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Chapter 1

Linear Systems, Matrices and
Determinants

Linear algebra is, roughly speaking, the study of linear transformations between finite di-
mensional vector spaces. A solid understanding of the subject arguably lead to the success
in learning more advanced subject for which “linear spaces” is the object of interest. The
central concept of linear algebra can be visualized and easily understood through examples
in Rn, in particular, let’s start system of linear equations.

1.1 Linear Systems

Given bi, aij ∈ R, i = 1, 2, . . . ,m and j = 1, 2, . . . ,n (possibly m 6= n), the following
a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

(1.1.1)

is called a system of linear equations with n unknowns. We interpret the brace “{” as “and”.

Example 1.1.2. {
x + y = 1

x − y = 2

is a system of linear equations with 2 unknowns. This system has exactly 1 solution (x , y) =
( 3
2 ,− 1

2 ).

Example 1.1.3. Consider the system:

(∗)

{
2x + 2y = 4

x + y = 2

Of course we know that two equations are the same, hence we have just 1 equation with
2 unknowns. It should seem natural to us that this system has infinitely many solutions.
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Chapter 1. Linear Systems, Matrices and Determinants

Indeed, fix y = t ∈ R, then x + y = 2 implies x = 2 − t, hence (x , y) = (2 − t, t) is the
only solution (for each t). Note that t can be arbitrarily fixed, we conclude

{(2− t, t) : t ∈ R}

is the collection of all solutions of the system (∗).

Example 1.1.4. Consider the system: {
x + y = 1

−x − y = 1

Suppose it does have a solution, then we add two equations to get 0 = 2, this is impossible,
hence the system cannot have any solution.

The above is a few examples to illustrate the general phenomenon that we will study
for linear systems. We will study whether or not a system (i) has exactly one solution;
(ii) has infinitely many solutions; (iii) has no solution.

Definition 1.1.5. A linear system is said to be consistent if it has at least one solution;
otherwise it is said to be inconsistent.

Only coefficients are important in computing the solution(s) of a system, we intro-
duce the matrix notation in order to simplify our work.

Definition 1.1.6. The rectangularly arranged array
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


is called a matrix. Bringing the system (2.2.2) into consideration, the above matrix is
called the coefficient matrix of the system. While the matrix


a11 a12 · · · a1n b1
a21 a22 · · · a2n b1
...

...
. . .

...
...

am1 am2 · · · amn bn


is called the augmented matrix of the system.

Example 1.1.7. We try to determine value of h such that the following system is consistent{
x + y = 1

2x + 2y = h

We adopt the following notations. By

Ri → aRi + bRj

6



1.1. Linear Systems

we mean the ith row of the matrix is replaced by a× (ith row) + b × (jth row). Also by

Ri ↔ Rj

we mean we interchange the ith row and the jth row of the matrix.

We perform row operations on the augmented matrix.[
1 1 1
2 2 h

]
R2→R2−2×R1−−−−−−−−−→

[
1 1 1
0 0 h − 2

]
,

this is consistent only when h = 2 (otherwise we get an absurd that 0 6= 0).

Example 1.1.8. We solve the system
x + y + 2z + w = 5

x + y + 2z + 6w = 10

x + 2y + 5z + 2w = 7

by doing row operations on the augmented matrix.1 1 2 1 5
1 1 2 6 10
1 2 5 2 7

 R2→R2−R1−−−−−−−→
R3→R3−R1

1 1 2 1 5
0 0 0 5 5
0 1 3 1 2


R2↔R3−−−−−→
R3→ 1

5R3

1 1 2 1 5
0 1 3 1 2
0 0 0 1 1

 R1→R1−R2−−−−−−−→
R2→R2−R3

1 0 −1 0 3
0 1 3 0 1
0 0 0 1 1


The original system is reduced to: x − z = 3

y + 3z = 1
w = 1

Solving backward, we have w = 1, y = 1 − 3z and x = 3 + z . Here we may fix z = t
(conventionally), then

{(3 + t, 1− 3t, t, 1) : t ∈ R}

forms a collection of solutions of the system in this example.

Definition 1.1.9. If two systems have the same set of solutions, we say two systems are
equivalent.

In the previous examples we have seen that a system can be solved by:

(i) Interchange 2 equations.

(ii) Multiply an equation by a nonzero constant.

(iii) Add one equation by another equation.

Clearly each of the above operations is reversible, which means that the solution(s) of a
system will not be altered under these operations. Put in other way, (i), (ii) and (iii)
produces equivalent systems.

Definition 1.1.10. A matrix is in row echelon form if

7



Chapter 1. Linear Systems, Matrices and Determinants

(i) All nonzero rows are above any zero rows (that is to say, all zero rows, if any,
belong at the bottom of the matrix).

(ii) The leading coefficient(∗) of a nonzero row is always strictly to the right of the
leading coefficient of the row above it.

(iii) All entries in a column below a leading entry are zeroes (implied by the first two
criteria).

Definition 1.1.11. A matrix is in reduced row echelon form if it satisfies:

(i) All nonzero rows are above any rows of all zeroes.

(ii) The leading coefficient of a nonzero row is always strictly to the right of the leading
coefficient of the row above it.

(iii) Every leading coefficient is 1 and is the only nonzero entry in its column.

Example 1.1.12. Consider two matrices:

A =

2 2 3 4
0 3 4 6
0 0 0 5

 and B =

1 0 3 0
0 1 4 0
0 0 0 1


A is in row echelon form and B is in reduced row echelon form.

Definition 1.1.13.

(i) For an echelon form, a column containing a pivot (there is at most one) is called
a pivot column.

(ii) If the ith column of an echelon form of the coefficient matrix of a system is a pivot
column, then the corresponding ith variable is called a basic variable.

(iii) If the ith column of an echelon form of the coefficient matrix of a system is not a
pivot column, then the corresponding ith variable it is called a free variable.

Example 1.1.14. Reconsider coefficient matrix of Example 1.1.8, A =
[
1 1 2 1
1 1 2 6
1 2 5 2

]
. By the solution

of Example 1.1.8, we have row reduced A to:1 0 −1 0
0 1 3 0
0 0 0 1


Thus the 1st, 2nd and 4th columns of the reduced row echelon form of A are pivot columns.

Consider the system Ax = b, for some b ∈ R3, since1 1 2 1 b1

1 1 2 6 b2

1 2 5 2 b3

→ · · · →
 1 0 −1 0 ∗

0 1 3 0 ∗
0 0 0 1 ∗

 ,

here ∗ means some numbers. Since the first, second and forth columns of the row reduced
coefficient matrix are pivot columns, therefore x1, x2, x4 are basic variables. The rest, x3, is
a free variable.

(∗) The first nonzero number from the left, also called the pivot.
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1.1. Linear Systems

The computational experience shows us

# of columns of coefficient matrix = # of basic variables + # of free variables,

also,

# of basic variables = # of nonzero rows in echelon form of cofficient matrix

= # of pivots in echelon form of coefficient matrix

≤ min

{
# of rows of coefficient matrix,

# of columns of coefficient matrix

}
.

Theorem 1.1.15. A homogeneous system of linear equations has a unique solution if and
only if there is no free variable.

Proof. Let’s for the moment take it for granted. This statement will be trivial after we
have some familiarity with section 2.8. �

Remark. Reconsider Example 1.1.8, since z is a free variable, the solution set can be ex-
pressed in terms of z, with z ∈ R being arbitrary. This demonstrates if a free variable exists,
there will be infinitely many solutions.

On the other hand, if there is no free variable, then every variable will be basic
variable, namely, the linear system has at most one solution.

Given a set of linear equations
a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm,

if we define

a1 =


a11

a21

...
am1

 , a2 =


a12

a22

...
am2

 , . . . ,


a1n

a2n

...
amn

 and b =


b1
b2
...
bm

 ,

then the above system of linear equations can be neatly written as

x1a1 + x2a2 + · · ·+ xnan = b.

This equation has a nice geometric interpretation. When m = 3 and n = 2, the solvability
of the above equation is the same as whether or not b is in the plane in R3 “created” by a1

and a2:

y

x

z

b

a1

b = a1 +
5

6
a2

a2
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Chapter 1. Linear Systems, Matrices and Determinants

This observation enables us to have three equivalent ways to view a linear
system:

(i) A system of linear equations;

(ii) As a vector equation x1a1 + x2a2 + · · ·+ xnan = b;

(iii) As a matrix equation Ax = b.

1.2 Matrix Operations

1.2.1 Basic Definitions

Convention. Every element v ∈ Rn will always be a column vector. Moreover, the ith
coordinate is usually denoted by vi.

Definition 1.2.1. We write A ∈ Mm×n(R) if A is an m × n matrix. Moreover, if A is
expressed as 

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 ,

we denote A = [aij ]m×n, which means that i runs through {1, 2, . . . ,m} and j runs
through {1, 2, . . . ,n}. By convention a 1 × 1 matrix is regarded as a real number,
namely, M1×1(R) = R.

Definition 1.2.2. The multiplication of matrices is defined as follows:a11 · · · a1p

...
. . .

...
am1 · · · amp


︸ ︷︷ ︸

m×p

b11 · · · b1n
...

. . .
...

bp1 · · · bpn


︸ ︷︷ ︸

p×n

= [cij ]m×n,

where cij =
∑p
k=1 aikbkj .

Before giving examples, we mention a few computational facts. Let matrices A ∈
Mm×p(R) and B ∈Mp×n(R), B can be written as

B = [b1 · · · bn] ,

where bi ∈ Rp, hence by definition of matrix multiplication, we have the following compu-
tational formula

AB = A [b1 · · · bn] = [Ab1 · · · Abn] . (1.2.3)

So to compute two big matrices, we need to know how to compute Ax, where x ∈ Rp. Again
by definition of matrix multiplication, if we write

A = [a1 · · · ap] ,

where ai ∈ Rm, then

Ax = [a1 · · · ap]

x1

...
xp

 = x1a1 + x2a2 + · · ·+ xpap. (1.2.4)
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1.2. Matrix Operations

The formula (1.2.3) and (1.2.4) will suffice to do all computation we need for matrices.

Example 1.2.5. Let

A =

[
1 2 3
4 5 6

]
, B =

[
7 8
9 10

]
, u =

[
1
−1

]
and v = [1 1] .

We repeatedly use (1.2.3) and (1.2.4) to compute Bu, vA, BA and vBu as follows:

Bu =

[
7 8
9 10

] [
1
−1

]
=

[
7
9

]
−
[

8
10

]
=

[
−1
−1

]
vA = [1 1]

[
1 2 3
4 5 6

]
=

[
[1 1]

[
1
4

]
[1 1]

[
2
5

]
[1 1]

[
3
6

]]
= [5 7 9]

BA =

[[
7 8
9 10

] [
1
4

] [
7 8
9 10

] [
2
5

] [
7 8
9 10

] [
3
6

]]
=

[[
7
9

]
+ 4

[
8

10

]
2

[
7
9

]
+ 5

[
8

10

]
3

[
7
9

]
+ 6

[
8

10

]]
=

[
39 54 69
49 68 87

]
and finally

vBu = v(Bu) = [1 1]

[
−1
−1

]
= −1− 1 = −2.

Recall that a 1 × 1 matrix is considered as a number. This will be found convenient in
application.

The computation of vBu might be ambiguous, why does vBu = v(Bu)? Can’t it be
(vB)u? Are they necessarily the same? This can be explained by the properties (specifically,
the associativity) of matrix multiplication which we summarize below:

Proposition 1.2.6 (Algebraic Properties of Matrix Operations).

(i) A+B = B +A (Commutativity of Addition)

(ii) (A+B) + C = A+ (B + C) (Associativity of Addition)

(iii) (AB)C = A(BC) (Associativity of Multiplication)

(iv) A(B + C) = AB +AC and (B + C)A = BA+ CA (Distributive Law)

(v) A(aB) = (aA)B = aAB for any a ∈ R

Proof. In the following we let A = [aij ]n×n = [a1 a2 · · · an] and define B and C
similarly. We shall omit the subscript n× n to A,B and C for convenience.

(i) A+B = [aij ] + [bij ] := [aij + bij ] = [bij + aij ] = [bij ] + [aij ] = B +A.

(ii) Similar to (i)

(iii) We use the computational fact (1.2.3). The ith column of the the matrix
(AB)C is (AB)ci. While that of A(BC) = A [Bc1 · · · Bcn] is also ABci.

(iv) A(B + C) = [aij ][bij + cij ] = [
∑n
k=1 aik(bkj + ckj)] = [

∑n
k=1 aikbkj ] +

[
∑n
k=1 aikckj ] = AB + BA. The fact that (B + C)A = BA + CA can be proved

similarly.
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Chapter 1. Linear Systems, Matrices and Determinants

(v) If also follows from the computational fact (1.2.3). �

Corollary 1.2.7 (Linearity). Let A ∈ Mm×n(R), the function T : Rn → Rm defined by
T (x) = Ax is linear in the sense that

A(x+ y) = Ax+Ay and A(αx) = αAx, for any α ∈ R.

Next we introduce usual notations and terminologies for some important matrices.
The zero matrix is 0 · · · 0

...
. . .

...
0 · · · 0

 ,

denoted by 0 or O. The identity matrix in Mn×n(R) is
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ,

where only the diagonal elements are nonzero, denoted by In or simply I.

Definition 1.2.8. Given a matrix A = [aij ]m×n (possibly m 6= n), we define

AT = [bij ]n×m,

where bij = aji.

Example 1.2.9. Given matrices

A =

[
1 2 3
4 5 6

]
and B =

1 2 3
4 5 6
7 8 9

 .

We A = [ai j ]2×3 and bi j = aj i , then

AT := [bi j ]3×2 =

b11 b12

b21 b22

b31 b32

 =

a11 a21
a12 a22
a13 a23

 =

1 4
2 5
3 6

 .

With the experience in computing AT , we observe that if

C =


cT
1

...
cT
m

 ,

where ci ∈ Rn, then C is an m × n matrix, whose transpose CT is given by

CT =

 | | |
c1 c2 · · · cm
| | |

 ,

hence

BT =

1 4 7
2 5 8
3 6 9

 .

12



1.2. Matrix Operations

Another way to compute the transpose of a square matrix is to reflect all its entry along the
diagonal.

Definition 1.2.10. Let a square matrix A = [aij ]n×n be given.

(i) A is said to be diagonal if i 6= j =⇒ aij = 0.

(ii) A is said to be upper triangular if j < i =⇒ aij = 0.

(iii) A is said to be lower triangular if j > i =⇒ aij = 0.

(iv) A is said to be symmetric if aij = aji for every i, j, i.e., AT = A.

(v) A is said to be skew-symmetric if aij = −aji for every i, j, i.e., AT = −A.

Example 1.2.11. Consider the matrices:

A =

[
1 1
0 1

]
, B =

1 0 0
0 2 0
0 0 −1

 , C =

1 0 0
0 2 0
2 0 −1

 and D =

 0 2 −1
−2 0 −3
1 3 0


(i) Which is diagonal?

(ii) Which is upper triangular?

(iii) Which is lower triangular?

(iv) Which is symmetric?

(v) Which is skew-symmetric?

(i) Only B is diagonal; (ii) Only A and B are upper triangular; (iii) Only B and C
are lower triangular; (iv) Only B is symmetric; (v) Only D is skew-symmetric.

Proposition 1.2.12 (Properties of Transpose). Given A,B ∈Mn×n(R) and c ∈ R, we have

(AB)T = BTAT , (A+B)T = AT +BT , (cA)T = cAT and (AT )−1 = (A−1)T .

Proof. WriteA = [aij ],B = [aij ],A
T = [a′ij ] andBT = [b′ij ], then [AB] = [

∑n
k=1 aikbkj ],

it follows that

(AB)T =

[ n∑
k=1

aikbkj

]
n×n

T

=

[
n∑
k=1

ajkbki

]
n×n

=

[
n∑
k=1

b′ika
′
kj

]
= BTAT ,

we leave the rest as exercises. �

Theorem 1.2.13. Let A be a real square matrix, then

(i) (A+AT )/2 is symmetric.

(ii) (A+AT )/2 = A iff A is symmetric.

(iii) (A−AT )/2 is skew symmetric.

(iv) (A−AT )/2 = A iff A is skew symmetric.

Proof. This follows directly from Proposition 1.2.12. �
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Chapter 1. Linear Systems, Matrices and Determinants

Started from chapter 2 we will consider real and complex vector spaces at the same
time, therefore we will also need terminology for complex matrices.

Definition 1.2.14. For a matrix A ∈ Mn×n(C), write [aij ], we define A = [aij ]. The con-
jugate transpose of A is defined by

A∗ = A
T

A matrix A is said to be Hermitian if A∗ = A.

We will see that the matrix A∗ on Cn play the same role as a matrix AT on Rn.
This will be made apparent when “dot product” on Rn and Cn are defined respectively.
Now Proposition 1.2.12 can be translated to conjugate transpose.

Proposition 1.2.15 (Properties of Conjugate Transpose). GivenA,B ∈Mn×n(R) and c ∈
C, we have

(AB)∗ = B∗A∗, (A+B)∗ = A∗ +B∗, (cA)∗ = cA∗ and (A∗)−1 = (A−1)∗.

Proof. By taking · on both sides of the first three equalities in Proposition 1.2.12 we
get respectively the first three equalities in Proposition 1.2.15. For the last one, we take
conjugate transpose on both sides of AA−1 = I. �

1.2.2 Elementary Matrices

We notice that:

1 0 0
0 1 0
0 0 k

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 a11 a12 a13

a21 a22 a23

ka31 ka32 ka33


1 1 0

0 1 0
0 0 1

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

a11 + a21 a12 + a22 a13 + a23

a21 a22 a23

a31 a32 a33


0 1 0

1 0 0
0 0 1

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

a21 a22 a23

a11 a12 a13

a31 a32 a33



multiply the 3rd row by constant k

add the 2nd row
to 1st row

switch the 1st and 2nd row

Multiplying those kinds of matrices on the left results in elementary operations. Because of
that these matrices bear a special name.

Definition 1.2.16. Let Ri denote the ith row of an identity matrix I. Every matrix obtained
from I by one of the following operations:

14



1.2. Matrix Operations

(i) Multiplying the row Ri by a constant.

(ii) Replacing Ri by Ri +Rj .

(iii) Switching Ri and Rj .

is called an elementary matrix.

As what we observe, multiplying a matrix A (not necessarily square!) on the left
by an elementary matrix obtained by doing (i), (ii) or (iii) on I will result in a matrix A′

obtained by doing (i), (ii) and (iii) respectively on A.

These observations enable us to observe the following:

Theorem 1.2.17. For every matrix A, there are elementary matrices E1,E2, . . . ,Ek such
that

Ek · · ·E2E1A

is in reduced echelon form.

Proof. This follows from the algorithm that always enables us to reduce a matrix into
reduced row echelon form by row operations. �

1.2.3 Compute Inverse by Row Operations

Definition 1.2.18. A ∈Mn×n(R) is said to be invertible if there is a matrix B ∈Mn×n(R)
such that BA = AB = In. In this case B is called the inverse of A, denoted by A−1.

Remark. It is easy to prove that for A,B ∈Mn×n(R),

AB = I ⇐⇒ BA = I,

hence to show a matrix B is an inverse of A, it is enough to check one of equalities: BA = I
or AB = I.

Theorem 1.2.19. If A is invertible and[
A I

]
→ · · · →

[
I B

]
under finitely many row operations, then B = A−1.

Proof. Since A is invertible, after finitely many row operations we can reduce it into
I. Namely, there are elementary matrices E1,E2, . . . ,Ek such that

Ek · · ·E2E1A = I.

From that we conclude Ek · · ·E2E1 = A−1. Consider[
A I

]
,

after finitely many same row operations we have[
A I

]
→ · · · → Ek · · ·E2E1

[
A I

]
=
[
I Ek · · ·E2E1

]
=
[
I A−1

]
. �
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Chapter 1. Linear Systems, Matrices and Determinants

Example 1.2.20. Consider

A =

3 2 6
1 1 2
2 2 5

 ,

let’s compute A−1 by row operations. Construct the augmented matrix
[
A I

]
and reduce

the left half of this into I .3 2 6 1 0 0
1 1 2 0 1 0
2 2 5 0 0 1

 R1↔R2−−−−→

1 1 2 0 1 0
3 2 6 1 0 0
2 2 5 0 0 1


R2→R2−3R1−−−−−−−−→

1 1 2 0 1 0
0 −1 0 1 −3 0
2 2 5 0 0 1


R3→R3−2R1−−−−−−−−→

1 1 2 0 1 0
0 −1 0 1 −3 0
0 0 1 0 −2 1


R1→R1+R2−−−−−−−→

1 0 2 1 −2 0
0 −1 0 1 −3 0
0 0 1 0 −2 1


R1→R1−2R3−−−−−−−−→

1 0 0 1 2 −2
0 −1 0 1 −3 0
0 0 1 0 −2 1


R2→−R2−−−−−−→

1 0 0 1 2 −2
0 1 0 −1 3 0
0 0 1 0 −2 1

 .

So

A−1 =

 1 2 −2
−1 3 0
0 −2 1

 .

1.2.4 Uniqueness of Reduced Row Echelon Form

Theorem 1.2.21. The reduced row echelon form of an m× n matrix is unique.

Proof. We will prove by induction on n. The case that n = 1 is trivial, let’s suppose
now every m× (n− 1) matrix has unique reduced row echelon form.

Consider an m × n matrix A = [A′ a], a ∈ Rm. Let B = [B′ b] and C =
[C ′ c], b, c ∈ Rm, be reduced row echelon form of A. Since B′,C ′ are reduced row
echelon form of A′, by induction hypothesis B′ = C ′. Therefore B and C only differ
from the last column.

For the sake of contradiction let’s suppose b 6= c. Let Bx = 0, then due to row
equivalence we have Cx = 0, therefore

(B − C)x = 0 = [O b− c]x,

where O denotes a zero matrix and b − c 6= 0. If we write x = (x1,x2, . . . ,xn)T , then
xn = 0. Similarly, Cx = 0 implies xn = 0. Which means that b and c must contain a
pivot of A, otherwise the system Ax = 0 will have xn as a free variable, meaning that
xn can be arbitrary, not necessarily zero. Since B and C are reduced row echelon form,
the pivot 1 must appear in the row of b, c which is the first zero row of B′ = C ′, meaning
that b = c, a contradiction. �
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1.3. Determinants

1.3 Determinants

1.3.1 As The Unique Multilinear Functional

Let F denote R or C. Throughout this section all scalars will be over F. We introduce a
“multilinear” function on Mn×n(F) which provides us a useful, systematic and mechanical
way to determine the invertability of a square matrix (matrices with complex entries will be
found important later). This function is denoted by

δ : Mn×n(F)→ F.

We will require δ satisfy the following properties:

(i) δ(I) = 1.

(ii) δ(A) is linear in the rows of A.

(iii) If two adjacent rows are equal, δ(A) = 0.

(1.3.1)

We describe δ as “multilinear” due to property (ii).

For example, if δ satisfies (1.3.1), then

δ

1 0 0
0 2 3
0 0 1

 = 2δ

1 0 0
0 1 0
0 0 1

+ 3δ

1 0 0
0 0 1
0 0 1

 = 2× 1 + 3× 0 = 2.

We can already compute δ(A) for some A, it will be seen later that the rules given in (1.3.1)
fix the way we compute δ(A) for any n× n matrix A, and thereby showing Theorem 1.3.5.

Before arriving to this uniqueness result, we investigate the properties of such “mul-
tilinear” functions.

Proposition 1.3.2. Let δ : Mn×n(F)→ F satisfy properties in (1.3.1), then:

(i) If A′ is obtained from A by adding a multiple of ith row to jth row (i 6= j), then
δ(A′) = δ(A).

(ii) If A′ is obtained from A by interchanging ith row and jth row (i 6= j), then
δ(A′) = −δ(A).

(iii) If A′ is obtained from A by multiplying the ith row by a constant c, then δ(A′) =
cδ(A).

(iv) If the ith row of A is a multiple of the jth row of A, then δ(A) = 0.

Proof. (iii) This is just linearity of δ(A) on rows of A. In the sequel we first assume
j = i+ 1, i < n for simplicity.

(i) δ


...
Ri

Rj + αRi
...

 = δ


...
Ri
Rj
...

+ αδ


...
Ri
Ri
...

.
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(ii)

δ


...
Rj
Ri
...

 = δ


...

Rj −Ri
Ri
...

 = δ


...

Rj −Ri
Rj
...



= δ


...
−Ri
Rj
...

 = −δ


...
Ri
Rj
...

 .

(iv) This follows from linearity of δ(A) on rows of A and property (iii) of (1.3.1).

Now for the general case, (iv) holds immediately by switching rows finitely many
times. From that point, the proof in the special case of (i) carries over to the general
case, so (i) holds, and hence the proof of the special case of (ii) also carries over to the
general case, (ii) also holds. �

Proposition 1.3.3. δ(E) takes the following value when E is an elementary matrix that:

(i) Adds a multiple of a row to another, δ(E) = 1

(ii) Interchanges two rows, δ(E) = −1.

(iii) Multiplies a row by a nonzero constant c, δ(E) = c.

Proof. This follows directly form Proposition 1.3.2. �

Proposition 1.3.4. If A ∈Mn×n(F) and E ∈Mn×n(F) is an elementary matrix, then

δ(EA) = δ(E)δ(A).

Proof. This follows directly from Proposition 1.3.2 and Proposition 1.3.3. �

Theorem 1.3.5. There can be at most one function δ : Mn×n(F)→ F satisfying properties
in (1.3.1).

Proof. For every n×nmatrixA, there are elementary matrices such that Ek · · ·E2E1A =
R, where R is the reduced row echelon form of A, and hence

δ(E1)δ(E2) · · · δ(En)δ(A) = δ(R)

by applying Proposition 1.3.4 finitely many times. Consider the following dichotomy:

• If A is not invertible, R has a zero row at the bottom.

• If A is invertible, R = I, the identity matrix.

It follows that when A is not invertible, δ(A) = 0. When A is invertible,

δ(A) =
1

δ(E1)δ(E2) · · · δ(En)
,
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here δ must be computed by formulas in Proposition 1.3.3 whenever δ satisfies properties
in (1.3.1). �

To complete the proof that there is a unique function satisfying properties in (1.3.1),
we need to show existence. It turns out that properties (1.3.1) itself provide us the formula:

Theorem 1.3.6. Let δ : Mn×n(F) → F satisfy properties in (1.3.1), then for A = [aij ]n×n,
we have

δ(A) =
∑
σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n).

Before going into the proof, we need to explain the notations here. By Sn we mean
the collection of all bijective maps σ : {1, 2, . . . ,n} → {1, 2, . . . ,n}, i.e., all permutations of
the first n positive integers. Also the quantity sgn(σ) will be explained in the proof.

Proof. Let e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0) and en = (0, 0, . . . , 1), the standard basis
of M1×n(F). We note that by linearity on the first row, second row, ..., and then nth
rows, we have

δ


a11 · · · a1n

a21 · · · a2n

...
. . .

...
an1 · · · ann

 = δ


∑n
j1=1 a1j1ej1

a21 · · · a2n

...
. . .

...
an1 · · · ann

 =

n∑
j1=1

a1j1δ


ej1

a21 · · · a2n

...
. . .

...
an1 · · · ann



=

n∑
j1=1

n∑
j2=1

a1j1a2j2δ


ej1
ej2

...
. . .

...
an1 · · · ann


...

=

n∑
j1=1

n∑
j2=1

· · ·
n∑

jn=1

a1j1a2j2 · · · anjnδ


ej1
ej2
...
ejn



=
∑

1≤j1,...,jn≤n
ji 6=jk,∀i6=k

a1j1a2j2 · · · anjnδ


ej1
ej2
...
ejn



=
∑
σ∈Sn

a1σ(1)a2σ(2) · · · anσ(n)δ


eσ(1)

eσ(2)

...
eσ(n)


=
∑
σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n),
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where sgn(σ) = δ

 eσ(1)
eσ(2)

...
eσ(n)

 is 1 if σ is an even(†) permutation end −1 if σ is an odd

permutation. �

Therefore the unique function stated in Theorem 1.3.5 exists. Henceforth we denote
δ = det = | · | which we call:

Definition 1.3.7. When A is an n×n matrix, the determinant of A is denoted and defined
by

detA = |A| =
∑
σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n).

