD kxkC1 C .k C 1/xk? We note that
LHS is nothing but AkC1 � Ak, thus we have

AkC1 � Ak < ˛;

therefore we have An � AN D
Pn�1
kDN .AkC1 � Ak/ < .n �N/˛, and hence

An

n
�
AN

n
<
n �N

n
˛;

by taking lim on both sides, we have

lim
An

n
� ˛:

Now the rest is routine!
(b) We choose xn D .�1/n, then

nxnC1 C .nC 1/xn

nC 1
D
�n.�1/n C .nC 1/.�1/n

nC 1
D
.�1/n

nC 1

and

.nC 1/xnC2 C 2xnC1 � .nC 1/xn D .�1/
n.nC 1 � 2 � .nC 1// D �2.�1/n:

The former one converges to 0 but the later one diverges. . O�5 O�/��
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Example 4 (2004 Midterm (L2)). Let ak � 0 for k D 1; 2; 3; : : : and

lim sup
k!1

a
1= lnk
k

<
1

e
;

prove that
1X
kD1

ak converges.

Solution. First attempt: Since lim a
1= lnk
k

< 1=e, there is a K such that

k > K H) a
1= lnk
k

< 1=e:

And thus k > K H) ak < 1=k, which provides no information to the conver-
gence of

P1
kD1 ak. We notice that the bound 1=e can be shrink slightly.

Second attempt: By continuity, there is an � > 0 such that lim a
1= lnk
k

< 1
e1C� <

1
e
, hence there is a K,

k > K H) a
1= lnk
k

<
1

e1C�
;

and hence k > K H) ak < 1=k
1C�, and thus

P1
kD1 ak converges. . O�5 O�/��

Example 5. Let fang be strictly increasing and unbounded, we define

s D lim
n!1

lnn
ln an

:

Let t > 0, show that the series
P1
nD1 a

�t
n converges for t > s and diverges for

t < s.

Solution. Let t > 0. If s D 1, then none of t 2 R can satisfy t > s, it follows
that the statement has nothing to prove.

Suppose now that s <1 and t > s D limn!1 lnn= ln an.
First attempt: By definition there is an N such that

n > N H) t >
lnn
ln an

:

It follows that t ln an > lnn, and thus a�tn < 1=n. But then no conclusion can be
made since

P
1=n D1.

Second attempt: We need to refine the condition that t > s, we find that by
continuity there is an � > 0 such that t

1C�
> s, hence there is an N ,

n > N H)
t

1C �
>

lnn
ln an

:

On simplification, the last inequality becomes a�tn < 1=n1C�, so
P
a�tn converges

by Comparison Test.
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Suppose now t < s, then since s is a subsequential limit, we can find fnkg such
that for every k, t < lnnk= ln ank . Therefore

a�tnk > 1=nk ” nka
�t
nk
> 1:

Since fa�tn g is decreasing sequence of positive numbers, by the fact that

fbn > 0g decreasing and
X

bn <1 H) lim
n!1

nbn D 0

from Example 1 of tutorial note 4.5. We conclude
P
a�tn diverges. . O�5 O�/��

Example 6 (2006 Midterm). Let fxng be a bounded sequence of real numbers
such that

lim
n!1

.xnC1 � xn/ D 0; lim inf
n!1

xn D a and lim sup
n!1

xn D b:

Show for every c 2 Œa; b�, there is a subsequence fxni g of fxng with lim
i!1

xni D c.

Solution. Let c 2 Œa; b�. We further assume c ¤ a; b as otherwise we are done.
Now we need to show that in every small1 neighborhood .c� r; cC r/ of c, we can
always find an element in fx1; x2; : : : g.

To do this, let’s for the sake of contradiction suppose there is a small neigh-
borhood .c � r; c C r/ of c which contains none of xn’s. Then by the condition
limn!1.xnC1 � xn/ D 0, there is an N 2 N,

n > N H) jxnC1 � xnj < r:

Now the sequence fxngn>N cannot jump too far away from xn to xnC1.
Case 1 (xNC1 2 Œa; c � r�). In this case,

xNC1 2 Œa; c � r� H) xNC2 2 Œa; c � r�

H) xNC3 2 Œa; c � r�

H) � � �

H) xn 2 Œa; c � r�

for every n � NC1, so fxngn�NC1 is trapped in Œa; c�r�, then lim xn � c�r < b,
a contradiction.

a c C rc � r b
xnC1

cannot jump!

xn

there can’t be any xn

1Let’s define, by small, to mean .c � r; c C r/ � Œa; b� such that a < c � r and c C r < b.
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Case 2 (xN C1 2 Œc C r; b�). In this case the argument in case 1 carries over,
and we arrive to the contradiction that lim xn � c C r > a.

In conclusion, every small neighborhood of c contains one of xn’s. Let K 2 N
be such that

i > K H)

�
c �

1

i
; c C

1

i

�
� Œa; b�;

then there is an xni 2 .c �
1
i
; c C 1

i
/. Now limi!1 xni D c. . O�5 O�/��

Example 7 (2008 Midterm).

(a) Give an example of a sequence fang of real numbers such that

lim
n!1

.an � 2anC1 C anC2/ D 0 and lim
n!1

.an � anC1/ ¤ 0:

(b) Let fang be a bounded sequence of real numbers and

lim
n!1

.an � 2anC1 C anC2/ D 0:

(i) Prove that lim sup
n!1

.an � anC1/ � 0.

(ii) Using (i) or otherwise, prove that lim inf
n!1

.an � anC1/ � 0. Determine

lim
n!1

.an � anC1/.

Solution. (a) The example an D n will do.
(b) (i) Suppose that lim.an � anC1/ > 0, then there is an �0 > 0 such that

lim.an � anC1/ > �0:

Since lim.an � anC1/ is a subsequential limit, there is fnkg such that

ank � ankC1 > �0 (2)

for every k.
On the other hand, by the hypothesis for every � > 0 there is an N D N.�/

such that
n > N H) an � anC1 < anC1 � anC2 C �: (3)

We will apply the estimate (3) successively to (2). To this end, we choose K large
so that k > K D K.�/ H) nk > N , then we have,

k > K; j 2 N H)

�0 < ank � ankC1

< ankC1 � ankC2 C �

< � � �

< ankCj � ankCjC1 C j�:

Therefore ignoring the index nk we get a telescoping sequence in j .
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For a fixed p 2 N, it is temping to do
Pp
jD1 on both sides of the last inequality.

By doing that we get for every k > K,

p

�
�0 �

p C 1

2
�

�
D p�0 �

p.p C 1/

2
� < ankC1 � ankCpC1:

We can choose
p C 1

2
� D

�0

2
at the beginning, then for k > K.�/ we get

p�0

2
< ankC1 � ankCpC1:

Note that the choice of � depends on p, thus K depends on p, we conclude for
every p, there is an index kp such that

p�0

2
< akpC1 � akpCpC1;

this contradicts the boundedness of fang.
(ii) We can replace the sequence in (b) (i) by �an to get

� lim.an � anC1/ D lim..�an/ � .�anC1// � 0;

and this becomes lim.an � anC1/ � 0. Therefore we have 0 � lim.an � anC1/ �
lim.an � anC1/ � 0, and thus

lim
n!1

.an � anC1/ D 0: . O�5 O�/��
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