From the last paragraph in the proof of Theorem 1.3.5 we have shown that:

Theorem 1.3.8. A square matrix A is invertible ⇐⇒ detA 6= 0.

1.3.2 Computational Facts and Cofactor Expansions

Finally to develop an effective way to check invertability, we need to develop computational
tools in order to make good use of Theorem 1.3.8.

Theorem 1.3.9. If A,B are n× n matrices, then

det(AB) = detA detB.

Proof. Let P be the product of elementary matrices such that PA = R, where R is
the reduced row echelon form of A.

If A is not invertible, then the last row of R is a zero row, so is PAB = RB,
thus PAB is not invertible, i.e, AB is not invertible, hence

det(AB) = 0 and detAdetB = 0 · detB = 0.

If A is invertible, then R = I, hence A is the product of elementary matrices,
A = E1E2 · · ·Ek. Then by Proposition 1.3.4 many and many times,

det(AB) = det(E1E2 · · ·EkB)

= det(E1) det(E2) · · · det(Ek) detB

= det(E1E2 · · ·Ek) detB = detAdetB. �

Theorem 1.3.10. If A is an n× n matrix, then

detA = detAT .

(†) The pairity of the number of steps we switch two rows to turn the matrix


eσ(1)
eσ(2)

..

.
eσ(n)

 into I
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Proof. If A is not invertible, so is AT , thus detA = detAT = 0.

If A is invertible, then A is the product of elementary matrices, A = E1E2 · · ·Ek,
by Theorem 1.3.9 it is enough to show Theorem 1.3.10 is true for elementary matrix E,
i.e., detE = detET .

If E (times A) adds ith row to jth row, then E =

 ...
ej + ei

...

, a direct

verification shows us ET =

 ...
ei + ej

...

 which (times A) adds jth to ith row,

hence detE = detET = 1.

If E (times) A interchange rows, so does ET (since ET = E−1), thus detE =
detET = −1.

Finally, if E (times A) scales one of the rows, then E is diagonal, so E = ET .�

Definition 1.3.11. Given A ∈Mn×n(F).

(i) Let Aij ∈ M(n−1)×(n−1)(F) denote the matrix obtained by deleting the ith row
and the jth column of A.

(ii) We define the (i, j)-cofactor, cij(A), by

cij(A) = (−1)i+j det(Aij).

Example 1.3.12.

A =

1 2 3
4 5 6
7 8 9

 ,

then

c11(A) = (−1)1+1

∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ =

∣∣∣∣5 6
8 9

∣∣∣∣
and

c21(A) = (−1)2+1

∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ = −
∣∣∣∣2 3
8 9

∣∣∣∣

Now we can compute the determinant of a large square matrix by its submatrices.

Theorem 1.3.13 (Cofactor Expansion). Let A = [aij ]n×n, then the expansion along ith
row is

detA = ai1ci1(A) + ai2ci2(A) + · · ·+ aincin(A).

The expansion along the jth column is given by

detA = a1jc1j(A) + a2jc2j(A) + · · ·+ anjcnj(A).
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We just prove the cofactor expansion along ith row, the one along jth column is
essentially the same.

Proof. First of all we prove the following: Suppose B is an (n − 1) × (n − 1) matrix,
then

det

[
1 ~0T

~0 B

]
= detB. (1.3.14)

To see this, let

[
1 ~0T

~0 B

]
= [bij ]n×n, then by Theorem 1.3.6 we have

det[bij ] =
∑
σ∈Sn

sgn(σ)b1σ(1)b2σ(2) · · · bnσ(n) =
∑
σ∈Sn
σ(1)=1

sgn(σ)b1σ(1)b2σ(2) · · · bnσ(n).

For simplicity, let S = Perm({2, 3, . . . ,n}), the set of bijections from {2, . . . ,n} to itself,
then

det[bij ] =
∑
ρ∈S

sgn(ρ)b11b2ρ(2) · · · bnρ(n) = 1 · detB,

as desired. We will see that (1.3.14) is the key ingredient to finish the proof very soon.

Let A = [aij ], then by linearity of determinant in the ith row, we have

detA =

n∑
k=1

aik det



a11 · · · a1n

...
. . .

...
eTk

...
. . .

...
an1 · · · ann

 ,

or more precisely,

detA =

n∑
k=1

aik det



a11 · · · a1(k−1) 0 a1(k+1) · · · a1n

...
. . .

...
...

...
. . .

...
a(i−1)1 · · · a(i−1)(k−1) 0 a(i−1)(k+1) · · · a(i−1)n

0 0 0 1 0 0 0
a(i+1)1 · · · a(i+1)(k−1) 0 a(i+1)(k+1) · · · a(i+1)n

...
. . .

...
...

...
. . .

...
an1 · · · ann 0 an(k+1) · · · ann


,

here we have performed row operations on the kth column, k = 1, 2, . . . ,n. We can
move our 1 to the upper left corner by switching 1 to the left k − 1 times and then
switching it upwards i− 1 times, it follows that by (1.3.14),

detA =

n∑
k=1

aik(−1)i+k detAik =

n∑
k=1

aikcik(A). �

Remark. Cofactor expansion is very helpful if the size of the matrix is small and almost
all of entries are numerical value. This is why we invent the formula in Theorem 1.3.13
although we already have one in Theorem 1.3.6. In Problem 1.13 you are asked to prove a
formula that is not easily explainable by cofactor expansion but still manageable if we use
the definition of determinant that we start with.
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1.3. Determinants

Example 1.3.15. By cofactor expansion along the first row,∣∣∣∣a b
c d

∣∣∣∣ = a · (−1)1+1(d) + b · (−1)1+2(c) = ad − bc .

Remark. We should beware of minus signs in using cofactor expansion. We may memorize
the diagram instead of computing (−1)i+j each time:∣∣∣∣∣∣∣

+ − + · · ·
− + − · · ·
...

...
...

. . .

∣∣∣∣∣∣∣ (1.3.16)

Example 1.3.17. We bear (1.3.16) in mind and use cofactor expansion along the first row.∣∣∣∣∣∣
1 −1 3
1 0 −1
2 1 6

∣∣∣∣∣∣ =

∣∣∣∣0 −1
1 6

∣∣∣∣−(−1)

∣∣∣∣1 −1
2 6

∣∣∣∣+3

∣∣∣∣1 0
2 1

∣∣∣∣ = 1 + 8 + 3 = 12.

For the second one, since there are many 0’s on the last column, we use cofactor expansion
along this column with the diagram (1.3.16) in mind.∣∣∣∣∣∣∣∣

3 2 0 0
5 1 2 0
2 6 0 −1
−6 3 1 0

∣∣∣∣∣∣∣∣ = −(−1)

∣∣∣∣∣∣
3 2 0
5 1 2
−6 3 1

∣∣∣∣∣∣ = 3

∣∣∣∣1 2
3 1

∣∣∣∣−2

∣∣∣∣ 5 2
−6 1

∣∣∣∣ = −15− 34 = −49.

Example 1.3.18. In the following we use Ri to mean the ith row and Ci to mean the ith column.
Our strategy is to produce as many 0’s as possible.

=

∣∣∣∣∣∣
a + b + 2c a b

c b + c + 2a b
c a c + a + 2b

∣∣∣∣∣∣
R1→R1−R3========

∣∣∣∣∣∣
a + b + c 0 −(a + b + c)

c b + c + 2a b
c a a + 2b + c

∣∣∣∣∣∣
= (a + b + c)

∣∣∣∣∣∣
1 0 −1
c 2a + b + c b
c a a + 2b + c

∣∣∣∣∣∣
C1→C1+C2+C3=========== (a + b + c)

∣∣∣∣∣∣
0 0 −1

2(a + b + c) 2a + b + c b
2(a + b + c) a a + 2b + c

∣∣∣∣∣∣
= 2(a + b + c)2

∣∣∣∣∣∣
0 0 −1
1 2a + b + c b
1 a a + 2b + c

∣∣∣∣∣∣
= 2(a + b + c)2(−1)

∣∣∣∣1 2a + b + c
1 a

∣∣∣∣
= 2(a + b + c)3.

Example 1.3.19. Let Ri and Ci be defined as in the previous example.

=

∣∣∣∣∣∣
a2 bc c2 + ca

a2 + ab b2 ca
ab b2 + bc c2

∣∣∣∣∣∣
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Chapter 1. Linear Systems, Matrices and Determinants

= abc

∣∣∣∣∣∣
a c c + a

a + b b a
b b + c c

∣∣∣∣∣∣
C1→C1−C2−C3=========== abc

∣∣∣∣∣∣
−2c c c + a

0 b a
−2c b + c c

∣∣∣∣∣∣
R3→R3−R1======== abc

∣∣∣∣∣∣
−2c c c + a

0 b a
0 b −a

∣∣∣∣∣∣
= abc(−2c)

∣∣∣∣b a
b −a

∣∣∣∣
= abc(−2c)(−2ab)

= 4a2b2c2.

We summarize what we have in this section:

Facts for Determinants

(i) For square matrix A, detA = detAT .

(ii) For square matrix A, A is invertible ⇐⇒ detA 6= 0.

(iii) For A,B ∈Mn×n(F), det(AB) = detAdetB.

(iv) Let R and S denote rows of a matrix, for any c ∈ F:

(a)

∣∣∣∣∣∣∣∣
...
cR
...

∣∣∣∣∣∣∣∣ = c

∣∣∣∣∣∣∣∣
...
R
...

∣∣∣∣∣∣∣∣

(b)

∣∣∣∣∣∣∣∣∣∣∣∣∣

...
R
...
S
...

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

...
R
...

S + cR
...

∣∣∣∣∣∣∣∣∣∣∣∣∣

(c)

∣∣∣∣∣∣∣∣∣∣∣∣∣

...
R
...
S
...

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣∣∣∣∣

...
S
...
R
...

∣∣∣∣∣∣∣∣∣∣∣∣∣
The above are also true for columns due to (i).

(v) Definition:

detA =
∑
σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n).

(vi) Cofactor Expansion: Let A = [aij ]n×n, then the expansion along ith row is

detA = ai1ci1(A) + ai2ci2(A) + · · ·+ aincin(A).
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1.3. Determinants

The expansion along the jth column is given by

detA = a1jc1j(A) + a2jc2j(A) + · · ·+ anjcnj(A).

1.3.3 Compute Inverse by Cofactor Matrix

Apart from performing row operations, we can invent a new formula to compute inverse in
terms of cofactors and determinant. For this we define two terms:

Definition 1.3.20. Let A be an n× n matrix. The cofactor matrix of A is defined by

cof A = [cij(A)]n×n.

The matrix (cof A)T is usually called adjoint matrix of A. Since later we will
adopt this term for “linear maps”, to not mess things up we will not adopt the use of this
term adjoint for matrices. We are ready for the last theorem in this chapter:

Theorem 1.3.21. Let A be a square matrix, then

A(cof A)T = (detA)I.

Furthermore, if A is invertible, namely, detA 6= 0, we have

A−1 =
1

detA
(cof A)T .

Proof. To prove A(cof A)T = (detA)I, since

A(cof A)T =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann



c11(A) c21(A) · · · cn1(A)
c12(A) c22(A) · · · cn2(A)

...
...

. . .
...

c1n(A) c2n(A) · · · cnn(A)

 .

We observe that the ith diagonal elements of the product is just the cofactor expansion
of A along the ith row, hence it is detA. On the other hand, the nondiagonal ijth
elements (i 6= j) of the product is

n∑
k=1

aikcjk(A).

Which is the determinant of the matrix A′, obtained from A by replacing the jth row
by the ith row. Therefore A′ has two identical rows, detA′ = 0, hence we get desired
equality.

The second equality follows from taking A−1 on both sides of A(cof A)T =
(detA)I. �

Example 1.3.22. We compute the inverse of the matrix A :=
[
3 2 6
1 1 2
2 2 5

]
again whose inverse has

been computed using row operations in Example 1.2.20. This time we do so by computing
det A and cof A.
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Chapter 1. Linear Systems, Matrices and Determinants

By cofactor expansion along the first row,

det A = 3

∣∣∣∣1 2
2 5

∣∣∣∣−2

∣∣∣∣1 2
2 5

∣∣∣∣+6

∣∣∣∣1 1
2 2

∣∣∣∣ =

∣∣∣∣1 2
2 5

∣∣∣∣ = 5− 4 = 1.

Also, we have

cof A =



∣∣∣∣1 2
2 5

∣∣∣∣ −
∣∣∣∣1 2
2 5

∣∣∣∣ ∣∣∣∣1 1
2 2

∣∣∣∣
−
∣∣∣∣2 6
2 5

∣∣∣∣ ∣∣∣∣3 6
2 5

∣∣∣∣ −
∣∣∣∣3 2
2 2

∣∣∣∣∣∣∣∣2 6
1 2

∣∣∣∣ −
∣∣∣∣3 6
1 2

∣∣∣∣ ∣∣∣∣3 2
1 1

∣∣∣∣

 =

 1 −1 0
2 3 −2
−2 0 1

 ,

hence

A−1 =
1

det A
(cof A)T =

 1 2 −2
−1 3 0
0 −2 1

 .

1.4 Exercises

Linear Systems

Problem 1.1. Let A be a matrix with the following reduced row echelon form

U =


1 0 2 1
0 1 1 4
0 0 0 0
0 0 0 0

 .

Also, let a1, a2, a3, a4 ∈ R4 be the columns of A such that A = [a1 a2 a3 a4]. Find
a3 and a4 if

a1 =


−3
5
2
1

 and a2 =


4
−3
7
−1

 .

Matrix Operations

Problem 1.2. Prove (i) and (iii) of Theorem 1.2.13. Moreover, show that every matrix
A ∈Mn×n(R) can be written as

A = B + C,

for some symmetric matrix B and skew symmetric matrix C.

Problem 1.3. Let P ∈ M2×2(R) be such that PA = AP , for all A ∈ M2×2(R), show
that

P = kI2,

for some k ∈ R.

Problem 1.4. Let A ∈Mn×n(R). If A = [aij ]n×n, we define the trace of A by

TrA = a11 + a22 + · · ·+ ann,
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i.e., TrA is the sum of all diagonal elements. Prove that given A ∈ Mn×k(R) and
B ∈Mk×n(R), we have

Tr(AB) = Tr(BA).

Hint. You need to use Definition 1.2.2.

Problem 1.5. Prove that if A = [aij ]n×n is symmetric (i.e., AT = A), then for B =
[bij ]n×n, one has

Tr(AB) =

n∑
i=1

n∑
j=1

aijbij .

Remark. This formula enables us to write linear 2nd order PDEs in a neat and compact
way.

Problem 1.6. Let a1, a2, . . . , an ∈ R. Denote

A = [δij + aiaj ]n×n, B =

[
δij −

aiaj
1 + a2

1 + a2
2 + · · ·+ a2

n

]
n×n

.

Here δij = 1 if i = j and = 0 otherwise. Find AB.

Hint. You need to use Definition 1.2.2.

Problem 1.7. Let A,B ∈ Mn×n(F). If A3 = B3 and A2B = B2A, can A2 + B2 be
invertible?

Problem 1.8. Show the following properties for square matrices:

(i) Sum and product of upper triangular matrices is upper triangular.

(ii) Sum and product of lower triangular matrices is lower triangular.

(iii) Sum and product of diagonal matrices is diagonal.

Determinants

Problem 1.9. Let α ∈ R and A ∈Mn×n(R), show that det(αA) = αn detA.

Problem 1.10. Consider the following statement and its “proof”:

Statement. Let A ∈Mm×n(R) and B ∈Mn×m(R), then det(AB) =
det(BA).

Proof. det(AB) = detAdetB = detB detA = det(BA).

(i) Is the proof correct?

(ii) Is the statement true? Prove or disprove.
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Chapter 1. Linear Systems, Matrices and Determinants

Problem 1.11. Show that∣∣∣∣∣∣
a b c
a2 b2 c2

bc ac ab

∣∣∣∣∣∣ = (a− b)(b− c)(c− a)(ab+ bc+ ca).

Problem 1.12. Given v1, v2, v3 ∈ R3, verify the scalar triple product:

v1 · (v2 × v3) = det[v1 v2 v3].

Remark. Let mn denote the n-dimensional “volume” on Rn, we can show that

|det [v1 · · · vn] | = mn({x1v1 + · · ·+ xnvn : x1, , . . . ,xn ∈ [0, 1]}).

So both sides of “scalar triple product” represent “oriented” volume of the parallelepiped
spanned by v1, v2, v3, thus it is legitimate to guess such an equality.

v1

v3

{x1v1 + x2v2 + x3v3 : x1,x2,x3 ∈ [0, 1]}

y

x

z

v2
v3 ·

v1 × v2

‖v1 × v2‖

Problem 1.13. Let W (x) denote the Wronskian of functions f1, . . . , fn evaluated at x

W (x) =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′n(x)

...
...

. . .
...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣ ,
where f1, . . . , fn are n− 1 times differentiable at x. Prove that

W ′(x) =

∣∣∣∣∣∣∣∣∣∣∣

f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′n(x)

...
...

. . .
...

f
(n−2)
1 (x) f

(n−2)
2 (x) · · · f

(n−2)
n (x)

f
(n)
1 (x) f

(n)
2 (x) · · · f

(n)
n (x)

∣∣∣∣∣∣∣∣∣∣∣
,

hence, show that if f1, f2, . . . , fn satisfy the following nth order ODE,

y(n) + pn−1(x)y(n−1) + · · ·+ p1(x)y′ + p0(x)y = 0,

then W ′(x) = −pn−1(x)W (x).
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Chapter 2

Vector Spaces

In this chapter F denotes R or C. We will develop the parallel story of real and complex
vector spaces at the same time. Every definition and statement involving the scalar field F
is supposed to be two separate almost identical statements. For example, the statement

For every x ∈ F, there is y ∈ F such that x+ y = 0.

means simultaneously:

For every x ∈ R, there is y ∈ R such that x+ y = 0; and
For every x ∈ C, there is y ∈ C such that x+ y = 0.

2.1 Definitions

Definition 2.1.1. A vector space is a set V along with an addition on V and also a scalar
multiplication on V satisfying the following axioms:

Closedness Under Addition
u, v ∈ V =⇒ u+ v ∈ V

Closedness Under Scalar Multiplication
α ∈ F, v ∈ V =⇒ αv ∈ V

Commutativity
For all u, v ∈ V , u+ v = v + u

Associativity
For all u, v,w ∈ V and a, b ∈ F,
(u+ v) + w = u+ (v + w), (ab)v = a(bv)

Additive Identity
There is an 0 ∈ V , v + 0 = v for all v ∈ V

Additive Inverse
For every v ∈ V , there is w ∈ V , v + w = 0

Multiplicative Identity
1v = v, for all v ∈ V

Distributive Properties
For all a, b ∈ F and u, v ∈ V
a(u+ v) = au+ av, (a+ b)u = au+ bu
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Chapter 2. Vector Spaces

To avoid our statements being cumbersome, let’s adopt the following convention.

Convention. When we just mention V is a vector space, then it is assumed to be over F.

A vector space over R is called a real vector space and that over C is called a complex
vector space. They share many similarities that we don’t try to distinguish them in this
and next chapter, and their main distinction will be seen in Chapter 4.

General Rule. When we mention a vector space that is not closed under nonreal
scalar, then our discussion will be over R, so when we quote any definitions and
results, we first replace F by R.

Theorem 2.1.2. Let V be a vector space. They all share the following properties:

(i) V has a unique additive identity (denoted by 0).

(ii) Each element v ∈ V has a unique additive inverse −v.

(iii) 0v = 0 for all v ∈ V .

(iv) α · 0 = 0 for all α ∈ F.

(v) (−1)v = −v for all v ∈ V .

Proof. (i) Suppose we have two additive identities 0 and 0′. Then by definition for
every u, v ∈ V , u + 0 = u and v + 0′ = v. In particular, if we take u = 0′ and v = 0,
then

0′ = 0′ + 0
commutativity

=========== 0 + 0′ = 0.

(ii) Let x, y ∈ V be additive inverse of v ∈ V , then

x = x+ (y + v) = (x+ v) + y = y.

(iii) 0v = (0 + 0)v = 0v+ 0v, we add the additive inverse of 0v on both sides to
get 0v = 0.

(iv) Let α ∈ F, by (iii) 0 · 0 = 0, so α0 = α(0 · 0) = (α · 0)0 = 0 · 0 = 0.

(v) Here −v means the additive inverse of v, not (−1)v by definition, although
indeed they are the same:

−v = −v + 0 = −v + 0v = −v + (1− 1)v = −v + v + (−1)v = 0 + (−1)v = (−1)v. �

Due to (i) of Theorem 2.1.2, we always denote a zero vector by 0, or more often
simply by 0. Also due to (ii) every additive inverse of v ∈ V is denoted by −v

Example 2.1.3 (List of Some Vector Spaces). Each of the following is a vector space with
naturally defined addition and scalar multiplication.

(i) Fn

(ii) The collection of polynomials with degree at most n

Pn(F) := {anxn + an−1xn−1 + · · ·+ a0 : a0, a1, . . . , an ∈ F}

30
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(iii) C ([0, 1],F) := {F-valued continuous function on [0, 1]}

(iv) R[0, 1] := {R-valued Riemann integrable function on [0, 1]}.

(v) F∞ := {(x1, x2, x3, . . . ) : x1, x2, x3, · · · ∈ F}

(vi) Mm×n(F) := {[ai j ]m×n : ai j ∈ F}

(vii) Trivial vector space: {0}

We will see that (iii), (iv) and (v) in Example 2.1.3 are much larger than the rest
in the sense of vector space dimension (or simply dimension) that we will shortly study.

Caution. The example above serves as a warning that when we speak of vector
space, it is not necessarily Fn. By a vector we merely mean an element in a
vector space, not a column.

2.2 Linear Span

Definition 2.2.1. Let V be a vector space and v1, v2, . . . , vn ∈ V , then for every x1,x2, . . . ,xn ∈
F,

x1v1 + x2v2 + · · ·+ xnvn

is called a linear combination of v1, v2, . . . , vn. The linear span (or simply span) of
v1, v2, . . . , vn is denoted and defined by

spanF{v1, v2, . . . , vn} = {x1v1 + x2v2 + · · ·+ xnvn : x1,x2, . . . ,xn ∈ F},

i.e., linear span is the collection of all possible linear combinations.

Remark. Hereafter in each example we will mention the vector space that is under
consideration at least once, therefore it will be clear in each discussion that which scalar
we are using. Thus instead of using the symbol spanF, we simply write span.

Consider again 
a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

, (2.2.2)

if we define a1 =

 a11
a21
...

am1

 , a2 =

 a12
a22
...

am2

 , . . . , an =

 a1n
a2n
...

amn

 and b =

 b1
b2
...
bm

, then the above

system of linear equations can be neatly written as x1a1 + x2a2 + · · · + xnan = b. The
solvability of the above equation is the same as whether or not b is in the span of a1, a2, . . . , an

Example 2.2.3. Given
[
1
1
0

]
,
[

0
−1
0

]
∈ R3,

span


1

1
0

 ,

 0
−1
0

 =

x

1
1
0

+ y

 0
−1
0

 : x , y ∈ R

 =


 x

x − y
0

 : x , y ∈ R

 .
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Example 2.2.4. We know that M2×2(R) is a real vector space, let

v1 =

[
1 0
1 1

]
, v2 =

[
1 2
−1 1

]
, v3 =

[
1 −1
1 −1

]
and v4 =

[
0 0
1 −2

]
.

Is the vector b = [ 3 1
0 3 ] in the span of v1, v2, v3, v4? If so, do v1, v2, v3, v4 span b in a unique

way?

Let x1, x2, x3, x4 ∈ R, the question is the same as asking if

x1v1 + x2v2 + x3v3 + x4v4 = b

is solvable and if the solution is unique. By expanding everything, the above equation is the
same as 

x1 + x2 + x3 = 3

2x2 − x3 = 1

x1 − x2 + x3 + x4 = 0

x1 + x2 − x3 − 2x4 = 3

.

Now we reduce it by doing row operations to the augmented matrix.
1 1 1 0 3
0 2 −1 0 1
1 −1 1 1 0
1 1 −1 −2 3

 R3→R3−R1−−−−−−−→
R4→R4−R1


1 1 1 0 3
0 2 −1 0 1
0 −2 0 1 −3
0 0 −2 −2 0


R3→R3+R2−−−−−−−→
R4→− 1

2R4


1 1 1 0 3
0 2 −1 0 1
0 0 −1 1 −2
0 0 1 1 0

 R4→R4+R3−−−−−−−→


1 1 1 0 3
0 2 −1 0 1
0 0 −1 1 −2
0 0 0 2 −2

 .

We get (x1, x2, x3, x4) = (1, 1, 1,−1). Thus b is in the spanned of vi ’s in a unique way.

2.3 Linear Independence

Definition 2.3.1. Let V be a vector space, a set of vectors {v1, v2, . . . , vn} in V is said to
be linearly independent if

a1v1 + a2v2 + · · ·+ anvn = 0, ai ∈ F =⇒ a1 = a2 = · · · = an = 0.

Otherwise it is said to be linearly dependent, i.e., there are a1, a2, . . . , an ∈ F, not all
zero, such that a1v1 + a2v2 + · · ·+ anvn = 0.

Remark. We can also say v1, v2, . . . , vn are linearly independent. Linear independence is
needed when we want to make sure no vi can be dropped in order to span the vector space
span{v1, v2, . . . , vn} by using these vi’s

Theorem 2.3.2. Let V be a vector space and {v1, . . . , vk} a linearly independent subset of
V , then:

(i) Every subset of {v1, . . . , vk} is linearly independent.

(ii) If v ∈ V \ span{v1, . . . , vk}, then {v, v1, . . . , vk} is linearly independent.

32



2.3. Linear Independence

Proof. (i) Suppose {vi : i ∈ I} is a subset of {v1, . . . , vk}, then∑
i∈I

aivi = 0 =⇒
∑
i∈I

aivi +
∑
i6∈I

0 · vi = 0,

as v1, v2, . . . , vk are linearly independent, necessarily ai = 0, for all i ∈ I.

(ii) Let a1, a2, . . . , ak,α ∈ F be such that

a1v1 + a2v2 + · · ·+ akvk + αv = 0.

If α 6= 0, then v ∈ span{v1, . . . , vk}, a contradiction, hence α = 0. But then

a1v1 + a2v2 + · · ·+ akvk = 0

and {v1, . . . , vk} is linearly independent, thus a1 = a2 = · · · = ak = 0. �

Example 2.3.3. Let V be a vector space, if v1, v2 ∈ V are linearly dependent, then one of them
must be a constant multiple of the other. This is because there are a1, a2 ∈ F, not all zero,
such that

a1v1 + a2v2 = 0.

Since at least one of ai ’s is nonzero, say a1 6= 0, then v1 = − a2
a1

v2; otherwise if a2 6= 0, then
v2 = − a1

a2
v1.

Example 2.3.4. The vectors

(1, 0, 0)T , (0, 1, 0)T and (0, 0, 1)T

are linearly independent in R3. To prove this, let

a1

1
0
0

+ a2

0
1
0

+ a3

0
0
1

 =

a1
a2
a3

 = 0,

hence by entrywise comparison, a1 = a2 = a3 = 0, so they are linearly independent.

Example 2.3.5. In Fn every set of n+1 vectors, say v1, v2, . . . , vn+1, must be linearly dependent.
It is because the homogeneous system

x1v1 + x2v2 + · · ·+ xn+1vn+1 = 0

satisfies

n + 1 = # of basic variables + # of free variables

≤ min{n, n + 1}+ # of free variables = n + # of free variables,

therefore # of free variables ≥ 1, so (x1, x2, . . . , xn+1) = (0, 0, . . . , 0) is not the only solu-
tion, i.e., v1, . . . , vn+1 are linearly dependent.

Example 2.3.6. Are the vectors
[
1
2
3

]
,
[
4
5
6

]
and

[
7
8
9

]
linearly independent in R3? To answer this,

suppose

x

1
2
3

+ y

4
5
6

+ z

7
8
9

 = 0,
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then they are linearly independent iff (x , y , z) = (0, 0, 0) is the only solution. To check this,
let’s do row operations on the coefficient matrix.1 4 7

2 5 8
3 6 9

 R2→R2−2R1−−−−−−−−→
R3→R3−3R1

1 4 7
0 −3 −6
0 −6 −12

 R3→R3−2R2−−−−−−−−→

1 4 7
0 −3 −6
0 0 0


Hence there will be at least one free variable, meaning that there are infinitely many solutions
to the homogeneous system, so (0, 0, 0) is not the only solution, and thus these vectors are
linearly dependent.

By finding the solution, we see that1
2
3

− 2

4
5
6

+

7
8
9

 = 0.

Example 2.3.7. Let C (R) denote the vector space of continuous functions on R. We try to
show that {x , xex , x2ex} is linearly independent in C (R).

Suppose there are a, b, c ∈ R such that

ax + bxex + cx2ex = 0, (2.3.8)

for all x ∈ R. We will prove that necessarily a = b = c = 0. Dividing x2ex on both sides,
we have for every x 6= 0,

a

xex
+

b

x
+ c = 0,

if we let x →∞, then c = 0. Hence (2.3.8) be comes

ax + bxex = 0.

Again dividing both sides by xex we have a/ex + b = 0, if we taking x → ∞, then b = 0.
Finally a = 0 from (2.3.8).

Alternatively we can use Wronskian that we usually learn in ODE course, see Prob-
lem 2.8 for detail.

2.4 Vector Subspaces

Definition 2.4.1 (Vector Subspace). Let V be a vector space and W ⊆ V . W is said to be
a vector subspace, or simply subspace, of V if it satisfies the following:

(i) 0 ∈W .

(ii) u, v ∈W =⇒ u+ v ∈W . (Closed Under Addition)

(iii) α ∈ R, v ∈W =⇒ αv ∈W . (Closed Under Scalar Multiplication)

Remark. Since W as a subset of V inherits addition and scalar multiplication from that of
V , hence loosely speaking:

W is a subspace of V ⇐⇒ W is a vector space contained in V .
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2.4.1 Examples

As easily seen from definition, linear span has very good algebraic structure:

Theorem 2.4.2. Let V be a vector space, v1, v2, . . . , vn ∈ V , then

span{v1, v2, . . . , vn}

is a subspace of V .

Proof. We just need to check (i), (ii) and (iii) of Definition 2.4.1.

(i) 0v1 + 0v2 + · · ·+ 0vn = 0 + 0 + · · ·+ 0 = 0 ∈ span{v1, v2, . . . , vn}.

(ii) Let u, v ∈ span{v1, v2, . . . , vn}, then there are a1, . . . , an and b1, . . . , bn such that
u =

∑n
i=1 aivi and v =

∑n
i=1 bivi, thus

u+ v =

n∑
i=1

(ai + bi)vi ∈ span{v1, v2, . . . , vn}.

(iii) Define v =
∑n
i=1 bivi, for every α ∈ F we have

αv =

n∑
i=1

αbivi ∈ span{v1, v2, . . . , vn}. �

Example 2.4.3. It is known that Rn is a vector space. Let 1 ≤ k ≤ n, then

Rk × {(0, 0, . . . , 0)︸ ︷︷ ︸
n − k entries

} := {(x1, . . . , xk , 0, . . . , 0)T : x1, x2, . . . , xk ∈ R}

is a subspace of Rn.

Example 2.4.4. The collection of symmetric matrices of Mn×n(R)

W := {A ∈ Mn×n(R) : AT = A}

is a subspace of the real vector space Mn×n(R). To prove this, we need to verify (i), (ii)
and (iii) of Definition 2.4.1 when F = R.

Since 0T = 0, 0 ∈W , (i) is satisfied.

Next, let A, B ∈W , then AT = A and BT = B, it follows that

(A + B)T = AT + BT = A + B,

thus W is closed under addition, (ii) is satisfied.

Finally, let α ∈ R and A ∈W , then

(αA)T = αAT = αA,

so W is closed under scalar multiplication, (iii) is satisfied.
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Chapter 2. Vector Spaces

Example 2.4.5. Let X and Y be two vector spaces. The Cartesian product

X × Y := {(x , y) : x ∈ X , y ∈ Y }

becomes a vector space with the following addition and scalar multiplication:

• Addition: For (x1, y1), (x2, y2) ∈ X × Y ,

(x1, y1) + (x2, y2) := (x1 + x2, y1 + y2).

• Scalar Multiplication: For (x , y) ∈ X × Y and α ∈ F,

α(x , y) = (αx ,αy).

Hereafter the Cartesian product of any two vector spaces is assumed to have the
natural operations defined in Example 2.4.5 that make it into a vector space.

2.4.2 Sums and Direct Sums

Let V be a vector space, a subspace U of V is said to be proper if U 6= V . It can be shown
that every vector space cannot be a union of two proper subspaces. So instead of studying
union, we focus on sum.

Theorem 2.4.6 (Sum and Intersection). Let V be a vector space and U ,W vector sub-
spaces of V , then both

U +W := {u+ w : u ∈ U ,w ∈W} and U ∩W

are subspaces of V .

Proof. U +W is a subset of V . To argue this, let x ∈ U +W , then x = u+w for some
u ∈ U and w ∈ W . But u,w ∈ V , hence x = u+ w ∈ V by definition of vector space’s
addition. We have proved the following implication

x ∈ U +W =⇒ x ∈ V ,

this implication is equivalent to saying U + W ⊆ V . Also U ∩W ⊆ V because both
U ,W ⊆ V .

To show U +W and U ∩W are subspaces of V , it remains to check (i), (ii) and
(iii) of Definition 2.4.1 are satisfied.

(i) Since U ,W are vector spaces, the additive identity 0 ∈ U ,W , so 0 = 0+0 ∈ U+W
and 0 ∈ U ∩W .

(ii) Let x, y ∈ U + W , then x = u1 + w1, y = u2 + w2 for some u1,u2 ∈ U and
w1,w2 ∈W , it follows that

x+ y = u1 + w1 + u2 + w2 = (u1 + u2) + (w1 + w2),

since U and W are closed under addition, u1 + u2 ∈ U and w1 + w2 ∈ W , thus
x+ y ∈ U +W , i.e., U + W is closed under addition.

Likewise, let x, y ∈ U ∩W , then there are u1,u2 ∈ U and w1,w2 ∈W such that

x = u1 = w1 and y = u2 = w2,

so x + y = u1 + u2 = w1 + w2. Again since U and W are closed under addition,
x+ y ∈ U ∩W , meaning that U ∩W is closed under addition.
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(iii) We leave the proof that U + W and U ∩W are closed under scalar multi-
plication as an exercise. This is as easy as (ii). �

Example 2.4.7. Let V be a vector space and W1, W2, . . . , Wk ⊆ V subspaces of V , then

W1 + W2 + · · ·+ Wk := {w1 + w2 + · · ·+ wk : wi ∈Wi , i = 1, 2, . . . k}

is a subspace of V . This is because by Theorem 2.4.6 W1 + W2 is a subspace of V , so is
(W1 + W2) + W3, so is (W1 + W2 + W3) + W4, . . . , so is (W1 + · · ·+ Wk−1) + Wk .

Example 2.4.8. We reconsider the set Rk × {(0, . . . , 0)T} ⊆ Rn in Example 2.4.3. Denote

ei = (a1, a2, . . . , an)T ,

where ai = 1 and j 6= i =⇒ aj = 0. For example, e1 = (1, 0, 0, . . . , 0)T and e2 =
(0, 1, 0, . . . , 0)T .

Rk × {(0, . . . , 0)T} is a subset of Rn. Since

Rk × {(0, . . . , 0)T} = span(e1) + span(e2) + · · ·+ span(ek),

by Example 2.4.7, Rk × {(0, . . . , 0)T} is a subspace of Rn. This also illustrates linear span
of a set of vectors is a subspace simply because they are sum of vector subspaces.

Given two subspaces U ,W of a vector space V , U + W is a subspace of V by
Theorem 2.4.6. Now every element in U + V can be written as a sum of u ∈ U and w ∈W ,
the next question is: can every element in U +W be written as such a sum uniquely?

Definition 2.4.9. A vector space V is said to be the direct sum of subspaces U and W if

V = U +W and U ∩W = {0}.

In this case we write V = U ⊕W .

Proposition 2.4.10. Let U and W be subspaces of a vector space V . Then the following
are equivalent:

(i) V = U ⊕W

(ii) Each vector in V is a sum of a u ∈ U and a w ∈W uniquely.

Proof. (⇒). Assume V = U ⊕W . Let v ∈ V , then v = u + w for some u ∈ U and
w ∈W .

Suppose v = u′ + w′ for some (possibly other) u′ ∈ U and w′ ∈ W , we need to
show u = u′ and w = w′.

Since u+ w = v = u′ + w′,

u− u′ = w′ − w ∈ U ∩W = {0},

hence u = u′ and w = w′, showing that the way of writing as a sum is unique.

(⇐). Conversely, assume every element in V can be written uniquely as a
sum of an element in U and an element in W , then this implies V ⊆ U + W ⊆ V , so
V = U +W .
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Chapter 2. Vector Spaces

It remains to show U ∩W = {0}, to do this, let v ∈ U ∩W , then there are
u ∈ U , w ∈W such that

v = u = w,

but then u− w = v − v = 0. Since U and W are vector spaces, 0 ∈ U and 0 ∈W , so

u− w = 0 = 0− 0,

but by hypothesis each vector in V is summed in a unique way, so u = 0 = w, thus
v = 0. In summary, the logic (v ∈ U ∩W =⇒ v ∈ {0}) says that U ∩W ⊆ {0}, but
U ∩W as a vector space contains 0, so U ∩W = {0}. �

Example 2.4.11. In the vector space R5,

U = {(a, b, c , 0, 0)T : a, b, c ∈ R and W = {(0, 0, 0, d , e)T : d , e ∈ R}

sum up to give R5. It is obvious U ∩W = {0}, so R5 = U ⊕W .

2.5 Finite Dimensional Vector Spaces

Definition 2.5.1. A vector space V is said to be finite dimensional if there are finitely
many vectors v1, v2, . . . , vn ∈ V such that

V = span{v1, v2, . . . , vn}.

A vector space that is not finite dimensional is said to be infinite dimensional.

Remark. For convenience we say a set V is finite dimensional if it is a vector space that is
finite dimensional.

Example 2.5.2 (Examples and Nonexamples).

(i) Fn is finite dimensional because

Fn = span{e1, e2, . . . , en},

where ei ’s are defined in Example 2.4.8.

(ii) From above, it is also clear Mm×n(F) is finite dimensional.

(iii) For n ≥ 1,

Pn(F) = {
∑n

i=0 aix
i : a1, . . . , an ∈ F} = span{1, x , x2, . . . , xn}

is finite dimensional.

(iv) The vector space of polynomials

P(F) := {polynomial over F} =
∞⋃
n=0

Pn(F)

is infinite dimensional. To see this, suppose P(F) is finite dimensional, then we can
find p1, p2, . . . , pn ∈ P(F) such that

P(F) = span{p1, p2, . . . , pn}.

Let N = max{deg pi : i = 1, 2, . . . , n}, then p ∈ P(F) =⇒ deg p ≤ N, i.e.,
the maximal possible degree of polynomials P(F) is bounded, this is impossible since
xN+1 ∈ P(F) but x 6∈ span{p1, . . . , pn}.
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The same proof as in (iv) of Example 2.5.2 shows that for any interval I ⊆ R,
P(R)|I := {p|I : p ∈ P(R)} is also infinite dimensional. It is also natural to tell whether or
not C([0, 1],R) is infinite dimensional. Since

C([0, 1],R) ⊇ P(R)|[0,1],

we can imagine C([0, 1],R) contains a very “big” vector space, so C([0, 1],R) must also be
very “big”. Indeed C([0, 1],R) is infinite dimensional, which follows quite trivially after
we make the “bigness” precise in Section 2.7. Still we will give a proof in Example 2.6.12
before we try to define the “size” of a vector space.

2.6 Bases

Definition 2.6.1. Let V be finite dimensional, a finite set {v1, . . . , vn} in V is said to be a
basis of V if:

(i) V = span{v1, v2, . . . , vn}.

(ii) v1, v2, . . . , vn are linearly independent.

In this text by basis we always mean a finite set, i.e., a collection of finitely many
vectors. Before giving examples, we give another useful characterization of bases which help
us to make sense of the concept coordinates in section 3.2.1.

Theorem 2.6.2. Let V be a vector space, then the following are equivalent:

(i) {v1, v2, . . . , vn} in V is a basis of V .

(ii) For every v ∈ V there are unique a1, a2, . . . , an ∈ F such that

v = a1v1 + a2v2 + · · ·+ anvn.

Proof. (i) ⇒ (ii) Let {v1, v2, . . . , vn} be a basis of V , if there are a1, . . . , an ∈ F and
b1, . . . , bn ∈ F such that

v =

n∑
i=1

aivi =

n∑
i=1

bivi,

then
∑n
i=1(ai − bi)vi = 0, but v1, . . . , vn are linearly independent, we have necessarily

ai − bi = 0, for all i, i.e., a1 = b1, a2 = b2, . . . , an = bn.

(ii) ⇒ (i) Let a1, a2, . . . , an ∈ F be such that a1v1 + · · ·+ anvn = 0, then

a1v1 + · · ·+ anvn = 0v1 + · · ·+ 0vn,

but then by (ii), we have a1 = 0, a2 = 0, . . . , an = 0. �

Example 2.6.3 (Some Bases).

(i) {1, x , x2, . . . , xn} is a basis of Pn(F).

(ii) The collection
{e1, e2, . . . , en}, (2.6.4)

as defined in Example 2.4.8 of, spans Fn and is linearly independent, thus it forms a
basis in Fn. Since this is the most natural choice of bases, (2.6.4) is called a standard
basis of Fn.
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(iii) In R3, if e1, e2, e3 are rotated by the same angles, they still form a basis in R3.

e2

e1

e3

e′2

e′1

e′3

R3

Example 2.6.5. We find the dimension of the vector space

F := {real-valued function defined on {1, 2, . . . , n}}.

In what follows we will construct a basis of F which has length n, thus dimF = n.

We define functions e1, e2, . . . , en : {1, 2, . . . , n} → {0, 1} by: for each i =
1, 2, . . . , n, let j ∈ {1, 2, . . . , n}, we define

ei (j) = δi j =

{
1, i = j ,

0, i 6= j .

Then given f ∈ F , we have for each k = 1, 2, . . . , n

f (k) =
n∑

i=1

f (i)ei (k),

i.e., as a function on {1, 2, . . . , n} we conclude that f =
∑n

i=1 f (i)ei ∈ span{e1, e2, . . . , en},
hence F ⊆ span{e1, e2, . . . , en}. The reverse inclusion is obvious, so

F = span{e1, e2, . . . , en},

showing that F is finite dimensional.

Not only that, {e1, e2, . . . , en} is linearly independent. To see this , let ai ∈ R be
such that

a1e1 + a2e2 + · · ·+ anen = 0.

Recall that the above equality means a equality of two functions on {1, 2, . . . , n}. In partic-
ular, if we evaluate at i ∈ {1, 2, . . . , n}, then

a1e1(i) + a2e2(i) + · · ·+ anen(i) = 0.

LHS of the above equation is ai , and this is true for each i = 1, 2, . . . , n, hence

a1 = a2 = · · · = an = 0.

So {e1, . . . , en} is a basis of F .

Example 2.6.6. Let V , W be vector spaces, if V has a basis {v1, . . . , vn} and W has a basis
{w1, . . . , wk}, what is the basis of V ×W ?

Here V ×W is a vector space with the naturally defined addition and scalar mul-
tiplication given in Example 2.4.5.
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Firstly we find a spanning set of V ×W . For every (v , w) ∈ V ×W , there are
ai , bi ∈ F such that

v =
n∑

i=1

aivi and w =
k∑

j=1

bjwj ,

it follows that

(v , w) =

( n∑
i=1

aivi ,
k∑

j=1

bjwj

)
=

( n∑
i=1

aivi , 0

)
+

(
0,

k∑
j=1

bjwj

)

=
n∑

i=1

ai (vi , 0) +
k∑

j=1

bj(0, wj)

∈ span{(vi , 0), (0, wi ) : i = 1, 2, . . . , n, j = 1, 2, . . . , k}.

The linearly independnce of {(vi , 0), (0, wi ) : i = 1, 2, . . . , n, j = 1, 2, . . . , k} is easily verified,
hence it is a basis of V ×W .

Next we present three fundamental results regarding to bases of finite dimensional
vector spaces in Theorem 2.6.7, Theorem 2.6.8 and Theorem 2.6.9. They will provide us a
base to build the concept of dimensional in the next section.

Theorem 2.6.7. Let V be finite dimensional. Every (finite) set of vectors that spans V can
be reduced into a basis of V (∗).

Proof. Let {v1, . . . , vn} be a spanning set of V . We may assume vi 6= 0 for all i,
otherwise delete it in the list. Let α = {v1, v2, . . . , vn}.

Step 1
If v2 ∈ span{v1}, delete this in α.
Else if v2 6∈ span{v1}, then leave α unchanged.

Step 2
If v3 ∈ span{v1, v2}, delete this in α.
Else if v3 6∈ span{v1, v2}, leave α unchanged.

Step j
If vj+1 ∈ span{v1, v2, . . . , vj}, delete this in α.
Else if vj+1 6∈ span{v1, v2, . . . , vj}, leave α unchanged.

After the step j = n− 1, the process terminates. The resulting list α′ spans V because
we have only discarded vectors that is in the span of the previous ones. Also since each
later vector (in terms of index) in α′ is not in the span of vectors preceding it, so α′ is
linearly independent. �

Theorem 2.6.8. Every finite dimensional vector space has a basis.

Proof. V being finite dimensional can be spanned by finitely many vectors in V . Then
by Theorem 2.6.7 we can reduce this spanning set of V into a basis. �

Theorem 2.6.9. Let V be finite dimensional. Every linearly independent set in V can be
extended to a basis in V .

(∗) It is a finite set by our definition.
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Proof. Let {v1, . . . , vk} be linearly independent in V and let β = {b1, . . . , bn} be a basis
of V (exists by Theorem 2.6.8). If {v1, . . . , vk} is already a basis of V , then we are done.

Suppose now {v1, . . . , vk} is not a basis of V .

Step 1
Since b1, . . . , bn, v1 are linearly dependent, there is bi ∈ span({b1, . . . , bn, v1}\{bi}).
Discard this bi from β to get β1, then β1 ∪ {v1} is a basis of V since v1 6∈ spanβ1.

Step 2
β1 ∪ {v1, v2} is linearly dependent, there is bi ∈ β1 such that bi ∈ span(β1 ∪
{v1, v2} \ {bi}), we can discard this bi from β1 to get β2, then β2 ∪ {v1, v2} is a
basis of V since v2 6∈ span(β2 ∪ {v1}).

Step j
Since βj−1 ∪ {v1, v2, . . . , vj} is linearly dependent, we can discard one of bi’s from
βj−1 to get βj such that βj ∪ {v1, v2, . . . , vj} is a basis of V .

If in one of the steps j = 1, 2, . . . , k− 1, bi’s all disappear in the resulting basis,
then {v1, . . . , vj} will be a basis of V , a contradiction. Hence the process can continue
and stop when j = k, and

βk ∪ {v1, v2, . . . , vk}
is a basis of V , where ∅ 6= βk ⊆ β.

In fact we have proved a more refined statement:

Let {b1, . . . , bn} be a basis of V . Every linearly independent set in V that
is not a basis can be extended to a basis in V that has cardinality n.

We will directly use this result in the next proof. �

Remark. Extending a given set of linearly independent vectors to a basis of a vector space
is a very basic technique in linear algebra. Later this will be our fundamental technique to
prove various results concerning “dimension”.

Corollary 2.6.10. Let V be finite dimensional and {b1, b2, . . . , bn} its basis. Any linearly
independent set {v1, v2, . . . , vk} in V must satisfy k ≤ n.

Proof. If α = {v1, . . . , vk} is not a basis, by the last paragraph in the proof of Theo-
rem 2.6.9, we can extend α to a basis of V with length n. Thus k < n.

On the other hand, if {v1, . . . , vk} is a basis of V , then {v1, . . . , vk−1} cannot
be a basis, and the previous paragraph shows us k − 1 < n, i.e.,

(k − 1) + 1 ≤ n ⇐⇒ k ≤ n. �

Proposition 2.6.11. Let V be a finite dimensional vector space, then every vector subspace
W of V must be finite dimensional.

Proof. By Theorem 2.6.8, V has a basis {v1, v2, . . . , vn}.

If W = {0}, then we are done. If W 6= {0}, then we can take w1 ∈ W \ {0}. If
W = span{w1}, then we are done, otherwise we can take w2 6∈ \ span{w1}. This process
can be continued to obtain a linearly independent set {w1,w2, . . . ,wj}.
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2.7. Dimension

By Corollary 2.6.10, j ≤ n, hence the process must terminate at some step
j ≤ n, and

W = span{w1,w2, . . . ,wj},

i.e., W is finite dimensional. �

We can now explain why C([0, 1],R) is infinite dimensional.

Example 2.6.12. Since P(R)|[0,1] is a subspace of C ([0, 1],R), if C ([0, 1],R) is finite dimen-
sional, so is P(R)|[0,1] by Proposition 2.6.11, a contradiction. Hence C ([0, 1],R) must be
infinite dimensional.

2.7 Dimension

The dimension of a finite dimensional vector space can be defined due to the following result:

Theorem 2.7.1. Any two bases of a finite dimensional vector space have the same length
(i.e., cardinality).

Proof. Let α and β be two bases, then by Corollary 2.6.10, since α is a basis, β is
linearly independent, |β| ≤ |α|. Similarly, β is a basis and α is linearly independent,
thus |α| ≤ |β|, it follows that |α| = |β|. �

Definition 2.7.2. Let V be finite dimensional. If V 6= {0}, we defined the dimension of V ,
denoted by dimV , to be the length of any basis in V . If V = {0}, we define dimV = 0.

Several remarks are in order:

• Given a finite dimensional vector space V , we have dimV = 0 ⇐⇒ V = {0}.

• A vector space V is finite dimensional if and only if dimV <∞.

• If {v1, v2, . . . , vn} is linearly independent, then

dim
(

span{v1, v2, . . . , vn}
)

= n.

Example 2.7.3.

(i) dim{0} = 0, this is by definition.

(ii) dimFn = n since it has the standard basis {e1, e2, . . . , en} which has length n.

(iii) dim Mm×n(F) = mn since it has the standard basis Ei j , where for i = 1, 2, . . . , m and
j = 1, 2, . . . , n,

E11 =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , E12


0 1 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , . . . , Emn =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

Namely, Ehk = [ai j ]m×n, where ahk = 1 and ai j = 0 when (i , j) 6= (h, k).
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Chapter 2. Vector Spaces

(iv) dimPn(F) = n + 1 since the basis {1, x , x2, . . . , xn} has length n + 1.

(v) dimF = n, where F is defined in Example 2.6.5 with basis e1, e2, . . . , en.

Theorem 2.7.4. Let V be a vector space.

(i) Every subspace U of V satisfies dimU ≤ dimV .

If further V is finite dimensional, then:

(ii) Every set of vectors that spans V with length dimV is a basis of V .

(iii) Every linearly independent set of vectors in V with length dimV is a basis of V .

Proof. (i) If dimV = ∞, then the inequality is trivial. Let’s assume dimV < ∞.
By Proposition 2.6.11, U is also finite dimensional, by Theorem 2.6.8, U has a basis
α = {u1,u2, . . . ,uk}, by Theorem 2.6.9 we can extend α to α′ a basis of V , then

dimU = |α| ≤ |α′| = dimV .

(ii) Let n = dimV and {v1, v2, . . . , vn} spans V . If {v1, v2, . . . , vn} is linearly
dependent, then there is vi such that

V = span{v1, v2, . . . , vn} = span({v1, v2, . . . , vn} \ {vi}),

but then by (i),

n = dimV = dim
(

span({v1, v2, . . . , vn} \ {vi})
)
≤ n− 1,

where the last inequality follows from Theorem 2.6.7, a contradiction.

(iii) Let n = dimV and {v1, v2, . . . , vn} a linearly independent set. If

span{v1, v2, . . . , vn} 6= V ,

then we can find a v 6∈ span{v1, v2, . . . , vn}, so {v, v1, v2, . . . , vn} is linearly independent
by (ii) of Theorem 2.3.2.

However, since {v, v1, v2, . . . , vn} is a basis of span{v, v1, v2, . . . , vn} ⊆ V , (i)
implies

n+ 1 = dim
(

span{v, v1, v2, . . . , vn}
)
≤ V = n,

a contradiction. �

Example 2.7.5. Reconsider (iv) of Example 2.5.2: We can show that P(F) is infinite dimensional
by using (i) of Theorem 2.7.4.

Indeed, since P(F) =
⋃∞

n=1 Pn(F), it follows that for each n ∈ N,

P(F) ⊇ Pn(F) =⇒ dimP(F) ≥ dimPn(F) = n + 1.

Let n→∞, dimP(F) =∞.

Example 2.7.6. The vector space F∞ := {(x1, x2, . . . ) : x1, x2, · · · ∈ F} is not finite dimen-
sional. To see this, for each n ∈ N we let

Vn = {(x1, x2, . . . , xn, 0, 0, . . . ) : x1, x2, . . . , xn ∈ F},
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Vn is a subspace of F∞. By (i) of Theorem 2.7.4,

dimF∞ ≥ dim Vn
(why?)

===== n,

by letting n→∞, we have dimF∞ =∞.

Example 2.7.7. Suppose that V is finite dimensional and U is a subspace of V . If dim U =
dim V , then necessarily U = V .

To prove this, let {u1, u2, . . . , un} be a basis of U, then n = dim U = dim V . By
hypothesis U ⊆ V , we try to show that V ⊆ U = span{u1, u2, . . . , un}, therefore V = U.

Suppose not, i.e., there is v ∈ V such that v 6= 0 and v 6∈ span{u1, u2, . . . , un},
then

span{u1, u2, . . . , un, v} ⊆ V .

Since {u1, u2, . . . , un, v} is linearly independent in V (by Theorem 2.3.2), it is a basis of
span{u1, . . . , un, v}, it follows that by (i) of Theorem 2.7.4,

n + 1 = dim
(

span{u1, u2, . . . , un, v}
)
≤ dim V = n,

a contradiction! We conclude V ⊆ U, as desired.

Example 2.7.8. Let V and W be finite dimensional, we show that

dim V ×W = dim V + dim W .

Indeed, let {v1, . . . , vn} be a basis of V and {w1, . . . , wk} a basis of W , then by
Example 2.6.6,

{(v1, 0), . . . , (vn, 0), (0, w1), . . . (0, wk)}

is a basis of V ×W , hence

dim(V + W ) = n + k = dim V + dim W .

The structure of a vector V space can be simplified by writing it as a direct sum
V = U ⊕ W . One can see that the Cartesian product U × W looks very similar to the
decomposition U⊕W , one similarity is that every element in U×W can be written uniquely
as (u,w), while every element in U⊕W can be written uniquely as u+w. Another similarity
(compared to Example 2.7.8) is the following:

Proposition 2.7.9. Let V be finite dimensional and U ,W be subspaces such that V = U⊕W ,
then

dim(U ⊕W ) = dimU + dimW .

Therefore U ⊕W is usually called the internal direct sum and U ×W is usually
called the external direct sum as they are indeed the same algebraically.

Proof. Let {u1, . . . ,um} be a basis of U and {w1, . . . ,wn} a basis of W , then

α = {u1, . . . ,um,w1, . . . ,wn}
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spans U ⊕W . Since U ∩W = {0}, the set α is linearly independent because

m∑
i=1

aiui +

n∑
i=1

biwi = 0 =⇒
m∑
i=1

aiui =

n∑
i=1

(−bi)wi ∈ U ∩W = {0}

=⇒ a1 = a2 = · · · = am = b1 = b2 = · · · = bn = 0.

Hence α is a basis of U ⊕W , thus

dim(U ⊕W ) = m+ n = dimU + dimW . �

Example 2.7.10. Let V be finite dimensional and U, W subspaces of V . If dim U + dim W >
dim V , then the intersection U ∩W is nontrivial(†), i.e., U ∩W 6= {0}.

To prove this, let’s for the sake of contradiction suppose that U ∩W = {0}. Then
the sum U + W is actually a direct sum U ⊕W , which is a subspace of V . Hence from
hypothesis, (i) of Theorem 2.7.4 and Proposition 2.7.9, we have

dim V < dim U + dim W = dim(U ⊕W ) ≤ dim V ,

a contradiction.

We have several results above which involve the dimension of the vector space U+V ,
in fact we can relate dim(U + V ) with dimU , dimV and dimU ∩ V :

Theorem 2.7.11. Let U and W be subspaces of a finite dimensional vector space V , then

dim(U +W ) = dimU + dimW − dim(U ∩W ).

As a general rule, whenever we are asked to prove the relation between various
dimensions, the most natural attempt is to count the basis.

Proof. If one of U and W is zero vector space, then we are done. From now on we
exclude this trivial case.

Case 1. If U ∩W = {0}, namely, U + W = U ⊕W , we are done by Proposi-
tion 2.7.9.

Case 2. Assume U ∩W 6= {0}.

Case 2.1. If U ⊆W or W ⊆ U , then we are also done.

Case 2.2. Assume U 6⊆W and W 6⊆ U . We let {v1, v2, . . . , vk} be a basis of of
U ∩W ; by Theorem 2.6.9 we can extend the set to a basis of U , {v1, . . . , vk,u1, . . . ,um};
On the other hand, we can also extend the set to a basis of W , {v1, . . . , vk,w1, . . . ,wn}.

U

W

U ∩W
v1, . . . , vk

u1, . . . ,um

w1, . . . ,wn

U +W 6= U ∪W

(†) A subspace of V is said to be trivial if it is {0}, as it is too simple.
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Obviously U +W = span{v1, . . . , vk,u1, . . . ,um,w1, . . . ,wn}, we wish

{v1, . . . , vk,u1, . . . ,um,w1, . . . ,wn}

could be linearly independent. To prove this, let ai, bi, ci ∈ F be such that

k∑
i=1

aivi +

m∑
i=1

biui +

n∑
i=1

ciwi = 0, (2.7.12)

then
n∑
i=1

ciwi = −
( k∑
i=1

aivi +

m∑
i=1

biui

)
∈ U ∩W = span{v1, . . . , vk}.

Since v1, . . . , vk,w1, . . . ,wn are linearly independent, ci = 0, for all i. (2.7.12) becomes

k∑
i=1

aivi +

m∑
i=1

biui = 0,

again, u1, . . . um, v1, . . . , vk are linearly independent, hence all ai = 0 and all bi = 0.

Conclusion: {v1, . . . , vk,u1, . . . ,um,w1, . . . ,wn} is a basis of U +W . Finally,

dim(U +W ) = k +m+ n

= (k +m) + (k + n)− k
= dimU + dimW − dim(U ∩W ). �

2.8 Subspaces of Fn

2.8.1 Null Spaces, Column Spaces and Row Spaces

Now we return to subspaces of Fn.

Definition 2.8.1. Given a matrix A ∈Mm×n(F), we define

NulA = {x ∈ Fn : Ax = 0}, ColA = {Ax : x ∈ Fn},

called null space of A and column space of A respectively. Also, we define the row
space of A by

RowA = ColAT .

Remark. Due to linearity of A ∈ Mm×n(F) (Corollary 1.2.7), NulA, ColA and RowA are
subspaces of Fn, Fm and Fn respectively. Note that

ColA = image of A.

Hence A is surjective if and only if ColA = Fm.

Example 2.8.2. Let A ∈ Mm×n(F), it can be shown that

A is injective ⇐⇒ Nul A = {0} ⇐⇒
(
Ax = 0 =⇒ x = 0

)
.
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Chapter 2. Vector Spaces

We just prove the first two are equivalent since the last two are somewhat a restatement of
definition.

(⇒). Assume A is injective. Let x ∈ Nul A, then Ax = 0, but A0 = 0, hence
Ax = A0, injectivity of A forces x = 0, so x ∈ {0}. The implication says that Nul A ⊆ {0},
thus Nul A = {0}.

(⇐). Assume Nul A = {0}, let x , y ∈ Fn such that Ax = Ay , then A(x − y) = 0,
so x − y ∈ Nul A = {0}, i.e., x = y . We conclude A is injective.

Example 2.8.3. Let

A =

1 2 3
3 2 1
4 5 6

 ∈ M3×3(R).

Loosely speaking, Col A is the space spanned by columns and Row A is the space spanned
by rows. Thus by definition,

Col A =

A

x
y
z

 : x , y , z ∈ R

 = span


1

3
4

 ,

2
2
5

 ,

3
1
6

 .

Also,

Row A = Col AT =

AT

x
y
z

 : x , y , z ∈ R

 = span


1

2
3

 ,

3
2
1

 ,

4
5
6

 .

Example 2.8.4 (Dimension of Nul A). We try to compute dim Nul A, where

A =

1 2 −2 3
2 4 −3 4
5 10 −8 11

 ∈ M3×4(R).

To count dimension, we first find a basis of Nul A. Let x ∈ Nul A, since1 2 −2 3
2 4 −3 4
5 10 −8 11

→ · · · →
1 2 0 −1

0 0 1 −2
0 0 0 0

 ,

the system Ax = 0 is equivalent to{
x1 + 2x2 − x4 = 0

x3 − 2x4 = 0
.

Here x2 and x4 are free variables, we let x2 = s and x4 = t, then x1 = t − 2s and x3 = 2t,
hence

Nul A =




t − 2s
s
2t
t

 = s


−2
1
0
0

+ t


1
0
2
1

 : s, t ∈ R

 = span



−2
1
0
0

 ,


1
0
2
1


 .

Since

[−2
1
0
0

]
and

[
1
0
2
1

]
are linearly independent, we conclude dim Nul A = 2 .
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To find a basis of ColA, we use the row operation technique:

Theorem 2.8.5. LetA ∈Mm×n(F) be reduced to row echelon formR andA = [a1 · · · an] , ai ∈
Fm. If i1, i2, . . . , ikth columns of R are pivot columns, then

{ai1 , ai2 , . . . , aik}

is a basis of ColA.

Proof. We let E be the product of elementary matrices such that EA = R. Since
i1, i2, . . . , ikth columns (with i1 < i2 < · · · < ik) of EA are pivotal, then

Eai1 = e1,Eai2 = e2, . . . ,Eaik = ek.

It is easy to see that ai1 , . . . , aik are linearly independent. Now we show that every
column in A is in the span of {aij : j = 1, 2, . . . , k}. Indeed, for p = 1, 2, . . . ,n,

Eap =

k∑
j=1

bjej =

k∑
j=1

bjEaij =⇒ ap =

k∑
j=1

bjaij .

Since each columns of A is in the span of {aij : j = 1, 2, . . . , k}, thus

ColA = span{aij : j = 1, 2, . . . , k}. �

Example 2.8.6 (Dimension of Col A). We try to compute dim Col A, where

A =

1 2 −2 3
2 4 −3 4
5 10 −8 11

 ∈ M3×4(R).

From Example 2.8.4 1 2 −2 3
2 4 −3 4
5 10 −8 11

→ · · · →
1 2 0 −1

0 0 1 −2
0 0 0 0

 ,

since the first and the third columns of the reduced echelon form are pivotal,
[
1
2
5

]
and

[
2
3
8

]
form a basis of Col A, we have dim Col A = 2 .

Finally, what is dim RowA = dim ColAT ?

Theorem 2.8.7. Let A ∈Mm×n(F), then

dim ColA︸ ︷︷ ︸
column rank

= dim ColAT︸ ︷︷ ︸
row rank

.

Proof. Let E be an elementary matrix such that EA is in reduced row echelon form
and assume that i1, i2, . . . , ikth columns (i1 < i2 < · · · < ik) of EA are pivotal, then by
Theorem 2.8.5, dim ColA = k. On the other hand, (EA)T = ATET and Col(ATET ) =
Col(AT ), so

dim ColAT = dim Col(ATET ) = dim Col(EA)T .

Since EA is the reduced row echelon form of A, only the first k rows are nonzero, hence
Col(EA)T is spanned by first k columns of (EA)T which are linearly independent, thus
dim ColAT = k. �
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Definition 2.8.8. For any matrix A, we define the rank of A to be

rankA = dim ColA.

Now Theorem 2.8.7 can be rephrased as rankA = rankAT .

Definition 2.8.9. A matrix A ∈Mm×n(F) is said to be of full rank if

rankA = min{m,n}.

In other words, it has the maximum possible rank among matrices in Mm×n(F).

2.8.2 Rank-Nullity Theorem

The computational Example 2.8.4 and Example 2.8.6 provide us the evidence that

# of free variables = dim NulA and # of pivot columns = dim ColA,

in fact we have:

Theorem 2.8.10 (Rank-Nullity). If A ∈Mm×n(F), then

n = dim NulA+ dim ColA. (∗)

Proof. Note that NulA ⊆ Fn and ColA ⊆ Fm. If dim NulA = n, then we are done
since in this case by Example 2.7.7, NulA = Fn, then Ax = 0 for each x ∈ Fn and thus
ColA = {0}, hence (∗) is true.

Suppose dim NulA = k < n. Let {u1,u2, . . . ,uk} be a basis of NulA, we extend
it to

{u1, . . . ,uk,uk+1, . . . ,un}

a basis of Fn, we show that ColA = span{Auk+1, . . . ,Aun}. Indeed, for every x ∈ Fn,
there are ai ∈ F such that x =

∑n
i=1 aiui, it follows that

Ax = A

(
n∑
i=1

aiui

)
=

n∑
i=1

aiAui =

n∑
i=k+1

aiAui ∈ span{Auk+1, . . . ,Aum},

thus ColA ⊆ span{Auk+1, . . . ,Aum}, as the reverse inclusion is obvious, thus the set
equality is proved.

Finally we check that {Auk+1, . . . ,Aun} is linearly independent. Suppose there
are bk+1, . . . , bn ∈ F such that

∑n
i=k+1 biAui = 0, then

∑n
i=k+1 biui ∈ NulA = span{u1,u2, . . . ,uk}.

But u1,u2, . . . ,un are linearly independent, hence necessarily bk+1, . . . , bn = 0, as de-
sired. Thus dim ColA = n− k, and therefore

dim NulA+ dim ColA = k + (n− k) = n. �

Corollary 2.8.11. Let A be a square matrix, then the following are equivalent:
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(i) A is injective. (ii) A is surjective. (iii) A is invertible.

Now we are going to prove the chain

(iii) =⇒ (i) =⇒ (ii) =⇒ (iii).

Proof. (iii) ⇒ (i) Since A is invertible ⇐⇒ A is 1− 1 and onto, hence (i) follows.

(i) ⇒ (ii) Assume A is injective, then equivalently, NulA = {0}, hence by
rank-nullity theorem,

n = 0 + dim ColA,

hence dim ColA = n and ColA ⊆ Fn, by Example 2.7.7, ColA = Fn, showing that A is
surjective.

(ii) ⇒ (iii) Assume A is surjective, then ColA = Fn, by rank-nullity theorem
again,

n = dim NulA+ dim ColA = dim NulA+ n,

and thus dim NulA = 0, i.e., NulA = {0}, so A is injective. Together with assumption
(ii), A is invertible, thus (iii) follows. �

Example 2.8.12. Let A ∈ M2×4(R) be such that

Nul A = {(x1, x2, x3, x4)T ∈ R4 : x1 = 5x2 and x3 = 7x4},

we try to show that A is surjective as a map from R4 to R2. Recall that A is sujective iff
Col A = R2.

Firstly we count the dimension of Nul A, for this, note that

x ∈ Nul A ⇐⇒ x =


5x2
x2

7x4
x4

 ,∃x2, x4 ∈ R ⇐⇒ x ∈ span




5
1
0
0

 ,


0
0
7
1




hence dim Nul A = 2. Applying rank-nullity theorem to A, we have

4 = dim Nul A + dim Col A = 2 + dim Col A,

hence dim Col A = 2. As Col A is a subspace of R2, Col A = R2 by Example 2.7.7.

Example 2.8.13. Let S ∈ Mn×n(R) be skew-symmetric (i.e., ST = −S), we try to show that
I + S is invertible.

Since I + S is square, by Corollary 2.8.11 we have

I + S is invertible ⇐⇒ I + S is injective ⇐⇒ ((I + S)x = 0 =⇒ x = 0).

Now we try to show the last statement.

Let (I + S)x = 0, then Sx = −x . Define 〈a, b〉 = a · b, where a, b ∈ Rn and a · b
means the dot product between a and b. For x ∈ Rn, recall that ‖x‖2 = 〈x , x〉, and also for
any n × n matrix A,

〈Ax , y〉 = (Ax)T y = xT (AT y) = 〈x , AT y〉, x , y ∈ Rn
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hence
‖x‖2 = 〈x , x〉 = 〈−Sx , x〉 = −〈Sx , x〉 (2.8.14)

and
〈Sx , x〉 = 〈x , ST x〉 = 〈x , (−S)x〉 = −〈x , Sx〉 = −〈Sx , x〉,

hence 2〈Sx , x〉 = 0, i.e., 〈Sx , x〉 = 0. Continuing from (2.8.14), ‖x‖ = 0, so x = 0, as
desired. We conclude that I + S is injective, hence invertible.

2.8.3 Some Remarks on “Full Rank”

Let A be an m× n matrix.

• When A is thin (i.e., m ≥ n), by rank-nullity theorem, dim ColA = n−dim NulA ≤ n,
hence maximum possible rank is attained when dim NulA = 0, i.e., A is injective.
Hence

A thin matrix A is of full rank ⇐⇒ A is 1-1.

• When A is strictly fat (i.e., m < n), then A (as a map Fn → Fm) can never be
injective, the argument above fails. Note that ColA is a subspace of Fm, so the
maximum possible rank is m, namely, this happens when A is surjective. Thus

A strictly fat matrix A is of full rank ⇐⇒ A is onto.

2.9 Quotient Vector Spaces

2.9.1 Equivalence Relation

Definition 2.9.1. An equivalence relation, ∼, on a set S is a binary relation that satisfies
the following three conditions:

Reflexive
For all x ∈ S, x ∼ x.

Symmetric
For x, y ∈ S, if x ∼ y, then y ∼ x.

Transitive
For x, y, z ∈ S, if x ∼ y, y ∼ z, then x ∼ z.

Example 2.9.2. It is easy to find equivalence relation. For example, for the set of straight lines
in R2 “being parallel” is an equivalence relation. In a high school, “being in the same class”
is an equivalence relation on pupil. “Being of the same sex” is an equivalence relation on
human, normally.

For x ∈ S, we introduce the equivalence class

[x] := {s ∈ S : s ∼ x}.

Also we denote S/∼ the collection of all equivalence classes, namely,

S/∼ = {[s] : s ∈ S},

which is read as the “set S modulo ∼”. It is easy to establish the following basic fact:
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Proposition 2.9.3. Let ∼ be an equivalence relation on a set S, then:

a ∼ b ⇐⇒ [a] = [b] ⇐⇒ [a] ∩ [b] 6= ∅.

Therefore every element in a class [s] is called a representative of [s], this is
because for every u ∈ [s], we have u ∼ s, hence [u] = [s], all of them will represent the same
class.

Proof. If a ∼ b, we let x ∈ [a], then x ∼ a. But a ∼ b, so by transitivity, x ∼ b, hence
x ∈ [b]. The argument says that [a] ⊆ [b]. By interchanging a, b, [b] ⊆ [a], so [a] = [b].

If [a] = [b], then of course [a] ∩ [b] 6= ∅.

If [a] ∩ [b] 6= ∅, then we can pick x ∈ [a] ∩ [b], which means that x ∼ a (by
“symmetricity”, a ∼ x) and x ∼ b. By transitivity, a ∼ b. �

Hence an equivalence relation ∼ can be used to partition S because distinct classes
have empty intersection (Proposition 2.9.3), moreover,

S =
⋃
s∈S

[s] =
⊔
α∈A

[sα],

where we choose sα’s ∈ S the representative of the distinct classes [sα]’s. Note that the
feasibility of choosing those representatives follows from Axiom of Choice(‡). The repre-
sentative of a class may not be unique as we can choose (if exists) a uα ∈ [sα] \ {sα} such
that uα ∼ sα and thus [uα] = [sα]. Note that it is natural to fix the representatives to avoid
listing the same equivalence class.

For those who have had acquaintance with group or number theory the following
example can be skipped.

Example 2.9.4. Let a, b ∈ Z, we can declare a relation ∼ on Z by

a ∼ b if a− b ∈ 2Z := {2n : n ∈ Z}.

For reflexivity, if a ∈ Z, then a− a = 0 ∈ 2Z.

For symmetricity, if a− b ∈ 2Z, then b − a ∈ −2Z = 2Z.

For transitivity, if a− b ∈ 2Z, b − c ∈ 2Z, then a− c = (a− b) + (b − c) ∈ 2Z.

Let’s compute [a] when a ∈ Z. By definition [a] = {n ∈ Z : n ∼ a}, so

[a] = {n ∈ Z : n − a = 2i ,∃i ∈ Z} =
⋃
i∈Z
{n ∈ Z : n − a = 2i} =

⋃
i∈Z
{a + 2i} = a + 2Z.

Moreover by noting that [a] = a + 2Z = a− 2 + 2Z = [a− 2], it can be easily checked that

Z/∼ = {[n] : n ∈ Z} = {[0], [1]} =
{
{even integers}, {odd integers}

}
.

(‡) Axiom of Choice is proved equivalent to Zorn’s lemma in set theory.
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2.9.2 Vector Spaces by Quotienting

Construction of Quotient Vector Spaces

With the concept of quotient spaces one can give another proof of

dim(U + V ) = dimU + dimV − dim(U ∩ V )

(Theorem 2.7.11) without the messy checking on the number of basis. Let’s start with the
construction.

Let V be a vector space and U a vector subspace of V , it can be checked that for
x, y ∈ V , the relation x ∼ y defined by

x− y ∈ U

is indeed an equivalence relation on the set V . For x ∈ V ,

[x] = {v ∈ V : v ∼ x} = {v ∈ V : v − x ∈ U} = {v ∈ V : v ∈ x+ U} = x+ U .

Conventionally we denote

V/U := V/∼ = {[v] : v ∈ V } = {v + U : v ∈ V },

read as “V mod U”. It is worth noting that V/U is still a vector space (hence called a
quotient vector space) with the naturally defined addition

(x+ U) + (y + U) = (x+ y) + U

and scalar multiplication
α(x+ U) = αx+ U .

It is easy to check that these definitions are well-defined. Namely, the definition of these
operations are independent of the choices of representatives. Moreover, the zero element
in V/U is the class 0V/U = [0]. We shall denote this zero element in V/U also by 0. For
x+ U ∈ V/U , we observe that

x+ U = 0 ⇐⇒ [x] = [0] ⇐⇒ x ∼ 0 ⇐⇒ x− 0 ∈ U ⇐⇒ x ∈ U . (2.9.5)

Hence the representatives of zero element in V/U are precisely every element in U .

Properties of Quotient Vector Spaces

Let’s look at the first result:

Theorem 2.9.6. Let X be a finite dimensional vector space and Y its subspace, then

dim(X/Y ) = dimX − dimY .

Proof. Let’s consider two extreme cases. If dimY = 0, i.e., Y = {0}, and hence
X = X/{0}, so we are done. If dimY = dimX, then Y = X, and thus X/Y = {0},
therefore

dim(X/Y ) = 0 = dimX − dimY ,

we are also done.
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Suppose now 0 < dimY = m < dimX. Let {v1, v2, . . . , vm} be a basis of Y ,
extend it to {v1, . . . , vm,u1, . . . ,un} a basis of X, then it is not hard to check

X/Y = span {u1 + Y , . . . ,un + Y }︸ ︷︷ ︸
:=α

due to (2.9.5). We show that α is linearly independent, thus is a basis of X/Y . Let
ai ∈ F be such that

n∑
i=1

ai(ui + Y ) =

(
n∑
i=1

aiui

)
+ Y = 0,

then by (2.9.5),
∑n
i=1 aiui ∈ Y = span{v1, . . . , vm}, but v1, . . . , vm,u1, . . . ,un are lin-

early independent, hence necessarily a1, a2, . . . , an = 0, as desired. Now α is a basis of
X/Y , therefore

dim(X/Y ) = n = (n+m)−m = dimX − dimY . �

Recall that given two vector subspaces X,Y , the set X + Y and X ∩ Y are still
vector spaces. Now we have the following:

Theorem 2.9.7. Let X and Y be vector subspaces of some vector space, then

X + Y

X ∩ Y
=

X

X ∩ Y
⊕ Y

X ∩ Y
.

Here U
V is another notation for U/V .

Proof. Obviously
X + Y

X ∩ Y
=

X

X ∩ Y
+

Y

X ∩ Y
.

To show the sum is actually a direct sum, we let u ∈ X
X∩Y ∩

Y
X∩Y , and prove u = 0.

Indeed,
u = x+X ∩ Y = y +X ∩ Y ,

for some x ∈ X, y ∈ Y . It follows that x− y ∈ X ∩Y , thus there is v ∈ X ∩Y such that

x− y = v =⇒ x = v + y ∈ Y .

But x ∈ X, so x ∈ X ∩ Y , and hence u = x+X ∩ Y = 0 by (2.9.5). �

We are ready to give a simpler proof to Theorem 2.7.11. It is good to have two
different proofs to an interesting result.

Corollary 2.9.8. Let U and V be two finite dimensional subspaces of some vector space,
then

dim(U + V ) = dimU + dimV − dim(U ∩ V ). (2.9.9)

Proof. By Theorem 2.9.7 and Proposition 2.7.9,

dim
U + V

U ∩ V
= dim

U

U ∩ V
+ dim

V

U ∩ V
.

By Theorem 2.9.6,

dim(U + V )−(((((
(

dim(U ∩ V ) = dimU −(((((
(

dim(U ∩ V ) + dimV − dim(U ∩ V ). �
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Quotient is an important concept in almost everywhere. You will learn a much
general concept in MATH3121 (Algebra I) or 3131 (Honors in Linear and Abstract Algebra
II). For analytical aspect, one will learn this in MATH4063 (Functional Analysis) which is a
good course for those who already have good background on real analysis (MATH3043) and
general point-set topology (MATH4061 Modern Analysis & MATH4225 Topology). Some
of them (a set modulo some equivalence relation) even have smooth structure as a smooth
manifold which we will learn in MATH4033 (Calculus on Manifold).

2.10 Exercises

Linear Span

Problem 2.1. Let H,K be subsets of a vector space V , prove that

span(H ∪K) = spanH + spanK and span(H ∩K) ⊆ spanH ∩ spanK.

Problem 2.2. Let A,B ∈Mn×n(R) such that A is nonzero symmetric matrix and B is a
nonzero skew-symmetric matrix, show that {A,B} is linearly independent in Mn×n(R).

Problem 2.3. Let A ∈ Mn×n(R), if A = B + C = B′ + C ′, where B,B′ are symmetric
and C,C ′ are skew symmetric, then B = B′ and C = C ′. Recall Example 2.4.4.

Linear Independence

Problem 2.4. Prove that if {v1, v2, . . . , vn} is linearly independent in V , then so is

{v1 − v2, v2 − v3, . . . , vn−1 − vn, vn}.

Problem 2.5. Let V be a vector space. Suppose {v1, v2, . . . , vn} is linearly independent
in V and w ∈ V . Prove that

{v1 + w, v2 + w, . . . , vn + w} is linearly dependent =⇒ w ∈ span{v1, v2, . . . , vn}.

Problem 2.6. Let α1,α2, . . . ,αn be distinct real numbers, show that {eα1t, eα2t, . . . , eαnt}
is linearly independent in C(R,R).

Problem 2.7. Let A ∈ Mn×n(R). Suppose there is a positive integer m such that
Am−1v 6= 0 but Amv = 0. Prove that

{v,Av,A2v, . . . ,Am−1v}

is linearly independent.

Problem 2.8 (Wronskian). Let f1, f2, . . . , fn : R → R be n − 1 differentiable, define
W (f1, . . . , fn)(x) as in Problem 1.13. Show that if W (x0) 6= 0, for some x0, then
{f1, f2, . . . , fn} is linearly independent.
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Problem 2.9. Let f1, f2, . . . , fn ∈ C([a, b],R). Show that the set {f1, f2, . . . , fn} is
linearly dependent in C([a, b],R) if and only if

det[〈fi, fj〉]n×n = 0.

Where 〈·, ·〉 is defined by 〈f , g〉 =

∫ b

a

f(x)g(x) dx.

Sums and Direct Sums

Problem 2.10. We have defined the trace of a square matrix in Problem 1.4. Show
that W := {A ∈ Mn×n(R) : TrA = 0} is a subspace of Mn×n(R). Moreover, find a
subspace V of Mn×n(R) such that

Mn×n(R) = W ⊕ V .

Vector Spaces and Bases

Problem 2.11. Prove that (vi), (vii) and (viii) of Example 2.5.2 are (a) vector spaces
with suitably defined addition and scalar multiplication; and (b) infinite dimensional.

Hint. The idea used in Example 2.7.6 may be helpful.

Problem 2.12. Let v1, v2, v3 ∈ R3, suppose the vector equation

x1v2 + x2v2 + x3v3 = b

has no solution for some b ∈ R3, show that {v1, v2, v3} is linearly dependent.

Hint. Use Theorem 2.7.4.

Dimensions

Problem 2.13. Let A be any real matrix, prove that I +ATA is invertible.

Problem 2.14. Let

W = span

{[
1 −5
−4 2

]
,

[
1 1
−1 5

]
,

[
2 −4
−5 7

]
,

[
1 −7
−5 1

]}
,

find a basis of W and dimW .

Problem 2.15. Fix a vector v ∈ Rn \ {0} and let U = {A ∈Mn×n(R) : Av = 0}. Show
that dimU = n(n− 1).

Remark. U is the vector space of matrices that “kill” the vector v ,.

Problem 2.16 (Generalize Problem 2.15). Let P ∈Mn×n(R) be such that rankP = r.
Show that

dim
(
{A ∈Mn×n(R) : AP = 0}

)
= n(n− r).
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Remark. The vector space (whose dimension is to be computed) is the set of all matrices
that “kill” the matrix P ,.

Problem 2.17. Let V be the vector space of all 2× 2 matrices A ∈M2×2(R) such that

A

[
1 1
1 1

]
=

[
2 0
0 0

]
A.

(a) Find a basis of V and determine dimV .

(b) Find the dimension of the image of T : M2×2(R)→M2×2(R) defined by

T (A) = A

[
1 1
1 1

]
−
[
2 0
0 0

]
A, for each A ∈M2×2(R).

Problem 2.18. Let S = {AB − BA : A,B ∈ Mn×n(R)}. This is an infinite subset of
the vector space of n× n matrices. We define

spanS := {a1s1 + · · ·+ ansn : ai ∈ R, si ∈ S,n ≥ 1}.

Namely, spanS is the collection of all finite linear combinations of S.

(a) Show that spanS defined above is indeed a real vector space.

(b) Because spanS is a subspace of Mn×n(R), it is finite dimensional. Show that
precisely,

dim(spanS) = n2 − 1.

Hint. The trace map Tr : Mn×n(R) → R is linear, and span S ⊆ ker Tr. Moreover,
we know that dim ker Tr = n2 − 1, where ker Tr = {A ∈ Mn×n(R) : Tr A = 0}.

Problem 2.19. Let A,B ∈Mm×n(F), show that

rank(A+B) ≤ rankA+ rankB.

Problem 2.20. Let A ∈Mm×k(F) and B ∈Mk×n(F), then AB ∈Mm×n(F), prove that

dim NulAB ≤ dim NulA+ dim NulB.

Problem 2.21. Let A ∈Mm×n(R), prove that rankATA = rankA.

Problem 2.22. Raise a counter example to show that

dim(U + V +W ) = dimU + dimV + dimW

− dim(U ∩ V )− dim(V ∩W )− dim(W ∩ U)

+ dim(U ∩ V ∩W )

can be false for some subspace U ,V ,W of a real vector space.
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Chapter 3

Linear Transformations Between
Vector Spaces

Throughout this chapter we use F to denote R or C. As a reminder, some of the examples
cannot have a direct analogue to complex vector spaces since, as you will see, some of the
operations will not make sense in complex field.

3.1 Linear Transformations

3.1.1 Definitions and Basic Results

Definition 3.1.1. A linear map or linear transformation is a function T : V → W
between vector spaces such that

Additivity
T (u+ v) = Tu+ Tv ∀u, v ∈ V

Homogeneity
T (αv) = αTv ∀α ∈ F,∀v ∈ V

Convention.

• For linear maps we write Tv instead of T (v).

• We denote L(V ,W ) the collection of all linear maps from V to W .

• A linear map T : V → V is said to be a linear operator in linear algebra.

Example 3.1.2 (Linear Transformations T ∈ L(V , W )).

(i) Any matrix A ∈ Mm×n(F) gives a linear transformation LA ∈ L(Fn,Fm) defined by

LA(x) = Ax .

We say A is the standard matrix of LA.

(ii) If V = W , we have identity map IV ∈ L(V , V ) defined by

IV (v) = v , for all v ∈ V .
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(iii) Let T ∈ L(F7,F7) be backward shift defined by

T (x1, x2, . . . , x7) = (x2, x3, . . . , x7, 0).

(iv) For n ≥ 1, we can define S ∈ L(Pn(R),Pn+2(R)) and T ∈ L(Pn(R),Pn−1(R)) by

(Sp)(x) = x2p(x) and (T p)(x) =
dp

dx
(x).

Note that Sp and T p are functions, we use the notation (Sp)(x), (T p)(x) to make
explicit what the function is pointwise.

(v) We can define T ∈ L(C ([0, 1],R), C ([0, 1],R)) by

(T f )(x) =

∫ x

0

f (t) dt.

Definition 3.1.3. Let S ∈ L(U ,V ) and T ∈ L(V ,W ), we define TS ∈ L(V ,W ) by

(TS)(v) = T ◦ S(v) = T (S(v)).

Theorem 3.1.4. Let {v1, v2, . . . , vn} be linearly independent in V , given w1,w2, . . . ,wn ∈
W , there is a unique T ∈ L(span{v1, . . . , vn},W ) such that

Tvi = wi, i = 1, 2, . . . ,n.

That is to say, whenever we have a basis on V , then we can define a linear map on
V by assigning each vi an vector wi. Those wi’s can possibly repeat.

Proof. We define T : span{v1, . . . , vn} →W as follows: For every ai ∈ F,

T (a1v1 + a2v2 + · · ·+ anvn) = a1w1 + a2w2 + · · ·+ anwn. (3.1.5)

It is easy to check T is indeed linear, hence it a linear map that satisfies desired prop-
erties.

On the other hand, if S : span{v1, . . . , vn} →W is any map such that Svi = wi,
then T and S agree on a basis, hence T = S. �

Example 3.1.6. We try to prove that there is a linear map T : R4 → R3 such that

T


2
1
2
1

 =

1
1
1

 and T


3
0
3
3

 =

3
0
1

 .

Obviously (2, 1, 2, 1)T and (3, 0, 3, 3)T are linearly independent in R4, by Theorem 3.1.4 we
can already define a unique linear map T : span{(2, 1, 2, 1)T , (3, 0, 3, 3)T} → R3 given by

T

a


2
1
2
1

+ b


3
0
3
3


 = a

1
1
1

+ b

3
0
1

 .

However it is not enough as we seek for a map with domain on R4. That means we should
try to expand the domain of our T .
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By Theorem 2.6.9 we can extend {(2, 1, 2, 1)T , (3, 0, 3, 3)T} to a basis


2
1
2
1

 ,


3
0
3
3

 , u1, u2


of R4. Now we further define Tu1 = Tu2 =

[
0
0
0

]
(i.e., we assign u1, u2 the zero vector, and

then by Theorem 3.1.4(∗) we can extend T to R4 linearly by formula (3.1.5), thus we are
done.

Indeed one of possible choices is to choose u1 = (0, 0, 1, 0)T and u2 = (0, 0, 0, 1)T ,
the standard matrix of T become

A =

 1 −1 0 0
0 1 0 0

1/3 1/3 0 0

 ,

and the direct computation shows us A

[
2
1
2
1

]
=
[
1
1
1

]
and A

[
3
0
3
3

]
=
[
3
0
1

]
.

In the next example we use the following terminology. We need to define the kernel
(the solution to “homogeneous system”) of a linear map, which is done in Definition 3.1.9.

Definition 3.1.7. A subsetW of Fn is said to be a hyperplane if it takes one of the following
equivalent from:

• There are a1, a2, · · · ∈ F, not all zero, and b ∈ F such that

W = {(x1, . . . ,xn)T ∈ Fn : a1x1 + a2x2 + · · ·+ anxn = b} 6= ∅.

• There is a nonzero Λ ∈ L(Fn,F) such that

W = {x ∈ Fn : Λx = Λx0} = x0 + ker Λ.

Two formulations are equivalent. Indeed, the set W := {(x1,x2, . . . ,xn)T ∈ Fn :
a1x1 + a2x2 + · · ·+ anxn = b} can be written as

{x ∈ Fn : 〈x, (a1, . . . , an)T 〉 = 〈x0, (a1, . . . , an)T 〉},

for some x0 ∈ Rn. Of course x 7→ 〈x, (a1, . . . , an)T 〉 defines a linear map from Fn to F,
therefore W is reduced to the second formulation.

Conversely, given a nonzero Λ : Fn → F, then Λx = Λx0 if and only if

Λ(x1e1 + x2e2 + · · ·+ xnen) = Λx0 ⇐⇒ Λ(e1)x1 + Λ(e2) + · · ·+ Λ(en)xn = Λx0,

which is again the first formulation. Therefore two formulations are the same and define a
hyperplane in Rn.

When Fn = R3, ker Λ is just a plane passing through 0, so a hyperplane is just a
plane in R3 with possibly a “shifting” by x0.

(∗) In this theorem, choose v1 =

[
2
1
2
1

]
, v2 =

[
3
0
3
3

]
, v3 = u1, v4 = u2 and w1 =

[
1
1
1

]
,w2 =

[
3
0
1

]
,w3 = w4 =

[
0
0
0

]
.
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Example 3.1.8. Given a proper subspace W of Fn and a point v ∈ Fn\W , there is a hyperplane

P := {(x1, . . . , xn)T ∈ Fn : a1x1 + · · ·+ anxn = 0}

such that W ⊆ P and v 6∈ P.

To prove this, let w1, . . . , wk be a basis of W , as v 6∈ span{w1, . . . , wn}, v , w1, . . . , wk

are linear independent, extend it to a basis of Fn by appending u1, . . . , um. Now we define
a linear map Λ ∈ L(Fn,F) by defining

Λw1 = Λw2 = · · · = Λwk = 0, Λv = Λu1 = · · · = Λum = 1.

and then extending Λ linearly by Theorem 3.1.4. Now W ⊆ ker Λ and v 6∈ ker Λ, thus ker Λ
is the desired hyperplane.

3.1.2 Kernel and Range

Definition 3.1.9. Let V and W be vector spaces and let T ∈ L(V ,W ). The kernel of T
and the range of T are defined by

kerT = {v ∈ V : Tv = 0} and rangeT = {Tv : v ∈ V }

respectively.

The following directly extend the results of matrices with identical proof:

Theorem 3.1.10. Let V ,W be vector spaces and T ∈ L(V ,W ). Then:

(i) T is injective ⇐⇒ kerT = {0} ⇐⇒
(
Tx = 0 =⇒ x = 0

)
.

(ii) kerT is a subspace of V .

(iii) rangeT is a subspace of W .

Example 3.1.11 (Compute ker T ).

(i) Consider T ∈ L(Pn(R),Pn−1(R)) defined by T p = p′. If p ∈ ker T , then T p = p′ =
0, hence p is a constant function, p ∈ {f ≡ a : a ∈ R}. That means

ker T ⊆ {f ≡ a : a ∈ R}.

The reverse inclusion is obvious, thus ker T = {f ≡ a : a ∈ R}.

(ii) Consider T ∈ L(C ([0, 1],R), C ([0, 1],R)) defined by

(T f )(x) =

∫ x

0

f (t) dt.

If f ∈ ker T , then T f = 0, i.e., (T f )(x) = 0 for all x ∈ [0, 1]. Since f is continuous
on [0, 1], T f is differentiable on (0, 1). Thus for every x ∈ (0, 1),

0 =
d

dx
T f (x) =

d

dx

∫ x

0

f (t) dt = f (x).

Also, f (0) = limx→0+ f (x) = 0 = limx→1− f (x) = f (1), so f ≡ 0.

In summary, the logic says that ker T ⊆ {0}. The reverse inclusion is obvious, so
ker T = {0}.

(iii) Consider the backward shift T ∈ L(F∞,F∞) defined by T (x1, x2, . . . ) = (x2, x3, . . . ).
It is easy to check ker T = {(a, 0, 0, . . . ) : a ∈ F}.
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3.1.3 Generalized Rank-Nullity Theorem

Theorem 3.1.12 (Generalized Rank-Nullity). Let V be finite dimensional and T ∈ L(V ,W ),
then

dimV = dim kerT + dim rangeT .

Proof. This is the same as Theorem 2.8.10. �

Next we define invertability of a linear transformation. Note that IV , as we denote
in (ii) of Example 3.1.2, is called the identity map on V , i.e., IV (v) = v for each v ∈ V .

Definition 3.1.13. Let V ,W be vector spaces. A linear transformation T ∈ L(V ,W ) is said
to be invertible if there is S ∈ L(W ,V ) such that,

TS = IW and ST = IV .

Or equivalently, T is invertible if T is injective and surjective.

Remark. Usually we denote such S by T−1.

Corollary 3.1.14. Let V and W be finite dimensional, dimV = dimW and T ∈ L(V ,W ),
then the following are equivalent.

(i) T is invertible. (ii) T is injective. (iii) T is surjective.

Proof. This is the same as Corollary 2.8.11. �

Remark. In Corollary 3.1.14 given a linear map T : V → W , dimV = dimW , the result
that T is 1-1 ⇐⇒ T is onto is only true when V is finite dimensional. Consider V = R∞,
the map T : V → V defined by T (a1, a2, . . . ) = (0, a1, a2, . . . ) is injective but not surjective.

Example 3.1.15 (Interpolation Problem). Let a1, a2, . . . , an+1 be n + 1 distinct real numbers
on the x-axis. Given b1, b2, . . . , bn+1 ∈ R, there is a polynomial p ∈ Pn such that

p(a1) = b1, p(a2) = b2, . . . , p(an+1) = bn+1.

More precisely, given n + 1 distinct points on the x-y plane, we have a real polynomial that
connects all these n + 1 points!

x

y

a1 a2 a3 a4 an+1· · ·

b1

b2

bn+1

given ∃p?
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To prove this, note that the existence problem is the same as showing the linear
map

T : Pn → Rn+1; p 7→


p(a1)
p(a2)

...
p(an+1)


is onto. For this, since dimPn(R) = n + 1 = dimRn+1, so by Corollary 3.1.14 showing T is
onto is the same as showing T is one-one.

To this end, let p ∈ Pn(R) be such that T p = 0, then p(a1), p(a2), . . . , p(an+1) = 0,
hence a degree n polynomial has n + 1 distinct roots, from basic algebra, p must be the zero
polynomial 0.

The argument shows us ker T = {0}, i.e., T is one-one, hence we are done.

Example 3.1.16 (Partial Fractions Decomposition). It was taught in a short course on par-
tial fractions that we can always assume

p(x)

(x − a)h(x − b)k
=

h∑
i=1

ai
(x − a)i

+
k∑

j=1

bj

(x − b)j

and then solve for ai ’s and bj ’s, where a 6= b are real, h, k ≥ 1 and p ∈ Ph+k−1(R). Why
must it work? Note that the feasibility of making such assumption is the same as saying

p ∈ span

{
(x − a)h(x − b)i ,
(x − b)k(x − a)j

:
i = 0, 1, . . . , k − 1,
j = 0, 1, . . . , h − 1

}
.

We hope this is always true, namely, we hope that the linear map

T : Rh+k → Ph+k−1(R)

(a0, . . . , ak−1, b0, . . . , bh−1) 7→
k−1∑
i=0

ai (x − a)h(x − b)i +
h−1∑
j=0

bj(x − b)k(x − a)j

is surjective. Note that dimRh+k = h +k = dimPh+k−1(R), by Corollary 3.1.14 it is enough
to show T is injective. For this, suppose

k−1∑
i=0

ai (x − a)h(x − b)i +
h−1∑
j=0

(x − b)k(x − a)j = 0,

we try to show ai ’s and bj ’s are all zero.

Now for every x 6= a, we divide (x − a)h on both sides to get

−
k−1∑
i=0

ai (x − b)i =
h−1∑
j=0

bj(x − b)k

(x − a)h−j

= (x − b)k
(

b0

(x − a)h
+

b1

(x − a)h−1
+ · · ·+ bh−1

x − a

)
= (x − b)k

1

(x − a)h
(b0 + b1(x − a) + · · ·+ bh−1(x − a)h−1). (3.1.17)

We then take absolute value on both sides to get

k−1∑
i=0

|ai ||x − b|i ≥ |x − b|k 1

|x − a|h
(|b0| − |b1||x − a| − · · · − |bh−1||x − a|h−1).
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Step 1. For the sake of contradiction, suppose b0 6= 0. Let’s take x → a on the
above inequality, then LHS goes to a finite number while RHS goes to ∞, a contradiction.

Step 2. Now b0 = 0, suppose b1 6= 0, then we continue from (3.1.17) to get

k−1∑
i=0

|ai ||x − b|i ≥ |x − b|k 1

|x − a|h−1
(|b1| − |b2||x − a| − · · · − |bh−1||x − a|h−2),

and we get the same contradiction when x → a, so b1 = 0.

Step j. bj−1 = 0 due to the same contradiction.

Now from step j , j = 1, 2, . . . , h, we have b0 = b1 = · · · = bh−1 = 0, hence we
have shown that all bj ’s are zero. Continuing from (3.1.17) we have

k−1∑
i=0

ai (x − b)i = 0,

but then since {1, x−b, (x−b)2, . . . , (x−b)k−1} is linearly independent, ai ’s are necessarily
all zero, and we are done.

Remark. In Example 3.1.16 the same proof still work if we replace R by C. Also with a
slight modification of the proof, Example 3.1.16 can be generalized to Problem 3.11.

We end this section by introducing a standard terminology in abstract algebra in
the context of linear algebra (this is still a very standard term in linear algebra!).

Definition 3.1.18. Let V and W be vector spaces, we say that V and W are isomorphic if
there is an invertible linear transformation T : V → W . A invertible linear map is said
to be an isomorphism.

Note that it is also common to write V ∼= W to mean V and W are isomorphic. The
following result says that for finite dimensional vector spaces being isomorphic is nothing
but having the same “size”:

Theorem 3.1.19. Let V and W be finite dimensional, then the following are equivalent.

(i) dimV = dimW . (ii) V and W are isomorphic.

Proof. (i)⇒ (ii) Suppose dimV = dimW = n, let {v1, v2, . . . , vn} and {w1,w2, . . . ,wn}
be a basis of V andW respectively. Define a map T : {v1, v2, . . . , vn} → {w1,w2, . . . ,wn}
by

Tvi = wi,

then by Theorem 3.1.4 we can extend T linearly on V .

T is one-one (hence invertible by Corollary 3.1.14) since

T

(
n∑
i=1

aivi

)
= 0 =⇒

n∑
i=1

aiwi = 0 =⇒ a1, a2, . . . , an = 0.

Thus T is an isomorphism. Hence V and W are isomorphic.

65
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(ii) ⇒ (i) Assume V and W are isomorphic, i.e., there is an invertible linear
map T : V →W , then by rank-nullity theorem,

dimV = dim kerT + dim rangeT = 0 + dimW = dimW . �

Example 3.1.20. Let V be finite dimensional. The dual space of V is defined by V ∗ =
L(V ,F)(†). We prove that V and V ∗ are isomorphic.

By Theorem 3.1.19 it is enough to show dim V = dim V ∗. To do this, let’s find a
basis of V ∗. Let {v1, v2, . . . , vk} be a basis of V , we define the linear maps v∗1 , v∗2 , . . . , v∗k ∈
V ∗ as follows: let

v∗i (vi ) = 1 and v∗i (vj) = 0, ∀j 6= i ,

then by Theorem 3.1.4, v∗i can be extended linearly to a map on V . We claim that v∗i ’s
form a basis of V ∗, it then follows that dim V ∗ = k = dim V .

Firstly we show that V ∗ = span{v∗1 , v∗2 , . . . , v∗k }. Let f ∈ V ∗, we have for i =
1, 2, . . . , k,

f (vi ) =

 k∑
j=1

f (vj)v∗j

 (vi ).

Since f and
∑k

j=1 f (vj)v∗j agree on a basis of V , it follows that they agree on V , hence

f =
k∑

j=1

f (vj)v∗j ∈ span{v∗1 , v∗2 , . . . , v∗k },

which means that V ∗ ⊆ span{v∗1 , v∗2 , . . . , v∗k }. Since the reverse inclusion is obvious, we
have V ∗ = span{v∗1 , v∗2 , . . . , v∗k }.

It remains to verify {v∗1 , v∗2 , . . . , v∗k } is linearly independent, to do this, let ai ∈ F
be such that

a1v∗1 + a2v∗2 + · · ·+ akv∗k = 0.

For each i = 1, 2, . . . , k, the functional on the LHS evaluated at vi gives

ai = (a1v∗1 + a2v∗2 + · · ·+ akv∗k )(vi ) = 0.

Since i is arbitrary, a1 = a2 = · · · = ak = 0, as desired.

3.2 Matrix Representations and Change of Coordinates

In this section V and W are always finite dimensional vector spaces over F.

3.2.1 Coordinates

Definition 3.2.1. Given a basis α = {v1, v2, . . . , vn} of V , for each v ∈ V , there are unique
a1, a2, . . . , an ∈ F such that v = a1v1 + a2v2 + · · ·+ anvn. We define

[v]α = (a1, a2, . . . , an)T ,

called the coordinate vector of v w.r.t. α.

(†) Each element in V ∗ is called a linear functional on V .
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Example 3.2.2. Since A =
[
3 2 6
1 1 2
2 2 5

]
∈ M3×3(R) is invertible,

α =


3

1
2

 ,

2
1
2

 ,

6
2
5


is a basis of R3(‡). What is the coordinate vector of b =

[
1
2
3

]
w.r.t. α?

Note that b = A(A−1b), let (x , y , z)T = A−1b, then

b = A(x , y , z)T = x

3
1
2

+ y

2
1
2

+ z

6
2
5

 ,

hence [b]α = (x , y , z)T = A−1b. In Example 1.2.20 we have found A−1, so

[b]α = A−1b =

 1 2 −2
−1 3 0
0 −2 1

1
2
3

 =

−1
5
−1

 .

In summary given a basis α = {a1, . . . , an}, if we construct a matrix A = [a1 · · · an],
then A−1b gives the coordinate of b w.r.t. α. This is simply because b = A(A−1b). Thus
the meaning of “acting an inverse matrix on a vector” is exactly “extracting coordinate of
this vector”.

Theorem 3.2.3. Let α be a basis of V , then the linear “coordinate map”

Cα(v) : V → FdimV ; v 7→ [v]α

is an isomorphism.

Proof. Let α = {v1, v2, . . . , vn}, by Corollary 3.1.14 it is enough to show Cα is injective.
Indeed, let v ∈ V be such that Cα(v) = 0 := (0, 0, . . . , 0)T , then by definition

v = 0v1 + 0v2 + · · ·+ 0vn = 0. �

One can apply Theorem 3.2.3 to prove Theorem 3.2.6, which basically says that
the properties of any linear map T : V → W , with dimV , dimW <∞, remains unchanged
under matrix representations in the next section.

3.2.2 Matrix Representations

The concept of bases not only provides us the concept of dimension, it also provides us a
method to translate the language of linear transformations to language of matrices.

Definition 3.2.4. Let α = {v1, v2, . . . , vn} be a basis of V , β a basis of W and T ∈ L(V ,W ).
The matrix representation of T w.r.t to bases α and β is

[T ]βα =
[
[Tv1]β [Tv2]β · · · [Tvn]β

]
.

When V = W and α = β, it is customary to write [T ]α = [T ]αα.

(‡) Since Ax = 0 =⇒ x = 0,
{[

3
1
2

]
,
[
2
1
2

]
,
[
6
2
5

]}
is linearly independent, and hence span

{[
3
1
2

]
,
[
2
1
2

]
,
[
6
2
5

]}
is a 3 dimensional subspace of R3, thus span

{[
3
1
2

]
,
[
2
1
2

]
,
[
6
2
5

]}
= R3,

{[
3
1
2

]
,
[
2
1
2

]
,
[
6
2
5

]}
is a basis of R3.
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We can memorize it easily by the following diagram. Let β = {w1,w2, . . . ,wm} and
let Tvk =

∑m
i=1 aikwi. Then

[T ]βα =


Tv1 Tv2 · · · Tvn

w1 a11 a12 · · · a1n

w2 a21 a22 · · · a2n
...

...
...

. . .
...

wm am1 am2 · · · amn

 (3.2.5)

You are asked to prove the following nice result in Problem 3.19.

Theorem 3.2.6. Let V and B be finite dimensional, T ∈ L(V ,W ) and α,β the basis of
V ,W respectively. Then

dim Nul[T ]βα = dim kerT and dim Col[T ]βα = dim rangeT .

To prove this, we keep in mind by definition of matrix representation the following
diagram commutes (prove it!):

V W

FdimWFdimV

T

Cα

[T ]βα

C−1
β

In other words, T = C−1
β [T ]βαCα. Theorem 3.2.6 provides us a unified way to tell if a linear

map between finite dimensional vector spaces is injective or surjective.

Example 3.2.7. Let T ∈ L(P2(R),P4(R)) be defined by

(T p)(x) =
dp

dx
(x) + x2p(x).

Let α = {1, x , x2} be a basis of P2 and β = {1, x , x2, x3, x4} a basis of P4, we try to find
[T ]βα and determine if T is injective.

Since T (1) = x2, T (x) = 1 + x3, T (x2) = 2x + x4, we have

[T ]βα =



T (1) T (x) T (x2)

1 0 1 0
x 0 0 2
x2 1 0 0
x3 0 1 0
x4 0 0 1

.

Now it is easy to tell if T is injective by studying [T ]βα. Since [T ]βα is of full rank, by
rank-nullity theorem,

3 = dim Nul[T ]βα + dim Col[T ]βα = dim Nul[T ]βα + 3 =⇒ dim Nul[T ]βα = 0.

By Theorem 3.2.6,
dim ker T = dim Nul[T ]βα = 0,

meaning that ker T = 0, so T is injective.
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Example 3.2.8. Let M =
[
a b
c d

]
∈ M2×2(R). Define T ∈ L(M2×2(R), M2×2(R)) by

T (A) = MA.

Define

α =

{
E1 =

[
1 0
0 0

]
, E2 =

[
0 1
0 0

]
, E3 =

[
0 0
1 0

]
, E4 =

[
0 0
0 1

]}
,

we try to find the matrix representation [T ]α and also determine the values of a, b, c , d such
that the map T is invertible.

Indeed, a direct computation gives

T E1 = aE1 + cE3

T E2 = aE2 + cE4

T E3 = bE1 + dE3

T E4 = bE2 + dE4

=⇒ [T ]α =


T (E1) T (E2) T (E3) T (E4)

E1 a 0 b 0
E2 0 a 0 b
E3 c 0 d 0
E4 0 c 0 d

.

T is invertible iff [T ]α is invertible iff det[T ]α = (ad − bc)2 6= 0, so T is invertible if and
only if ad 6= bc .

3.2.3 Change of Coordinates

We combine the computational results of matrix representation in the following:

Theorem 3.2.9.

(i) Let α be a basis of V and β a basis of W , then

[T ]βα[v]α = [Tv]β .

(ii) Let S ∈ L(V ,U) and T ∈ L(U ,W ). If we give V ,U ,W a basis α, γ,β respectively,
then

[TS]βα = [T ]βγ [S]γα.

(iii) If α and β are bases of V , then

[IV ]αβ = ([IV ]βα)−1,

where IV is the identity map on V , i.e., IV (v) = v for each v ∈ V .

Proof. (i) Let α = {v1, v2, . . . , vn}, it is easy to check the equality holds when v =
vi, i = 1, 2, . . . ,n, hence we are done.

(ii) Let α = {v1, v2, . . . , vn},β = {w1,w2, . . . ,wn} and γ = {u1,u2, . . . ,un},
then the result follows from direct calculation:

[TS]βα =
[
[T (Sv1)]β [T (Sv2)]β · · · [T (Svn)]β

]
=
[
[T ]βγ [(Sv1)]γ [T ]βγ [(Sv2)]γ · · · [T ]βγ [(Svn)]γ

]
= [T ]βγ

[
[(Sv1)]γ [(Sv2)]γ · · · [(Svn)]γ

]
= [T ]βγ [S]γα.
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(iii) By (ii) we have

I = [IV ]αα = [IV ]αβ [IV ]βα,

where I is an identity matrix. Hence [IV ]αβ and [IV ]βα are inverse to each other. �

Example 3.2.10 (Change of Coordinates). Let α and β be bases of R2 defined by

α =

{[
1
2

]
,

[
3
4

]}
and β =

{[
7
8

]
,

[
9

10

]}
.

We try to find the change of coordinate matrix from α to β: [IR2 ]βα
(§).

Let A = [ 1 3
2 4 ] and B = [ 7 9

8 10 ] and let ε be the standard basis of R2. It is not hard
to check [IR2 ]εα = A and [IR2 ]εα = B, hence

[IR2 ]βα = [IR2 ]βε [IR2 ]εα = ([IR2 ]εβ)−1[IR2 ]εα = B−1A =

[
4 3
−3 −2

]
.

Example 3.2.11. Let T ∈ L(V , W ). Also let α,α′ be two bases of V and β,β′ two bases of

W , then [T ]βα and [T ]β
′

α′ are related by

[T ]β
′

α′ = [IW ]β
′

β [T ]βα[IV ]αα′ .

This can be shown by repeatedly using (ii) of Theorem 3.2.9. Indeed from the RHS,

[IW ]β
′

β

(
[T ]βα[IV ]αα′

)
= [IW ]β

′

β [T IV ]βα′ = [IW T IV ]β
′

α′ = [T ]β
′

α′ .

In particular, if W = V , we have

[T ]α
′

α′ = [IV ]α
′

α [T ]αα[IV ]αα′ = ([IV ]αα′)
−1[T ]αα[IV ]αα′ .

In the above, if we denote P = [IV ]αα′ , then we have [T ]α
′

α′ = P−1[T ]ααP , in this case

we say that [T ]α
′

α′ and [T ]αα are similar :

Definition 3.2.12. Let A,B ∈ Mn×n(R), A and B are said to be similar if there is an
invertible matrix P ∈Mn×n(R),

A = P−1BP .

Example 3.2.13 (Change of Bases From Rn to Rm). Let P ∈ Mm×n(R), then there corre-
sponds a linear transformation TP ∈ L(Rn,Rm) defined by

TP(x) = Px .

Let ε be the usual basis of Rn and ε′ that of Rm, then [TP ]ε
′

ε = P. Now in general we
are interested in how will P change (more precisely, [TP ]ε

′

ε ) if we give Rn,Rm a pair of
nonstandard bases. Let α and β be such a pair, then

[TP ]βα = [IRm ]βε′ [TP ]ε
′

ε [IRn ]εα = B−1PA,

where the ith columns of A and B are the ith vectors of the bases α and β respectively.
This is natural because B−1, as we see in Example 3.2.2, can extract the coordinate of Pak
w.r.t. β (look at the matrix in (3.2.5) to feel what I am talking about).

(§) This matrix is also called a transition matrix from α to β because [IR2 ]
β
α[x]α = [x]β .
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3.3 Exercises

Linear Transformations

Problem 3.1. Determine which of the following maps are linear transformations.

(a) The transformation T defined by T (x1,x2)T = (2x1 − 3x2,x1 + 4, 5x2)T .

(b) The transformation T defined by T (x1,x2)T = (4x1 − 2x2, 3|x2|)T .

(c) The transformation T defined by T (x1,x2,x3)T = (1,x2,x3)T .

(d) The transformation T defined by T (x1,x2,x3)T = (x1, 0,x3)T .

(e) The transformation T defined by T (x1,x2,x3)T = (x1,x2,−x3)T .

Answers: (a)No(b)No(c)No(d)Yes(e)Yes

Problem 3.2. Let T : Rn → Rm be a linear transformation. Determine whether or not
T is one-to-one in each of the following situations:

(a) When n > m:

(b) When n = m:

(c) When n < m:

Fill the symbols A, B and C in defined below:

A T is a one-to-one
transformation.

B T is not a one-to-one
transformation.

C There is not enough
information to tell.

Answers: (a)B(b)C(c)C

Problem 3.3. Let T : Rn → Rm be a linear transformation. Let A be the standard
matrix of T .

Fill the correct symbols A, B and C in for each of the following situations.

(a) If every row in the row echelon form of A has a pivot, then

(b) If the row echelon form of A has a row of zeros, then

(c) If two rows in the row echelon form of A do not have pivots, then

(d) If the row echelon form of A has a pivot in every column, then

Where:

A T is not onto. B T is onto. C there is not enough in-
formation to tell.

Answers: (a)B(b)A(c)A(d)C
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Chapter 3. Linear Transformations Between Vector Spaces

Problem 3.4. Let V be a vector space and Λ, Λ1, Λ2, . . . , Λn ∈ L(V ,F). If
⋂n
j=1 ker Λj ⊆

ker Λ, prove that Λ is a linear combination of Λj ’s.

Hint. Show that

W := {(Λx , Λ1x , Λ2x , . . . , Λnx)T : x ∈ V }

is a proper subspace of Fn+1. Extract the “extra point” v ∈ Fn+1 \W and then separate
W and v by using a hyperplane constructed in Example 3.1.8.

Problem 3.5. Prove that there does not exist a T ∈ L(R5,R2) whose null space equals

{(x1,x2,x3,x4,x5)T ∈ R5 : x1 = 3x2 and x3 = x4 = x5}.

Problem 3.6. Let T ∈ L(V ,F) and T 6= 0 (i.e., there is v ∈ V , Tv 6= 0). Show that for
every u 6∈ kerT ,

V = span{u} ⊕ kerT .

Problem 3.7. Assume B ∈ Mn×n(F) satisfies Bk = 0 for some k ≥ 1, show that every
matrix in Mn×n(F) has the form BA−A, for some A ∈Mn×n(F).

Problem 3.8. Let T ∈ L(Pn(R),R) be defined by

Tp = sum of all coefficients of p.

Show that (i) dim(kerT ) = n; and (ii) conclude that {x − 1,x2 − 1, . . . ,xn − 1} is a
basis of kerT .

Problem 3.9. Let A,B ∈Mn×n(F) be idempotent matrices (i.e., A2 = A and B2 = B)
and I − (A+B) be invertible. Show that A and B have equal ranks.

Problem 3.10. In this problem we will establish the proof of rank-nullity theorem.

(a) Let V and W be vector spaces and let dimV <∞. Show that any linear T : V →
W satisfies the following

dimV = dim kerT + dim rangeT (♣)

in the following steps.

Step 1. Explain why (♣) is trivial if dim kerT = 0 or dim kerT = dimV .

Suppose now dim kerT < dimV , let α = {u1,u2, . . . ,uk} be a basis of kerT . Since
kerT is a subspace of V , we extend α to a basis of V : {u1, . . . ,uk,w1, . . . ,wn}.

Step 2. Show that

rangeT = span{Tw1, . . . ,Twn}.

Also show that {Tw1, . . . ,Twn} is linearly independent.

Step 3. Conclude (♣).

(b) Let V and W be vector spaces, show that for any linear T : V →W we still have
(♣) even when V is infinite dimensional.
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3.3. Exercises

Problem 3.11. Let a1, a2, . . . , ak ∈ F be distinct and p1, p2, . . . , pk ∈ N. Show that

Pp1+···+pk−1(F) = span



k∏
j=1,j 6=1

(x− aj)pj (x− a1)i1

k∏
j=1,j 6=1

(x− aj)pj (x− a1)i2

...
k∏

j=1,j 6=1

(x− aj)pj (x− a1)ik

:

i1 = 0, 1, . . . , p1 − 1
i2 = 0, 1, . . . , p2 − 1

...
ik = 0, 1, . . . , pk − 1


.

Therefore we always have the partial fraction decomposition: For every p ∈ Pp1+···+pk−1(F),
there are A′ijs, Aij ∈ F, such that

p(x)

(x− a1)p1(x− a2)p2 · · · (x− ak)pk
=

k∑
i=1

pi∑
j=1

Aij
(x− ai)j

.

Problem 3.12. Let Mn×n(R) denote the vector space of all n × n matrices. For every
C ∈Mn×n(R), define the linear map TC : Mn×n(R)→ R in the following way

TC(A) = Tr(CA), for each A ∈Mn×n(R).

It is clear that TC ∈ (Mn×n(R))∗, show that actually,

{TC : C ∈Mn×n(R)} =
(
Mn×n(R)

)∗
.

Problem 3.13. Let A = Mn×n(C), we denote MA the set of nonzero multiplicative
linear functionals on A. By multiplicative we mean for every ϕ ∈ MA and for every
A,B ∈ A, we have ϕ(AB) = ϕ(A)ϕ(B).

(i) Show that for every n ≥ 1, any nonzero ϕ ∈MA satisfies ϕ(In) = 1.

(ii) By using Problem 3.12, show that when n ≥ 2, MA = ∅.

In other words, MA has nonzero multiplicative linear functional only when n = 1.

Remark. The interest of MA comes from analysis. When A is a commutative Banach
algebra we often call MA the spectrum/maximal ideal space of A since it is in
1-1 correspondence with maximal ideals in A. For example, let A = C[a, b] the set
of continuous functions on [a, b], one can show that MA is the set of all pointwise
evaluations.

Problem 3.14. Let V be a vector space. We define V ∗ = L(V ,F) (called the dual space
of V ) and V ∗∗ = (V ∗)∗ (called the bidual of V ), let i : V → V ∗∗, with i(v) ∈ V ∗∗

pointwise defined by

i(v)(T ) = T (v) for all T ∈ V ∗.

We have shown in Example 3.1.20 that when V is finite dimensional, V and V ∗ are
isomorphic. Show that i is an isomorphism between V and V ∗∗.

Remark. The function i is important in functional analysis, called canonical embed-
ding.
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Matrix Representations

Problem 3.15. Let T : P2(R)→ P2(R) be defined by

(Tp)(x) = x
dp

dx
(x).

Let α = {1 + x,x+ x2, 1 + x+ x2} and β = {1,x,x2}, show that [T ]βα =
[

0 0 0
1 1 1
0 2 2

]
.

Problem 3.16. Let T ∈ L(P2(R),R2) be defined by

T (a+ bx+ cx2) = (a+ b, c).

If we let α = {1,x,x2} and β = {(1,−1)T , (1, 1)T }, show that [T ]βα = 1
2

[
1 1 −1
1 1 1

]
.

Problem 3.17. Let T ∈ L(P2(R),P2(R)) be defined by

(Tp)(x) = p(x) +
dp

dx
(x) +

d2p

dx2
(x).

Prove that T is an isomorphism, also, prove that

T−1(a+ bx+ cx2) = (a− b) + (b− 2c)x+ cx2.

Hint. We are very used to matrices, choose a suitable basis and represent our transformation
T as matrix.

Problem 3.18. Show that all the matrices similar to an invertible matrix are invertible.
Moreover, show that similar matrices have the same rank.

Problem 3.19. Provide a proof of Theorem 3.2.6 with the help of Theorem 3.2.3.

Problem 3.20. A nilpotent linear map T : V → V satisfies T q = 0 for some q ≥ 1.

(a) Prove that any square upper triangular matrix with diagonal elements zero is
nilpotent.

(b) Conversely, if a nilpotent linear map T : V → V is defined on a finite dimensional
vector space V , then there is a basis of V such that the matrix representation of
T is triangular with diagonal element zero.

Problem 3.21. Let T : V → W be linear and dimV = dimW < ∞, show that there
are bases α of V and β of W such that [T ]βα is a diagonal matrix.

Problem 3.22. Prove that any 3 × 3 matrix A over R for which A2 6= 0 but A3 = 0 is
similar to the matrix 0 0 0

1 0 0
0 1 0

 .
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Chapter 4

Simplification of Matrices

In this chapter we introduce three basic methods to decompose a given matrix. There
are different advantages when using different methods. Sometimes simplification of a matrix
simplifies a given problem. For example, given a specific matrix B, we try to find all matrices
A such that AB = BA, equivalently for invertible P ,

(P−1AP )(P−1BP ) = (P−1BP )(P−1AP ) ⇐⇒ A′(P−1BP ) = (P−1BP )A′,

thus once we can decompose a matrix through a change of basis (diagonalization and Jordan
form), then the problem is reduced to finding all matrices A′ such that A′ commutes with
a simplified matrix P−1BP . This is not a rare occasion that a simplification simplifies a
mathematical problem. Sometimes we will find that SVD is more appropriate, it depends
on the situation we have. You may work on exercises in this chapter to get exposed to them.

4.1 Diagonalization of Matrices

Throughout this section all scalar field will be denoted by F which is either R or C. This is
to develop the parallel story of diagonalizability of real and complex matrices at the same
time. Some of the result in complex scalar field in this section will be used in this chapter.

4.1.1 Eigenvalues and Eigenvectors

Definition 4.1.1. Let A ∈ Mn×n(F), an eigenvalue of A is a λ ∈ F such that there is
nonzero vector v ∈ Fn, Av = λv. Also, we call

Nul(A− λI)

the eigenspace of λ. Every nonzero v ∈ Nul(A − λI) is called an eigenvector
corresponding to the eigenvalue λ.

Theorem 4.1.2. Let A ∈Mn×n(F), then the following are equivalent:

(i) λ is an eigenvalue.

(ii) Nul(A− λI) 6= {0}.

(iii) rank(A− λI) < n.

(iv) det(A− λI) = 0.

75



Chapter 4. Simplification of Matrices

Proof. (i) ⇒ (ii) Trivial.

(ii) ⇒ (iii) By rank-nullity theorem (over F),

rank(A− λI) < dim(A− λI) + rank(A− λI) = n.

(iii) ⇒ (iv) Suppose A− λI is not surjective, it is not invertible, hence det(A−
λI) = 0.

(iv)⇒ (i) det(A−λI) = 0 implies A−λI is not invertible, which is the same as
A− λI is not injective, hence Nul(A− λI) 6= {0}, thus there is v 6= 0, (A− λI)v = 0.�

It is easy to construct a matrix in M2×2(R) that has no eigenvalue (as M2×2(R) is
a real vector space, by eigenvalue we mean real eigenvalue, according to Definition 4.1.1).
For example, consider Rπ/2 the rotation matrix from R2 to R2 by an angle π/2 counter-
clockwise, no nonzero vector can be parallel to itself after a rotation, thus there is no λ ∈ R
and nonzero v ∈ R2 such that Rπ/2v = λv.

This unpleasant feature can be eliminated if we enlarge the scalar field that we live
in:

Corollary 4.1.3. Let A ∈Mn×n(C), then A has at least one eigenvalue.

This is the first significant distinction between real and complex vector spaces that
we see in this text. Later on we will see that the proofs of the existence of several decom-
positions of matrices depend heavily on the existence of at least one eigenvalue.

Proof. Since p(z) = det(A − zI) is a polynomial over C, by fundamental theorem of
algebra p(z) has n roots (counting multiplicity) in C, therefore there is at least one
z0 ∈ C such that p(z0) = 0, and thus z0 is an eigenvalue. �

Because of (iv) of Theorem 4.1.2 we define:

Definition 4.1.4. For A ∈Mn×n(F), the degree n polynomial

pA(t) = det(A− tI)

is called the characteristic polynomial of A.

Remark. Now λ is an eigenvalue of A if and only if pA(λ) = 0. The definition det(tI − A)
is also commonly used to define characteristic polynomial, which is to obtain a polynomial
with positive leading coefficient. This differs from our definition just by (−1)n, and we
persist in using det(A− tI) since it is slightly more convenient in computation.

Example 4.1.5. The characteristic polynomial of A = [ 1 2
3 4 ] is

pA(t) =

∣∣∣∣1− t 2
3 4− t

∣∣∣∣ = t2 − 5t − 2
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Example 4.1.6. If

A =


a11 ∗

a22
. . .

0 ann

 ,

then a11, a22, . . . , ann are eigenvalues of A. This can be seen by cofactor expansion of
pA(t) = det(A− tI ) along the first columns.

Example 4.1.7. Let

A =

[
3 2
0 4

]
∈ M2×2(R),

we try to find all eigenvalues and eigenvectors of A. Note that by finding all eigenvectors
we usually mean finding the basis of each eigenspace.

Since

pA(t) = det(A− tI ) =

∣∣∣∣3− t 2
0 4− t

∣∣∣∣ = (3− t)(4− t),

3 and 4 are eigenvalues. Namely, both Nul(A− 3I ) and Nul(A− 4I ) are nonzero.

Next we find all eigenvectors.

When t = 3. We find x ∈ Nul(A− 3I ), i.e., we solve (A− 3I )x = 0, then since

A− 3I =

[
0 2
0 1

]
→
[

0 2
0 0

]
,

so x2 = 0 and x = (x1, 0)T = x1(1, 0)T , (1, 0)T is an eigenvector.

When t = 4. We solve (A− 4I )x = 0, since

A− 4I =

[
−1 2
0 0

]
,

we have x1 = 2x2, so x = (2x2, x2)T = x2(2, 1)T , (2, 1)T is an eigenvector.

Definition 4.1.8. Let A ∈Mn×n(F) and let pA(λ) = 0.

(i) The multiplicity of λ as a root of the polynomial pA(t) is called the algebraic
multiplicity of λ.

(ii) dim Nul(A− λI) is called the geometric multiplicity of λ.

Geometric multiplicity essentially counts how many “distinct” vectors are in an
eigenspace. If we have enough “distinct” vectors, i.e., if the geometric multiplicities are
sufficiently large, then we shall see that a matrix will be diagonalizable. We elaborate this
in the next section.

Example 4.1.9. Let A =

[
0 0
0 0

]
∈ M2×2(R), then

pA(t) = det(A− tI ) = t2.

(i) Algebraic multiplicity of the eigenvalue 0 is 2.
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Chapter 4. Simplification of Matrices

(ii) The geometric multiplicity of 0 is dim Nul A = 2.

Example 4.1.10. Let

A =


1 2 1 0
0 1 1 0
0 0 2 0
0 0 0 2

 ∈ M4×4(R),

by Example 4.1.6 we know 1 and 2 are the only eigenvalues. We try to find the algebraic
multiplicity and geometric multiplicity of 1 and 2 respectively.

Algebraic multiplicity. Since

pA(t) = det(A− tI ) = (1− t)2(2− t)2,

the algebraic multiplicity of 1 and 2 are two.

Geometric multiplicity. We don’t need to find the bases of Nul(A − I ) and
Nul(A− 2I ). We just need to row reduce A− I and A− 2I and count the number nonpivot
columns.

Since

A− I =


0 2 1 0
0 0 1 0
0 0 1 0
0 0 0 1

→ · · · →


0 2 1 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,

there is 1 nonpivot column, dim Nul(A− I ) = 1.

Since

A− 2I =


−1 2 1 0
0 −1 1 0
0 0 0 0
0 0 0 0

 ,

there are two nonpivot columns, so dim Nul(A− 2I ) = 2.

We conclude that the geometric multiplicity of 1 is one and that of 2 is two.

In general the number of “distinct” eigenvectors of an eigenvalue λ cannot exceed
the algebraic multiplicity of λ:

Theorem 4.1.11. Let A ∈Mn×n(F) and pA(λ) = 0, then

1 ≤ Geometric Multiplicity of λ ≤ Algebraic Multiplicity of λ.

Proof. Since pA(λ) = 0, A− λI is not invertible, i.e., it is not injective, thus

Nul(A− λI) 6= 0 =⇒ dim Nul(A− λI) ≥ 1.

Let α = {v1, v2, . . . , vk} be a basis of Nul(A− λI) and let LA : Fn → Fn be defined by
LA(x) = Ax, for notational rigour.

If k = n, then [LA]α = λI, and thus

det(A− xI) = det([LA]α − xI) = (λ− x)n,

so the algebraic multiplicity of λ is also n, we are done.
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Suppose that k < n, then we can extend α to β = {v1, v2, . . . , vk, vk+1, . . . , vn},
a basis of Fn, and the matrix representation of T w.r.t. β will be

[LA]β =

[
λIk ∗
O ∗

]
,

where Ik denotes a k× k identity matrix and O denotes a (n− k)× k zero matrix, now

[LA]β − xI =

[
(λ− x)Ik ∗

O ∗

]
,

it follows that
det(A− xI) = det([LA]β − xI) = (λ− x)kp(x),

for some degree n − k polynomial p. Thus λ is a root of det(A − xI) with algebraic
multiplicity at least k, so we are done. �

4.1.2 Diagonalizability and Diagonalization

Let’s motivate the definition of diagonalizability. Given A ∈ Mn×n(F), suppose that there
is a basis α = {v1, v2, . . . , vn} of Fn and each of vi’s is an eigenvector, then there are
λ1,λ2, . . . ,λn such that

Avk = λkvk

for k = 1, 2, . . . ,n. Now the linear transformation LA : Fn → Fn can be represented as a
matrix w.r.t. α that has the form

[LA]α =


λ1 0 · · · 0
0 λ2 · · · 0
0 0 · · · 0
0 0 · · · λn

 .

Let P = [v1 · · · vn], then P−1AP = [LA]α is a diagonal matrix. Therefore we define:

Definition 4.1.12. A ∈Mn×n(F) is said to be diagonalizable if one of the following equiv-
alent statements hold:

(i) There is a basis consisting of eigenvectors.

(ii) There are n linearly independent eigenvectors.

(iii) The sum of all geometric multiplicities is n.

There are some particular results from which we can tell diagonalizability immedi-
ately.

Theorem 4.1.13. Let A ∈ Mn×n(F). Eigenvectors associated to different eigenvalues are
linearly independent.

Proof. Let λ1,λ2, . . . ,λp ∈ F be distinct such that there are v1, v2, . . . , vp ∈ Fn satis-
fying Avi = λivi for each i = 1, 2, . . . , p.

We prove by contradiction, suppose {v1, . . . , vp} is linearly dependent, then
there is k > 1 such that vk ∈ span{v1, v2, . . . , vk−1}. Choose k = N , where

N = min{k > 1 : vk ∈ span{v1, v2, . . . , vk−1}}.
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Chapter 4. Simplification of Matrices

then there are a1, a2, . . . , aN−1, not all zero, such that

a1v1 + a2v2 + · · ·+ aN−1vN−1 + vN = 0. (4.1.14)

We take A on both sides to get

a1λ1v1 + a2λ2v2 + · · ·+ aN−1λN−1vN−1 + λNvN = 0. (4.1.15)

We perform λN × (4.1.14)− (4.1.15) to get

(λN − λ1)a1v1 + (λN − λ2)a2v2 + · · ·+ (λN − λN−1)aN−1vN−1 = 0,

a contradiction to the construction of N since we can further choose a number N ′ =
max{1 < i ≤ N − 1 : ai 6= 0}, then vN ′ ∈ span{v1, v2, . . . , vN ′−1}, with N ′ ≤ N − 1 <
N . �

Corollary 4.1.16. Let A ∈Mn×n(F). If pA(t) have n distinct roots, then A is diagonalizable.

Proof. Since each of eigenvalues has at least one geometric multiplicity, hence n dis-
tinct roots of pA(t) corresponds to n eigenvectors which are linearly independent by
Theorem 4.1.13. �

Example 4.1.17. Consider the matrix1 6 5
0 2 4
0 0 3

 ∈ M3×3(R).

Since there are three distinct eigenvalues 1, 2, 3. By Corollary 4.1.16 the matrix is diagonal-
izable.

Example 4.1.18. We try to show

A =

2 1 1
1 2 1
1 1 2

 ∈ M3×3(R)

is diagonalizable and find its diagonalization.

Consider

pA(t) = det(A− tI ) =

∣∣∣∣∣∣
2− t 1 1

1 2− t 1
1 1 2− t

∣∣∣∣∣∣ = (t − 1)2(4− t),

as there are just two eigenvalues 1 and 4, Corollary 4.1.16 is not readily applicable. We need
to count the geometric multiplicities carefully.

Geometric multiplicity of 1.

A− I =

1 1 1
1 1 1
1 1 1

→
1 1 1

0 0 0
0 0 0

 ,

thus dim Nul(A− I ) = 2.
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Geometric Multiplicity of 4. Since algebraic multiplicity of 4 is one, by Theo-
rem 4.1.11,

1 ≤ dim Nul(A− 4I ) ≤ 1,

so dim Nul(A− 4I ) = 1.

Conclusion: A is diagonalizable because the sum of all possible geometric multi-
plicities is 3. Next we try to find the diagonalization of A:

Basis of Nul(A− I). We make good use of the previous step, let (A− I )x = 0,
then x1 = −x2 − x3, so

x = (x1, x2, x3)T = x2(−1, 1, 0)T + x3(−1, 0, 1)T ,

(−1, 1, 0)T and (−1, 0, 1)T are linearly independent, they form a basis of Nul(A− I ).

Basis of Nul(A− 4I). We solve (A− 4I )x = 0, then

A− 4I =

−2 1 1
1 −2 1
1 1 −2

→ · · · →
1 1 −2

0 1 −1
0 0 0

 ,

so x2 = x3 and x1 = −x2 + 2x3 = x3, we have

x = (x3, x3, x3)T = x3(1, 1, 1)T ,

(1, 1, 1)T is a basis of Nul(A− 4I ).

Diagonalization. Let P =
[−1 −1 1

1 0 1
0 1 1

]
, then

P−1AP =

1 0 0
0 1 0
0 0 4

 .

Example 4.1.19 (Nonexample). Not every matrix is diagonalizable. For example,

A :=

[
0 1
0 0

]
∈ M2×2(R)

is not diagonalizable. To see this, since pA(t) = det(A− tI ) = t2, 0 is the only eigenvalue,
but rank A = 1, so the geometric multiplicity of 0 is one. There are not enough eigenvectors
to diagonalize A.

Alternatively, if A is diagonalizable, then there is an invertible matrix P such that
P−1AP = [ 0 0

0 0 ] (0 is the only eigenvalue), so A = 0, a contradiction.

Example 4.1.20 (Application of Diagonalization). Let a1, a2, a3 . . . be a sequence of real
numbers recursively defined by

an+2 − 42an+1 + 420an = 0.

We try to find an in terms of a1 and a2.

Define xn = (an, an−1)T , we note that

xn+2 =

[
an+2

an+1

]
=

[
42an+1 − 420an

an+1

]
=

[
42 −420
1 0

]
︸ ︷︷ ︸

:=A

[
an+1

an

]
= Axn+1.
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Hence the recursive relation can be repeated to get

xn+2 = Axn+1 = A2xn+2 = · · · = Anx2.

Now we try to diagonalize A. Since

pA(t) = det(A− tI ) =

∣∣∣∣42− t −420
1 −t

∣∣∣∣ = t2 − 42t + 420,

by solving it, we have two roots α = 21 +
√

21 and β = 21−
√

21. Corollary 4.1.16 tells us
A is diagonalizable. Let P be invertible such that P−1AP =

[
α 0
0 β

]
, then

xn+2 =

(
P

[
α 0
0 β

]
P−1

)n

x2 = P

[
αn 0
0 βn

]
P−1x2.

To find P it is enough to find all eigenvectors and put them together column by column.
The eigenvector corresponding to α is (α, 1)T and that corresponding to β is (β, 1)T (∗),
hence

P =

[
α β
1 1

]
and thus the tedious computation yields

xn+2 =
1

2
√

21

[
αn+1 − βn+1 αβn+1 − αn+1β
αn − βn αβn − αnβ

]
x2,

so

an =
1

2
√

21

(
(αβn−1 − αn−1β)a1 + (αn−1 − βn−1)a2

)
.

The concept of determinant can be generalized to arbitrary linear map T : V → V
whenever V is finite dimensional:

Definition 4.1.21. Let V be finite dimensional, T ∈ L(V ,V ) and α a basis of V .

(i) We define detT = det
(
[T ]α

)
.

(ii) We define the characteristic polynomial of T , pT (t), by

pT (t) = det
(
[T ]α − tI

)
.

It is left as an exercise to check these definitions are independent of the choice of
bases of V (see Problem 4.13). The definition of eigenvalues, eigenvectors and eigenspaces
can be extended to general vector space in an obvious way. The question of eigenvalues,
eigenvectors and “diagonalization” (existence of basis consisting of eigenvectors) can be
discussed through matrix representation by fixing a choice of bases(†).

(∗) I get these by solving the systems as before. We note that it is easy to check (a, 1)T and (b, 1)T are
always the eigenvectors of

[
a+b −ab
1 0

]
. By these observations, it is easy to generalize the problem, i.e.,

find the closed form of an defined by an+2 + Aan+1 + Ban = 0.
(†) This is simple just for linear maps between finite dimensional vector spaces! The similar problems in

infinite dimensional spaces are studied in functional analysis, specifically in spectral theory.
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4.2. Singular Value Decomposition (SVD)

4.2 Singular Value Decomposition (SVD)

4.2.1 Matrix p-Norms and Frobenius Norm

We will adopt the following convention: For a matrix A : Fn → Fm the p-norm (1 ≤ p ≤ ∞)
of A is denoted by

‖A‖p = sup{‖Ax‖p : x ∈ Fn, ‖x‖p = 1}.

‖ · ‖p on Mm×n(F) is called matrix norm or more generally operator norm. This “norm”
really defines a norm on the vector space Mm×n(F). Another norm that is commonly used
is Frobenius norm: For A = [aij ] ∈Mm×n(F),

‖A‖F :=
√

Tr(A∗A) =

√√√√ m∑
i=1

n∑
j=1

|aij |2.

p-norm and Frobenious norm satisfy the following similar properties:

(i) ‖AB‖p ≤ ‖A‖p‖B‖p

(ii) ‖AB‖F ≤ ‖A‖F ‖B‖F

(iii) ‖Ax‖p ≤ ‖A‖p‖x‖p

(iv) ‖Ax‖2 ≤ ‖A‖F ‖x‖2

Special choices of p do have specific geometrical meanings, say p = 2 in this section.
We are able to compute matrix norms explicitly in some cases. For example, let ai’s be
column vectors of Rm, from definition it is easy to show that

A =

 | |
a1 · · · an
| |

 =⇒ ‖A‖1 = max
1≤j≤n

‖aj‖1 (4.2.1)

A =

 a1

...
an

 =⇒ ‖A‖∞ = max
1≤i≤m

‖ati‖1 (4.2.2)

In words, ‖A‖1 is the maximum (absolute) column sum, while ‖A‖∞ is the maximum (ab-
solute) row sum.

4.2.2 Heuristic Derivation of SVD

Let A be an m×n real matrix. We assume, and what we are trying to prove, that A(Sn−1) =
{Ax : x ∈ Sn−1} is a “hyperellipse” (or just an ellipse when n ≤ 3). Suppose also that m ≥ n
and A is of full rank, then there are unit vectors u1, . . . ,un in Rm which point in the direction
of semi-axises of the hyperellipse.

x

y

x

y

σ1u1

σ2u2

v1

v2

x 7→ Ax
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Chapter 4. Simplification of Matrices

We can describe a general construction for ui’s.

Step 1.
Find a vector u′1 ∈ Rm ∈ ASn−1 that has largest length, call it a ∈ Rm, i.e.,

‖u′1‖2 = ‖A‖2 := max{‖Ax‖2 : x ∈ Rn, ‖x‖2 = 1}.

Write u′1 = σ1u1 with ‖u1‖ = 1.

Step 2.
Find another vector u′2 in ASn−1 ∩ (Ru′1)⊥ that has largest length, i.e.,

‖u′2‖2 = max{‖x‖2 : x ∈ ASn−1 ∩ (Ru′1)⊥}.

Write u′2 = σ2u2 with ‖u2‖ = 1.

Step j.
Find u′j ∈ ASn−1 ∩ (Ru′1)⊥ ∩ · · · ∩ (Ru′j−1)⊥ that has largest length, namely,

‖u′j‖2 = max{‖x‖2 : x ∈ ASn−1 ∩ (Ru′1)⊥ ∩ · · · ∩ (Ru′j−1)⊥}.

Write u′j = σjuj with ‖uj‖ = 1.

We can continue the process for j = 2, 3, . . . ,n. This is indeed how we find semi-axises of
an ellipse in R3 and R2.

Now in the described procedure, the length of semi-axis in the direction of σi :=
‖u′i‖2 is in nonincreasing order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σn > 0 (since we assume A has full
rank). Take a unit vector vi ∈ A−1(σiui) (recall that u′i = σiui ∈ ASn−1), one has

A [v1 · · · vn]︸ ︷︷ ︸
:=V

= [u1 · · · un]

σ1

. . .

σn

 .

Let un+1, . . . ,um be orthonormal basis in (spanR{u1, . . . ,un})⊥, then RHS of the above
equation becomes

[u1 · · · un un+1 · · · um]︸ ︷︷ ︸
:=U


σ1

. . .

σn
O


︸ ︷︷ ︸

:=Σ

where O denotes a matrix with only 0 entries. One can rewrite the above as: AV = UΣ.
It will be proved that indeed {vi} is orthonormal, hence we can conclude both V ,U are
unitary, and we arrive to the expression

A = UΣV ∗.

Owing to this decomposition ui’s are called left-singular vectors, vi’s are called right-
singular vectors and “diagonal” elements (i.e., if Σ = [dij ]m×n, diagonal elements are dii’s)
are called singular values. These basically are all the motivation of the general result.

4.2.3 Proof to Existence of “Unique” SVD

In the following, O denotes a zero matrix of appropriate size.
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4.2. Singular Value Decomposition (SVD)

Theorem 4.2.3.

(i) Every matrix A ∈Mm×n(C) has a SVD:

A = UΣV ∗
U ∈Mm×m(C) is unitary
V ∈Mn×n(C) is unitary
Σ ∈Mm×n(R) is “diagonal”

Furthermore, the singular values σj ’s, σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n}, are uniquely
determined.

(ii) If A is square and σj ’s are distinct, then the left and right singular vectors
{uj}, {vj} are unique up to a multiplicative constant with modulus 1.

By examining each step in the following proof, it is no point to require the scalar field
be nonreal, therefore after the proof we record Corollary 4.2.7 here as a direct consequence.
We start with C merely because the statement will be more comprehensive.

Proof. (i) The case that m = 1 or n = 1 is simple, let’s assume m,n ≥ 2. Let
σ1 = ‖A‖2, then due to compactness of {x ∈ Cn : ‖x‖2 = 1} in Cn and the continuity of
the map x 7→ ‖Ax‖2, there must be v1 ∈ Cn with ‖v1‖2 = 1 s.t. ‖Av1‖2 = σ1, so there
is u1 ∈ Cm, ‖u1‖2 = 1, Av1 = σ1u1. Hence ‖A‖2 is our first singular value.

Extend u1 to an o.n. basis {u1, . . . ,um} of Cm and v1 to an o.n. basis
{v1, . . . , vn} of Cn. Let U1 be the matrix with columns ui and V1 be that with columns
vi, then

U∗1AV1 = [A]
{u1,...,um}
{v1,...,vn} =


σ1 w∗

O B

 =: S. (4.2.4)

Now ∥∥∥∥S [σ1

w

]∥∥∥∥
2

≥ σ2
1 + w∗w =

√
σ2

1 + w∗w

∥∥∥∥[σ1

w

]∥∥∥∥
2

,

this implies w = O. Therefore Av2,Av3, . . . ,Avn ∈ span{u2,u3, . . . ,um},

B = [A]
{u2,...,um}
{v2,...,vn} .

Note that we have x ⊥ v1 =⇒ Ax ⊥ Av1, and the only assumption to derive
this result is ‖Av1‖2 = ‖A‖2, with ‖v1‖2 = 1. We extract this as a technical corollary.

Corollary 4.2.5. Let A ∈Mm×n(C), v ∈ Cn with ‖v‖2 = 1. Then if ‖Av‖2 = ‖A‖2,

w ⊥ v =⇒ Aw ⊥ Av.

The same is true when C is replaced by R.

Proof. Repeat what we have done so far, i.e., replace v by v1 and Av1
‖Av1‖2 by u1 in

the argument preceding the corollary. Then once w ⊥ v, one has Aw ⊥ Av1 = Av.�

To finish the proof let’s induct on k ≥ 4, where m+ n = k. Suppose any m× n
matrix with m+ n = 4, 5, . . . , k − 1 has SVD with uniquely determined singular values
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in descending order. Then for m + n = k, by induction hypothesis, B = U2ΣV ∗2 with
unique Σ, and the existence of SVD follows from the formula:

U∗1AV1 =

[
σ1 O
O U2ΣV ∗2

]
=

[
1 O
O U2

] [
σ1 O
O Σ

] [
1 O
O V ∗2

]
. (4.2.6)

Although Σ is unique for smaller matrices, “Σ” for the matrix A depends on B, while B
is dependent on the choice of basis. Fortunately under any changes of (u2, . . . ,um) and
(v2, . . . , vn) to other o.n. bases, U2 and V2 will be replaced by other unitary matrices
and Σ remains unchanged, hence singular values of A are unique. The proof is almost
completed by induction, except for the base case m+n = 4, which is obvious by (4.2.4).

(ii) Let’s assume A ∈Mn×n(C) is square. It is clear that σ1 = ‖A‖2 since ‖A‖2
is the largest possible singular value of A. We first prove that if the right singular vector
of σ1 is not “unique”, then σ1 is not simple, i.e., σ1 is repeated in Σ.

Let Av1 = σ1u1, ‖v1‖2 = ‖u1‖2 = 1. Suppose there are other vectors w,w′ ∈
Cn, with ‖w‖2 = ‖w′‖2 = 1 s.t. Aw = σ1w

′. For the sake of contradiction, let’s

assume w 6∈ Cv1, then the unit vector v2 := w−〈v1,w〉v1
‖w−〈v1,w〉v1‖2 is orthogonal to v1. Now

‖Av2‖2 ≤ ‖A‖2 = σ1, the inequality cannot be strict, otherwise since w = cv1 + sv2

with |c|2 + |s|2 = 1, we have

σ2
1 = ‖Aw‖22 = ‖cσ1u1 + sAv2‖22 = |c|2|σ1|2 + |s|2‖Av2‖22 < σ2

1 ,

absurd. We conclude Av2 = σ1u2, for some unit vector u2 ∈ (Cu1)⊥. Now by the
corollary one observes that

A|(spanC{v1,v2})⊥ : (spanC{v1, v2})⊥ → (spanC{u1,u2})⊥,

and thus we can get a complete list of singular values with σ1 appears twice, a contra-
diction. Hence if σj ’s are distinct, w ∈ Cv1, i.e., w and v1 differ by a multiplicative
constant with modulus 1. It follows that u1 is unique up to a complex sign. Finally since
A|(Cv1)⊥ : (Cv1)⊥ → (Cu1)⊥, by choosing the bases of these two spaces, the uniqueness
follows from induction on dimension of the square matrix. �

Corollary 4.2.7. Theorem 5.8.4 is also true if all symbols C are replaced by R.

4.3 Jordan Canonical Form

4.3.1 Upper-Triangularization and a Brief Introduction to Jordan Form

Suppose we are concerned with complex matrices, then every complex matrix has at least
one complex eigenvalue by Corollary 4.1.3. Not only that, if we consider the matrix A as a
map Cn → Cn, then we have the following:

Theorem 4.3.1. Every square complex matrix can be made upper-trianglar under a change
of basis.

More precisely, we can find a basis {u1,u2, . . . ,un} of Cn such that, with P =
[u1 · · · un], P−1AP is upper-triangular. i.e., A is similar to an upper-triangular matrix.
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4.3. Jordan Canonical Form

Proof. We prove by induction on the size of matrices. The proposition is obviously true
for 1×1 matrix. Suppose every (n−1)× (n−1) matrix is similar to an upper-triangular
matrix. Let A be n× n, then there is u ∈ Cn \ {0} and λ ∈ C such that

Au = λu.

Extend {u} to a basis of Cn: {u, v1, . . . , vn−1} and let P = [u v1 · · · vn−1], then

P−1AP =

[
λ ∗
0 A′

]
,

where A′ is (n − 1) × (n − 1), hence by induction hypothesis, there is an invertible
Q ∈ M(n−1)×(n−1)(C) such that Q−1A′Q is upper-triangular. Let D =

[
1 0
0 Q

]
, then

D−1 =
[

1 0
0 Q−1

]
, hence

D−1P−1︸ ︷︷ ︸
=(PD)−1

APD =

[
1 0
0 Q−1

] [
λ ∗
0 A′

] [
1 0
0 Q

]
=

[
λ ∗
0 Q−1A′Q

]
,

since PD is invertible, we are done. �

The key to the proof is the existence of eigenvalue, which is a major distinction
between (finite dimensional) real vector spaces and complex vector spaces.

Theorem 4.3.1 can be directly translated to every linear T : V → V , with V a finite
dimensional complex vector space:

Theorem 4.3.2. Let V be a finite dimensional complex vector space and T : V → V linear,
then there is a basis {v1, v2, . . . , vn} of V such that

Tvk ∈ span{v1, v2, . . . , vk}

for each k = 1, 2, . . . ,n

Proof. We fix a choice of bases α of V and apply Theorem 4.3.1 to [T ]α. �

Now we are going to show that under a change of basis, a matrix can be made not
only upper-triangular, but also in the following much simpler form:

Theorem 4.3.3 (Jordan Canonical Form). Let V be a finite dimensional complex vector
space and T : V → V a linear map, then there is a basis B of V such that

[T ]B =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jk

 ,

where Ji, called Jordan block, is a matrix of the form

[
λ
]

or


λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · λ

 .
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Chapter 4. Simplification of Matrices

The basis in Jordan canonical form theorem is called a Jordan basis, the adjective
“canonical” can be omitted for simplicity. Precisely, a Jordan form is a diagonal block
matrix whose blocks are Jordan blocks. We defer the proof of the existence of Jordan basis
to Section 4.3.4. Before this section, we will build several preliminary results and also the
concept of generalized eigenspace which we are going to study.

4.3.2 Cayley-Hamilton Theorem

Definition 4.3.4. Let V be a finite dimensional complex vector space and T linear. We
denote pT the characteristic polynomial of T , namely,

pT = det(T − zI).

Here detT is define to be det[T ]B, for any basis B of V . It can be shown that detT
is independent of the choices of bases of V .

Theorem 4.3.5 (Cayley-Hamilton). Suppose that V is a finite dimensional complex vector
space and T : V → V is linear, then pT (T ) = 0.

Given a polynomial q(z) = a0 + a1z + · · ·+ anz
n, the symbol q(T ) means

q(T ) = a0I + a1T + · · ·+ anT
n,

whereas in Theorem 4.3.5 the statement pT (T ) = 0 means pT (T ) is a zero linear map from
V to V .

Proof. By Theorem 4.3.2, there is a basis {v1, v2, . . . , vn} of V such that

Tvk ∈ span{v1, v2, . . . , vk}

for k = 1, 2, . . . ,n. Moreover, let B = {v1, . . . , vn},

[T ]B =


λ1 ∗
0 λ2

0 0
. . .

0 0 0 λn

 . (4.3.6)

Hence pT (z) = det(T − zI) = (−1)dimV (z − λ1)(z − λ2) · · · (z − λn). Now to show
pT (T ) = 0, we try to show for each k = 1, 2, . . . ,n, (T − λ1I) · · · (T − λkI)vk = 0. By
(4.3.6) we have Tv1 = λ1v1, so the case that k = 1 is done. Suppose that

0 = (T − λ1I)

0 = (T − λ1I)(T − λ2I)v2

...

0 = (T − λ1I) · · · (T − λk−1I)vk−1.

Since (T − λkI)vk = Tvk − λkvk ∈ span{v1, v2, . . . , vk−1}, by induction we are done. �
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4.3.3 Generalized Eigenspaces

Definition 4.3.7. Let V be a finite dimensional complex vector space and T : V → V linear.
Let λ be an eigenvalue of T , we define

Eλ = {v ∈ V : (T − λI)kv = 0,∃k ≥ 1},

called a generalized eigenspace with eigenvalue λ. Every v ∈ Eλ \ {0} is called a
generalized eigenvector with eigenvalue λ.

Of couse if we denote Eλ the eigenspace of T , then

{0} ( Eλ ⊆ Eλ.

Generally Eλ 6= Eλ. For example, consider A = [ 1 1
0 1 ], the characteristic polynomial of A is

det(zI −A) = (z − 1)2, so the only eigenvalue is 1. But A− I → [ 0 1
0 0 ], hence

dimEλ = dim Nul(A− I) = 1.

However, (A− I)2 = [ 0 0
0 0 ], so dim Nul(A− I)2 = 2, it follows that Eλ ⊇ Nul(A− I)2 = R2,

so
dim Eλ = 2,

of course Eλ 6= Eλ. We also note that the following are equivalent:

(i) v ∈ Eλ \ {0}

(ii) v 6= 0 and there is n ≥ 1, (T − λI)nv = 0.

(iii) There is k ≥ 0 such that (T − λI)kv is an λ-eigenvector.

Theorem 4.3.8. Let V be a finite dimensional complex vector space and T : V → V linear.
Let λ,µ be eigenvalues of T .

(i) Eλ = ker(T − λI)dimV .

(ii) If µ 6= λ, Eλ ∩ Eµ = {0}.

(iii) If µ 6= λ, then (T − µI)|Eλ : Eλ → Eλ is invertible.

Proof. (i) Consider the following:

{0} ( ker(T − λI) ⊆ ker(T − λI)2 ⊆ · · · ⊆ ker(T − λI)dimV ⊆ Eλ.

If there is k < dimV such that ker(T − λI)k = ker(T − λI)k+1, then

ker(T − λI)k = ker(T − λI)k+1 = ker(T − λI)k+2 = · · · .

(check!) Thus we are done because Eλ =
⋃
k≥1 ker(T −λI)k = ker(T −λI)dimV . If there

no such k, then for k = 1, 2, . . . , dimV ,

k ≤ dim ker(T − λI)k = dim Eλ ≤ dimV ,

so we are also done by taking k = dimV .

(ii) Let v ∈ Eλ \ {0}. For the sake of contradiction, suppose v ∈ Eµ. Since
v ∈ Eλ, there is k ≥ 0 such that vk := (T −λI)kv is a λ-eigenvector. On the other hand,
there is also n ≥ 0 such that (T − µI)nvk is a µ-eigenvector. Then

T (T − µI)nvk = (T − µI)nvkTvk = λ(T − µI)nvk,
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thus (T − µI)nvk is λ-eigenvector and µ-eigenvector at the same time, a contradiction.

(iii) Let v ∈ Eλ, then of course (T − µI)v ∈ Eλ. Hence Eλ is (T − µI)-invariant.
To prove invertibility, it is enough to check injectivity. Let v ∈ Eλ and (T − µI)v = 0,
then v ∈ Eµ =⇒ v ∈ Eλ ∩ Eµ = {0}. That means

(T − µI)|Eλ : Eλ → Eλ

is injective, hence invertible. �

Theorem 4.3.9. Let V be a finite dimensional complex vector space and T : V → V linear.
The sum of all generalized eigenspaces is a direct sum.

Proof. Let λ1, . . . ,λk be the eigenvalues of T , let vi ∈ Eλi , i = 1, 2, . . . , k be such that

v1 + v2 + · · ·+ vk = 0, (4.3.10)

we need to show v1 = v2 = · · · = vk = 0. To do this, for each i = 1, 2, . . . , k − 1, choose
di large such that (T − λiI)divi = 0, if we apply these operators to (4.3.10),

(T − λ1I)d1(T − λ2I)d2 · · · (T − λk−1I)dk−1vk = 0.

By (iii) of Theorem 4.3.8, (T − λi)|Eλk are injective, i = 1, 2, . . . , k − 1, hence vk = 0.
We repeat the process to show vk−1 = vk−2 = · · · = v1 = 0. �

Theorem 4.3.11. Let V be a finite dimensional complex vector space and T : V → V linear,
then V is a direct sum of all generalized eigenspaces of T .

Proof. Let λ1, . . . ,λk be the distinct eigenvalues of T , we just need to show V ⊆
Eλ1

+ · · ·+ Eλk .

Let x ∈ V , then pT (z) = (−1)dimV (z−λ1)d1 · · · (z−λk)dk , by Cayley-Hamilton
Theorem pT (T ) = 0, i.e.,

(T − λ1I)d1(T − λ2I)d2 · · · (T − λkI)dkx = 0.

This shows that (T −λ2I)d2 · · · (T −λkI)dkx ∈ Eλ1 . By (iii) of Theorem 4.3.8 since each
(T − λiI)|Eλ1 : Eλ1 → Eλ1 (i = 2, 3, . . . , k) is invertible, there is w1 ∈ Eλ1 such that

(T − λ2I)d2 · · · (T − λkI)dk(x− w1) = 0.

Above means that (T − λ3I)d3 · · · (T − λkI)dk(x− w1) ∈ Eλ2 , by (iii) of Theorem 4.3.8
again and the same reasoning, there is w2 ∈ Eλ2

such that

(T − λ3I)d3 · · · (T − λkI)dk(x− w1 − w2) = 0.

The process can be repeated to obtain x = w1 + w2 + · · ·+ wk, where wi ∈ Eλi . �

4.3.4 Proof of Jordan Canonical Form Theorem

We need the following lemma for the construction of Jordan basis.
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Lemma 4.3.12. Let V 6= {0} be a finite dimensional complex vector space and T : V → V
linear. Suppose that Tm = 0 for some m ≥ 1 (i.e., T is nilpotent), then there is a basis
of V of the form

u1,Tu1, . . . T a1−1u1, . . . ,uk,Tuk, . . . ,T ak−1uk,

where T aiui = 0 for 1 ≤ i ≤ k.

Here we don’t exclude the possibility that that T = 0, but then necessarily a1 =
a2 = · · · = ak = 1.

Proof. We prove by induction on the dimension. Suppose dimV = 1, then we are done.
Suppose dimV = k and every vector spaces of dimension less than k with a nilpotent
operator on it has a basis of the form described in the theorem. Note that T (V ) ( V ,
otherwise

V = T (V ) = T 2(V ) = · · · = Tm(V ) = {0},

a contradiction. As T (V ) is T -invariant, i.e., T |T (V ) ∈ L(T (V )), and T is nilpotent, by
induction hypothesis T (V ) has a basis

v1,Tv1, . . . ,T b1−1v1, . . . , vk,Tvk, . . . ,T bk−1vk,

where T bivi = 0. Since vi ∈ T (V ), we choose ui ∈ V such that Tui = vi. Now
{T bi−1vi : i = 1, 2, . . . , k} ⊆ kerT is linearly independent, we extend this to a basis of
kerT :

{T b1−1v1, . . . ,T bk−1vk,w1,w2, . . . ,wl}.

We claim that

u1,Tu1, . . . ,T b1u1, . . . ,uk,Tuk, . . . ,T bkuk,w1,w2, . . . ,wl

form a basis of V .

The linear independence is left as a routine checking. To prove it does span V ,
we try to compare the dimension of V and the number of the vectors. We note that
dim kerT = k + l. Also, dimT (V ) = b1 + b2 + · · ·+ bk. Hence

dimV = dim kerT + dimT (V )

= (k + l) + (b1 + · · ·+ bk)

= (b1 + 1) + · · ·+ (bk + 1) + l �

Proof of Jordan Canonical Form Theorem 4.3.3. In the hypothesis V is a finite
dimensional complex vector space and T : V → V is linear, Theorem 4.3.11 asserts that

V = Eλ1
⊕ Eλ2

⊕ · · · ⊕ Eλk ,

where λi are eigenvalues of T . Hence Ni := (T − λiI)|Eλi is nilpotent(‡), and the result
follows by applying Lemma 4.3.12 to N1,N2, . . . ,Nk and noting that

T = (N1 + λ1I)⊕ · · · ⊕ (Nk + λkI) : Eλ1
⊕ · · · ⊕ Eλk → Eλ1

⊕ · · · ⊕ Eλk .

(‡) It is because Eλi = ker(T − λiI)dimV = ker((T − λiI)|Eλi )dimV , thus (T − λiI)|Eλi : Eλi → Eλi is

nilpotent.
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Specifically, {u1, . . . ,Na1−1
1 u1, . . . ,ul, . . . ,N

al−1
1 ul} be a basis of Eλ1 , where

Nai
1 ui = 0. Let’s order the basis in the reverse way:

B1 := {Na1−1
1 u1,Na1−2

1 u1, . . . ,u1, . . . ,Nal−1
1 ul,N

al−2
1 ul, . . . ,ul}. (4.3.13)

If a1 = 1, then u1 is in fact an eigenvector. Let’s suppose a1 ≥ 2, then

T (Na1−1
1 u1) = λ1N

a1−1
1 u1

T (Na1−2
1 u1) = Na1−1

1 u1 + λ1N
a1−2
1 u1

T (Na1−3
1 u1) = Na1−2

1 u1 + λ1N
a1−3
1 u1

...

T (u1) = N1u1 + λ1u1,

the matrix of T w.r.t. first a1 vectors of B1 is of the form

λ1 1
λ1 1

λ1
. . .

. . . 1
λ1

 .

Where the entries are all zero elsewhere. Continuing this process to the rest of vectors
in B1, we see that [T ]B1 is a Jordan form. Now for i = 2, 3, . . . , k, let Bi be the
corresponding basis of Ei ordered reversely as above, then let

B = B1 ∪ B2 ∪ · · · ∪ Bk,

then [T ]B =
⊕k

i=1[T ]Bi is a Jordan form. �

The proof also reveals that Jordan basis exists in the following specific form:

Definition 4.3.14. Let V be a vector space, T : V → V linear and let v ∈ V be a generalized
eigenvector of T with eigenvalue λ. Suppose p is a positive integer such that T pv = 0
but T p−1v 6= 0, then the ordered set

{(T − λI)p−1v, (T − λI)p−2v, . . . , v}

is called a cycle of generalized eigenvectors of T with eigenvalue λ. We say that
the length of the cycle is p.

In the proof of Jordan canonical form theorem, B1 written in (4.3.13) is a union of
l disjoint cycles. In general, if a linear maps T : V → V with dimV <∞ has k eigenvalues,
say λ1,λ2, . . . ,λk, then the basis Bi of Eλi , due to Lemma 4.3.12 applied to (T − λi)|Eλi ,
will consist of li ≥ 1 disjoint cycles of generalized eigenvectors of T with eigenvalue λi. The
collection of all such cycles forms a Jordan basis of T .

Lastly we also mention the dimension of each generalized eigenspace.

Theorem 4.3.15 (Dimension of Eλ). Let V be finite dimensional and T : V → V linear. If
λ1, . . . ,λk are eigenvalues of V and pT (z) = (−1)dimV (z−λ1)d1(z−λ2)d2 · · · (z−λk)dk ,
then

dim Eλi = di.
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Proof. Let Ui = T |Eλi , by (iii) of Theorem 4.3.8, λi is the only eigenvalue of Ui, it

follows that pUi(z) = (−1)dimUi(z − λi)dim Eλi . Let B be a basis of Eλi , extend it to a
basis B ∪ B′ for V , then

[T ]B∪B′ =

[
[T ]B ∗

0 ∗

]
,

hence pT (z) = pUi(z)g(z), for some polynomial g, i.e., pUi divides pT , hence

dim Eλi ≤ di. (4.3.16)

On the other hand,

dimV = dim

( n⊕
i=1

Eλi
)

=

k∑
i=1

dim Eλi ≤
k∑
i=1

di = dimV ,

hence none of the inequality in (4.3.16) can be strict, thus dim Eλi = di. �

4.3.5 Dot Diagram

Throughout section 4.3.5 we fix a linear map T : V → V , where V is a finite dimensional
complex vector space. Also, we fix a choice of eigenvalue λ of T and consider a fixed
eigenspace Eλ. Since (T − λI)|Eλ is nilpotent, by theorem Lemma 4.3.12, Eλ has a (Jordan)
basis consisting of l ≥ 1 disjoint cycles. We align each cycle as a column and arrange them
as in the way of the following dot diagram.

Dot Diagram of Eλ

• (T − λI)p1−1v1 • (T − λI)p2−1v2 • (T − λI)pl−1vl

• (T − λI)p1−2v1 • (T − λI)p2−2v2 · · ·
...

...
... • vl

• (T − λI)v1 • v2

• v1

As before, each pi ≥ 1 and (T − λI)pivi = 0. Each dot above denotes an element
in the Jordan basis of Eλ. Moreover, as indicated in the diagram, from now on we will also
require

p1 ≥ p2 ≥ · · · ≥ pl,
thus the size of Jordan blocks will be in descending order and in this way the Jordan form
representation can be unique. We denote by Bλ the set of dots (Jordan basis in Eλ) above.
Later, as in Example 4.3.19, it will be found more convenient to write the dots alone when
determing the Jordan form of A without find the Jordan basis.

In Theorem 4.3.17 and Theorem 4.3.18 we will learn how to compute the number of
dots in each row in the dot diagram, thereby identifying the Jordan form that a matrix has!

Theorem 4.3.17. For each integer r ≥ 1, dim ker(T −λI)r is the number of dots in the first
r rows indicated in the dot diagram.

Proof. We observe that ker(T − λI)r ⊆ Eλ and we let N = (T − λI)r|Eλ . It is obvious
that rangeN ⊆ Eλ and hence kerN = ker(T − λI)r. Let

S1 = {x ∈ Bλ : Nx = 0} and S2 = {x ∈ Bλ : Nx 6= 0}.
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Now S1 consists of precisely first r rows of vectors in the diagram. Let a = |S1|
and b = |S2|, then a+ b = dim Eλ, moreover,

rangeN = span{Nx : x ∈ S2}.

Since the effect of apply N to x ∈ S2 is precisely shifting the dot x up by r dots, hence
|{Nx : x ∈ S2}| = |S2| and thus dim rangeN = b. By rank-nullity theorem,

dim kerN = dim Eλ − b = a,

hence S1 is a basis of kerN = ker(T − λI)r, thus

dim ker(T − λI)r = |S1|. �

In the next theorem, let’s for simplicity write rankT to mean dim rangeT . A direct
application of Theorem 4.3.17 yields the calculation of dots in each row:

Theorem 4.3.18. Denote ri the number of dots in the ith rows of the dot diagram, then

r1 = dimV − rank(T − λI)

and for i > 1,

ri = rank(T − λI)i−1 − rank(T − λI)i.

Proof. Applying r = 1 in Theorem 4.3.17, we have

r1 = dim ker(T − λI) = dimV − rank(T − λI).

Next by Theorem 4.3.17 the number ri is nothing but the number of dots in
the first i rows subtract the number of dots in first i− 1 rows, thus we have

ri = dim ker(T − λI)i − dim ker(T − λI)i−1

=���dimV − rank(T − λI)i − (���dimV − rank(T − λI)i−1)

= rank(T − λI)i−1 − rank(T − λI)i. �

4.3.6 Examples

In this section we provide one example on the computation of Jordan form and Jordan
basis. Also we provide an example which is a well-known result in numerical analysis, in the
solution two proofs will be presented (one is due to me). It gives you a taste how a problem
can be simplified by studying its simplification.

Computational Example

Example 4.3.19. We try to find the Jordan form and also the Jordan basis of the matrix

A =


2 −1 0 1
0 3 −1 0
0 1 1 0
0 −1 0 3

 .
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4.3. Jordan Canonical Form

In general the easiest step is to find the Jordan form, thus it is usually first step. The
situation is similar to diagonalizable.

Since
det(A− tI ) = (t − 2)3(t − 3),

The algebraic multiplicity of 2 is three, and that of 3 is one. Therefore by Theorem 4.3.15,

dim E2 = 3 and dim E3 = 1.

The generalized eigenspace E3 is well understood. Next we focus on E2 and consider its dot
diagram in order to determine the Jordan form.

By Theorem 4.3.18, r1 = dimR4 − rank(A− 2I ), but

A− 2I =


0 −1 0 1
0 1 −1 0
0 1 −1 0
0 −1 0 1

→


0 −1 0 1
0 1 −1 0
0 0 0 0
0 0 0 0

→


0 −1 0 1
0 0 −1 1
0 0 0 0
0 0 0 0

 ,

hence we have r1 = 4 − 2 = 2. As the dot diagram of E2 can only have 3 dots, we know
that r2 = 1. So we get

• •
•

Recall that each column represents a cycle (defined in Definition 4.3.14), therefore the
Jordan form of A, with eigenvalues listed in ascending order, is

J =


2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 3

 .

Next finding a Jordan basis is little more tedious, we need to be patient.

The Jordan basis in E3. It is easy to find, let x ∈ Nul(A− 3I ), then

A− 3I =


−1 −1 0 1
0 0 −1 0
0 1 −2 0
0 −1 0 0

→


1 1 0 −1
0 1 0 0
0 0 1 0
0 0 0 0

 .

Therefore we have x2 = x3 = 0 and x1 = −x2 + x4 = x4, hence x = x4(1, 0, 0, 1)T , thus

(1, 0, 0, 1)T is what we want.

The Jordan basis in E2. The first row of the dot diagram consists of vectors in
Nul(A − 2I ), while the second row consists of vectors in Nul(A − 2I )2. So our strategy is,
firstly, we try to find v ∈ Nul(A − 2I )2 such that (A − 2I )v 6= 0, then the first column of
the dot diagram of E2 is determined by v and (A − 2I )v . Next we find u ∈ Nul(A − 2I ) \
span{(A− 2I )v}, then the second column is also determined.

Since

(A− 2I )2 =


0 −2 1 1
0 0 0 0
0 0 0 0
0 −2 1 1

→


0 −2 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,
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this shows us if (A − 2I )2x = 0, then x2 = 1
2x3 + 1

2x4. And hence x = x1(1, 0, 0, 0)T +
x3(0, 1

2 , 1, 0)T + x4(0, 1
2 , 0, 1)T , thus

Nul(A− 2I )2 = span




1
0
0
0

 ,


0
1
2
0

 ,


0
1
0
2


 .

Note that A − 2I =

[ 0 −1 0 1
0 1 −1 0
0 1 −1 0
0 −1 0 1

]
, (A − 2I )(1, 0, 0, 0)T = 0, (1, 0, 0, 0)T is not a suitable

choice. Choose v = (0, 1, 2, 0)T , we find that (A − 2I )v = (−1,−1,−1,−1)T 6= 0. And
then choose u = (1, 0, 0, 0)T ∈ Nul(A− 2I ), then


−1
−1
−1
−1

 ,


0
1
2
0

 ,


1
0
0
0

 ,


1
0
0
1




is the Jordan basis of A.

Remark. Although the eigenvalues in Example 4.3.19 are all real, don’t forget our theory
bases on the existence of at least one eigenvalue. Thus sometimes we get at least one complex
eigenvalue, it is nothing wrong and don’t hesitate to repeat what we have done here.

Theoretical Example

For the upcoming example we define the following:

Definition 4.3.20. Let A ∈Mn×n(R). Denote σ(A) the spectrum of A to be the collection
of all eigenvalues,

σ(A) := {root of det(A− xI)} ⊆ C.

The spectral radius, is defined by

r(A) := max{|λ| : λ ∈ σ(A)}.

Here r(A) can always be defined as a matrix can just have finitely many eigenvalues.

Note that when Ax = λx and |λ| < 1, then Akx→ 0 as k →∞. So we can control
the image Akx if x is an eigenvector. Interestingly if the largest possible eigenvalue is small
enough in magnitude, then we can control the image of Ak:

Example 4.3.21. Let A be an n × n matrix, we try to show that

lim
n→∞

Anx = 0, for all x ∈ Rn ⇐⇒ r(A) < 1.

For simplicity let’s write limn→∞ An = 0 to mean limn→∞ Anx = 0 for all x ∈ Rn. We first
finish the (⇒) direction, although it is not of our main interest.

(⇒). Let λ ∈ σ(A) such that |λ| = r(A). Since λ is an eigenvalue, Ax = λx for
some x 6= 0. By hypothesis we have limn→∞ Anx = λnx = 0, hence there is an n0 such that

‖λn0x‖ < ‖x‖ =⇒ |λ| < 1.
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Solution 1 of (⇐). By Theorem 4.3.1 we can upper-triangularize A by some
invertible P ∈ Mn×n(C), i.e.,

U := P−1AP =


λ1 b12 · · · b1n

0 λ2 · · · b2n

0 0
. . .

...
0 0 · · · λn

 ,

then Ue1 = λ1e1, and U je1 = λj1e1 and hence |λ1| < 1 =⇒ Uke1 → 0. We complete the
proof by induction, assume there is k ∈ N so that

lim
j→∞

U je1, . . . , lim
j→∞

U jek−1 = 0.

We will show that U jek → 0.

Since Uek =
∑k−1

i=1 bikei + λkek , we apply U j on both sides to get U j+1ek =∑k−1
i=1 bikU jei + λkU jek , and hence

‖U j+1ek‖ ≤
k−1∑
i=1

|bik |‖U jei‖+ |λk |‖U jek‖.

By induction hypothesis limj→∞ U jei = 0 for i = 1, 2, . . . , k − 1, so for every ε > 0 there is
an N such that

n ≥ N =⇒ ‖U j+1ek‖ < ε+ |λk |‖U jek‖. (4.3.22)

For the sake of simplicity let’s denote λ = |λk | and aj = ‖U jek‖, then (4.3.22) becomes

n ≥ N =⇒ aj+1 < ε+ λaj ,

where 0 < λ < 1. A standard technique in elementary analysis shows us

lim
j→∞

aj = lim
j→∞

‖U jek‖ = 0.

We conclude by induction that limj→∞ U jek = 0, therefore U j → 0. Since Aj =
PU jP−1, we conclude Aj → 0 on Cn, and of course, on Rn ⊆ Cn.

Remark. The first proof above is elementary in the sense that only the upper triangulariza-
tion is needed which is an easy consequence of existence of at least one complex eigenvalue.
The second proof below will be a standard proof to this result.

Solution 2 of (⇐). Let λ1,λ2, . . . ,λk be the eigenvalues of A. By Theorem 4.3.3
there is an invertible matrix P ∈ Mn×n(C) such that

J := P−1AP =


J1

J2
. . .

Jk

 ,

where Ji is the Jordan form of LA w.r.t. the cycles in Eλi . Namely, there is a nilpotent
matrix Ni such that Ji = λi I + Ni , where Ndi

i = 0, di = dim Eλi . Note that by diagonal
block multiplication,

Jm =


Jm
1

Jm
2

. . .

Jm
k

 ,
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to finish the proof it is enough to show that Jm
i → 0 for each i . Indeed, since Ji = λi Idi +Ni ,

we have for large m > d1, d2, . . . , dk ,

Jm
i = (λi Idi + Ni )

m =
m∑
r=0

(
m

r

)
λm−ri N r

i =

di−1∑
r=0

(
m

r

)
λm−ri N r

i .

For each r , since
(
m
r

)
is just a product of r linear factors in m, we have

(
m
r

)
λm−ri → 0 when

m→∞, therefore Jm
i → 0, and we are done.

4.4 Exercises

Eigenvalues, Eigenvectors and Diagonalization

Problem 4.1. Let A ∈Mn×n(R), show that there is δ > 0 such that for every t ∈ (0, δ),
A− tI is invertible.

Problem 4.2. If A is diagonalizable, show that each of the following is also diagonaliz-
able.

(i) An,n ≥ 1.

(ii) kA, k ∈ R.

(iii) p(A), p(x) is any polynomial.

(iv) U−1AU , U is any invertible matrix.

Problem 4.3. Show that for A ∈M2×2(R), we have

det(A− λI) = λ2 − (TrA)λ+ detA,

hence show that
(TrA)2 > 4 detA

is a sufficient condition for A to be diagonalizable.

Problem 4.4. Let A ∈Mn×n(R).

(i) Show that if λ is an eigenvalue of A, then λk is an eigenvalue of Ak.

(ii) Show that every eigenvalue of A is also an eigenvalue of AT . Give an example that
A and AT have different eigenvectors.

Problem 4.5. Suppose A ∈Mn×n(R) and that the sum of each row equals 1, show that
1 is an eigenvalue.

Problem 4.6. Let A be diagonalizable, show that detA is the product of all eigenvalues.

Problem 4.7. Construct a matrix that has no real eigenvalue.

Problem 4.8. Let A ∈ Mn×n(R), show that for any ε > 0, there is t with 0 < |t| < ε
such that A− tI is invertible.

Problem 4.9. Show that any rank one matrix A ∈Mn×n(R) is of the form abT for some
a, b ∈ Rn. From this, prove that every rank one symmetric real matrix is diagonalizable.
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Problem 4.10. Let A ∈Mn×n(R), if rankA = k, show that A has at most k+1 distinct
eigenvalues. Give an example of rank k n× n matrix with k + 1 distinct eigenvalues.

Problem 4.11. Let A ∈Mm×n(R) and B ∈Mn×m(R). Also we let In and Im be n× n
and m×m identity matrices respectively. Prove that

det(Im +AB) = det(In +BA).

Problem 4.12. Let V be a finite dimensional real vector space and T : V → V linear.
Suppose every nonzero vector in V is an eigenvector of T , show that then T = kI for
some k ∈ R.

Hint. For each v ∈ V , let g(v) denote the eigenvalue of v (we say “the” because each
eigenvector cannot have two eigenvalues!). i.e., for each v ∈ V \ {0}, T v = g(v)v . Show
that g must be constant.

Problem 4.13. Let T ∈ L(V ,V ), show that for every pair of bases α,β of a finite
dimensional vector space V , we have

det
(
[T ]α

)
= det

(
[T ]β

)
and det

(
[T ]α − tI

)
= det

(
[T ]β − tI

)
.

Problem 4.14. Let

A =


1 2 · · · n

n+ 1 n+ 2 · · · 2n
...

...
. . .

...
n2 − n+ 1 n2 − n+ 2 · · · n2

 .

Prove that the characteristic polynomial pA of A is

pA(x) = (−1)n
(
xn − n(n2 + 1)

2
xn−1 − n3(n2 − 1)

12
xn−2

)
.

Hint. Show that rank A = 2 and that W := span{(1, 1, . . . , 1)T , (1, n+1, . . . , n2−n+1)T}
is an invariant subspace of LA, i.e., Aw ∈W for all w ∈W .

Problem 4.15. Define T ∈ L(R3,R3) by

T (x1,x2,x3) = (2x2, 0, 5x3),

find all eigenvalues and eigenvectors of T .

Problem 4.16. Consider the linear transformation

T : P→ P; Tf(x) = xf ′(x),

where P denotes the set of all polynomials.

(a) Find kerT .

(b) Find a p ∈ P \ rangeT .

(c) Find all eigenvectors and eigenvalues of T .
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Problem 4.17. Let V be finite dimensional, for a linear T : V → V we define its trace
to be

Tr(T ) = Tr[T ]α

for any fixed basis α of V . It can be shown that the value Tr(T ) is independent of the
choices of basis, i.e., for any two bases α,β of V , Tr[T ]α = Tr[T ]β (cf. Problem 4.13).

Now for an A ∈Mn×n(R), we define LA : Mn×n(R)→Mn×n(R) by

LA(X) = AXAT ,

where ·T denotes the transpose of a matrix. Show that

Tr(LA) = (TrA)2 and det(LA) = (detA)2n.

Singular Value Decomposition

Problem 4.18. Using SVD, prove that any matrix in Mm×n(C) is the limit of a sequence
of full-rank matrices. Or in terms of analysis, prove that the set of full rank matrices is
a dense subset of Mm×n(C).

Problem 4.19. By considering the SVD of A ∈ Mm×n(R), say A = UΣV ∗, find an
eigenvalue decomposition of the 2m× 2m symmetric matrix[

O AT

A O

]
,

where O denotes a zero matrix.

Jordan Canonical Form

Problem 4.20. For each of the matrices A that follow, find a Jordan form J and an
invertible matrix Q such that J = Q−1AQ.

(a) A =

−3 3 −2
−7 6 −3
1 −1 2



(b) A =

 0 1 −1
−4 4 −2
−2 1 1



(c) A =

 0 −1 −1
−3 −1 −2
7 5 6



(d) A =


0 −3 1 2
−2 1 −1 2
−2 1 −1 2
−2 −3 1 4


Problem 4.21. Let A be an n×n complex matrix. Prove that A and AT have the same
Jordan canonical form, and concldue that A and AT are similar.

Hint. Use Theorem 4.3.18 and the fact that row rank = column rank.

Problem 4.22. Let A ∈M2×2(R). Define

sinA = A− A3

3!
+
A5

5!
− · · · .
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RHS converges in the sense that each entry converges to a number. Determine whether
it is possible that

sinA =

[
1 2013
0 1

]
.

Problem 4.23. Let A ∈Mn×n(F) and rankA = r. Suppose that

Tr(A) = Tr(A2) = · · · = Tr(Ar) = 0,

prove that Ar+1 = 0.
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Chapter 5

Inner Product Spaces

Throughout the chapter we will follow the convention that:

F denotes R or C

Instead of just being a vector space, we will impose one more structure on it such that many
geometrically intuitive concept can be generalized to abstract spaces. We will also introduce
the concept of orthogonal projection using orthogonal basis of a finite dimensional vector
spaces to solve certain best approximation problem.

5.1 Inner Product

Definition 5.1.1. Let V be a a vector space over F, an inner product on V is a function
〈·, ·〉 : V × V → F satisfying:

Linear in The First Variable
For every α ∈ F and u, v,w ∈ V , 〈u+ αw, v〉 = 〈u, v〉+ α〈w, v〉.

Conjugate Linear in The Second Variable
For every α ∈ F and u, v,w ∈ V , 〈u, v + αw〉 = 〈u, v〉+ α〈u,w〉.

Conjugate Symmetric
For every u, v ∈ V , 〈u, v〉 = 〈v,u〉.

Positive Definite
For every v ∈ V , 〈v, v〉 ≥ 0, and 〈v, v〉 = 0 =⇒ v = 0.

When F = R, the linearity in the first variable and the conjugate linearity in the
second variable are combined to called bilinearity. As a rule, whenever we mention a vector
space that is not closed under complex scalar multiplication, every label F in our results and
definitions should be replaced by R before we apply them.

Example 5.1.2 (Some Inner Products).

(i) For u, v ∈ Rn, the standard inner product (also called dot product) on Rn is defined
by

〈u, v〉 := u · v =
n∑

i=1

uivi .

103



Chapter 5. Inner Product Spaces

(ii) For u, v ∈ Cn, the standard inner product on Cn, is defined by

〈u, v〉 := v∗u =
n∑

i=1

uivi .

(iii) We can define an inner product on C ([−1, 1],F) by

〈f , g〉 =

∫ 1

−1
f g dx ,

which is positive definite as 〈f , f 〉 ≥ 0 and 〈f , f 〉 =
∫ 1

−1 f 2dx = 0 =⇒ f = 0 on
[−1, 1].

(iv) On Rn, every matrix A ∈ Mn×n(R) gives a bilinear functional

B(x , y) = xTAy .

For it to be symmetric, we must require A be symmetric(∗). For a nontrivial example
that makes B into an inner product, let n = 2, set A = [ 2 −1

−1 2 ], then B(x , y) =

xTAy = 2x1y1 − x1y2 − x2y1 + 2x2y2 is bilinear and symmetric, moreover,

x 6= 0 =⇒ B(x , x) = (x1 − x2)2 + x2
1 + x2

2 > 0.

(v) On P2(R) the following define an inner product: for p, q ∈ P2(R),

〈p, q〉 = p(−1)q(−1) + p(0)q(0) + p(1)q(1).

Note, however, that this does not define an inner product on P3(R).

In fact there is a class of matrices that share the same feature with part (iv) of
Example 5.1.2. We name this class of matrices in the following definition.

Definition 5.1.3. A matrix A ∈ Mn×n(R) is said to be positive definite if it satisfies the
following two properties:

(i) A is symmetric.

(ii) 〈Ax,x〉 = 〈x,Ax〉 = xTAx > 0 for every x ∈ Rn \ {0}.

Later in Theorem 5.7.2 we will learn a systematic way to determine a matrix is
positive define or not.

Remark. These matrices will be found very useful in applications, for example, the second
derivative test for multivariable calculus, the maximum principle for solutions of Partial
Differential Equations with (uniform) ellipticity condition, the Lyapunov stability for linear
systems of ordinary differential equations, etc.

Remark. In terms of dot product we have the following nice formula:

〈Ax, y〉 = 〈x,AT y〉, 〈ATx, y〉 = 〈x,Ay〉.

If A ∈Mn×n(R) is positive definite, then 〈x, y〉 := xTAy defines an inner product on Rn.

(∗) This follows from the fact that B(ei , ej ) = B(ej , ei ).
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Several remarks concerning inner products are in order:

• By bilinearity, we can prove that 〈0, v〉 = 〈v, 0〉 = 0.

• When F = R, suppose 〈·, ·〉 is proved to be symmetric, then 〈·, ·〉 is bilinear iff it is
linear in one of the variables. When F = C, the conjugate linearity can be implied by
linearity of the first variable and conjugate symmetricity.

• Usually we adopt other brackets to denote inner products when there are more than
one in a vector space. Among the usual ones are [x, y], (x, y), 〈x, y〉, etc.

• Actually the matrix A in (iii) of Example 5.1.2 can be written as A = PTP , where P
is an invertible matrix given by

1

4

[
−
√

2 +
√

6 −
√

2−
√

6√
2 +
√

6
√

2−
√

6

]
,

hence

(x, y) := xTAy = xTPTPy = (Px)TPy = 〈Px,Py〉, (5.1.4)

where 〈·, ·〉 denotes the dot product on Rn. It follows that the bilinear functional
(x, y) := xTAy is positive definite.

This is not a coincidence, Problem 5.6 provides us a complete characterization of ALL
possible inner products on Rn, each of them takes the same form as (5.1.4).

In this chapter we mainly study the following class of vector spaces.

Definition 5.1.5. A vector space over F endowed with an inner product is called an inner
product space.

Example 5.1.6. Rn itself is a vector space, we give it a dot product to turn it into an inner
product space.

Example 5.1.7. C ([0, 1],F) itself is a vector space, we give it an inner product

〈f , g〉 =

∫ 1

0

f (x)g(x) dx

for every f , g ∈ C ([0, 1],F) to turn C ([0, 1],F) into an inner product space.

The way to turn a vector space into an inner product space is not unique. For every
continuous function w : [0, 1]→ (0,∞) the inner product

(f , g) =

∫ 1

0

f (x)g(x)w(x) dx

also turns C [0, 1] into an inner product space.

Now we introduce a standard notation which helps us to distinguish different inner
product spaces.

Convention. We always use the notation (V , 〈·, ·〉) to mean V is a vector space with inner
product 〈·, ·〉.
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For example, the inner product spaces (C([0, 1],F), 〈·, ·〉) and (C([0, 1],F), (·, ·)) in
Example 5.1.7 are considered different.

Remark. Every subspace W of (V , 〈·, ·〉) is also an inner product space with inner product
inherited from V , namely, we can turn W into (W , 〈·, ·〉).

Definition 5.1.8. By Euclidean Space we mean Rn equipped with the standard inner
product, i.e., dot product.

Convention. From now on in Fn, unless specified otherwise we always assume the notation
〈·, ·〉 means the dot product.

The notation 〈·, ·〉 is more convenient than the standard dot · notation, we demon-
strate this in the following example.

Example 5.1.9. Let A ∈ Mn×n(R) be symmetric such that

−3A2 + 5A− 3I = 0,

we try to show that A is positive definite.

We just need to verify 〈Av , v〉 > 0 (dot product) for every v 6= 0. By the identity
above, we have

5〈Av , v〉 = 〈5Av , v〉
= 〈3v + 3A2v , v〉 (property of A)

= 〈3v , v〉+ 〈3A2v , v〉 (bilinearity)

(?!)
==== 3‖v‖2 + 3‖Av‖2 ≥ 0.

(?!) is true because

〈A2v , v〉 = 〈A(Av), v〉 = 〈Av , AT v〉 = 〈Av , Av〉 = ‖Av‖2.

Finally, of course when v 6= 0, 〈Av , v〉 > 0, so we are done.

Definition 5.1.10. On a vector space X the function x 7→ ‖x‖ is said to be a norm if

(i) ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0. (Positivity)

(ii) For every α ∈ F and x ∈ X, ‖αx‖ = |α|‖x‖. (Scaling Property)

(iii) For every x, y ∈ X, ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (Triangle Inequality)

Remark. By the way, a vector space endowed with a norm is called a normed space.
Norms will not be intensively studied in this text, this will be brought into consideration
only when the concept of convergence is involved which we study in mathematical analysis.

Definition 5.1.11. For v ∈ (V , 〈·, ·〉), we denote

‖v‖ =
√
〈v, v〉

the “norm” induced by 〈·, ·〉.
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5.1. Inner Product

The fact that ‖ · ‖ is a true norm follows from (ii) of Theorem 5.1.13. Thus we have
no doubt to call ‖ · ‖ a norm which must satisfy properties listed in Definition 5.1.10.

Example 5.1.12. The norm induced by the inner product on (V , 〈·, ·〉) satisfies: for all u, v ∈ V ,

‖u + v‖2 = ‖u‖2 + ‖v‖2 + 2 Re〈u, v〉.

This results from direct expansion:

‖u + v‖2 = 〈u + v , u + v〉
= 〈u, u + v〉+ 〈v , u + v〉
= ‖u‖2 + 〈u, v〉+ 〈v , u〉+ ‖v‖2

= ‖u‖2 + ‖v‖2 + 2 Re〈u, v〉.

For complex vector space we note that

Re〈u, iv〉 = Re(−i〈u, v〉) = Im〈u, v〉.

This formula is useful when we also want a statement in terms of Im〈u, v〉 instead of Re〈u, v〉.
Next we derive the most fundamental properties of inner products.

Theorem 5.1.13. In (V , 〈·, ·〉), the inner product 〈·, ·〉 satisfies the following:

(i) |〈u, v〉| ≤ ‖u‖‖v‖. (Cauchy-Schwarz Inequality)

(ii) ‖u+ v‖ ≤ ‖u‖+ ‖v‖. (Triangle Inequality)

(iii) 2(‖u‖2 + ‖v‖2) = ‖u+ v‖2 + ‖u− v‖2. (Parallelogram Law)

Proof. (i) Let α ∈ F, |α| = 1 be such that α〈u, v〉 = |〈u, v〉|. For every t ∈ R,

0 ≤ ‖tαu+ v‖2 = ‖u‖2t2 + 2|〈u, v〉|t+ ‖v‖2,

which means that the polynomial on the RHS either has one or has no real root, thus

(2|〈u, v〉|)2 − 4‖u‖2‖v‖2 ≤ 0 ⇐⇒ |〈u, v〉| ≤ ‖u‖‖v‖.

(ii) By direct expansion,

‖u+ v‖ ≤ ‖u‖+ ‖v‖ ⇐⇒ ‖u+ v‖2 ≤ (‖u‖+ ‖v‖)2 ⇐⇒ Re〈u, v〉 ≤ ‖u‖‖v‖,

the latter one is true by (i).

(iii) It follows similarly from direct expansion. �

Remark. It is Parallelogram Law that’s found to be also sufficient for a norm being induced
by an inner product. Namely, we have the following result:

A norm ‖ · ‖ on a vector space X is induced by an inner product if and only if
‖ · ‖ satisfies the parallelogram law.

The proof will not be presented here as it is not in the scope of this text. This is
a standard result usually proved in analysis course which studies inner product spaces and,
in particular, Hilbert spaces. The readers are left to learn the proof in these courses.
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An inner product space is better than a vector space since many geometrical concept
can be abstracted.

Definition 5.1.14. Let (V , 〈·, ·〉) be an inner product space.

(i) Let u, v ∈ V . u, v are said to be orthogonal if 〈u, v〉 = 0, denoted by u ⊥ v.

(ii) {v1, . . . , vn} in V is said to be orthogonal if

〈vi, vj〉 = 0 whenever i 6= j.

(iii) {v1, . . . , vn} in V is said to be orthonormal if it is orthogonal and ‖vi‖ = 1 for
i = 1, 2, . . . ,n.

Note that by definition, orthogonal set is allowed to contain a zero element, while
orthonormal set does not.

Theorem 5.1.15. Let {v1, v2, . . . , vn} ⊆ V be an orthogonal set of nonzero vectors of
(V , 〈·, ·〉), then v1, v2, . . . , vn are linearly independent.

Proof. Let ai ∈ R be such that

a1v1 + a2v2 + · · ·+ anvn = 0,

we do inner product on both sides with ai to get

〈a1v1 + a2v2 + · · ·+ anvn, ai〉 = 0,

hence ai‖vi‖2 = 0. As vi 6= 0, ‖vi‖ 6= 0, thus ai = 0, for i = 1, 2, . . . ,n. �

Example 5.1.16 (Some Orthogonal Sets).

(i) The standard basis of Fn is orthonormal.

(ii) Define 〈·, ·〉 on Pn(R)|[−1,1] = {p|[−1,1] : p ∈ Pn(R)} by 〈p, q〉 =
∫ 1

−1 pq dx . The
Legendre polynomials on [−1, 1] are defined recursively by

p0 = 1, p1 = x and (n + 1)pn+1 = (2n + 1)xpn − npn−1 for n ≥ 1.

pk ’s are mutually orthogonal. Indeed, they satisfy∫ 1

−1
pm(x)pn(x) dx =

2

2n + 1
δmn.

Hence by Theorem 5.1.15, p0, . . . , pn forms a basis of Pn(R)|[−1,1] since dimPn(R)|[−1,1] =
n + 1.

We give the first few Legendre polynomials here:

P0(x) = 1

P1(x) = x P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x) P4(x) =

1

8
(35x4 − 30x2 + 3)
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P5(x) =
1

8
(63x5 − 70x3 + 15x) P6(x) =

1

16
(231x6 − 315x4 + 105x2 − 5).

They arise naturally in physics (when solving PDE) and come to be the solution of the 2nd
order ODE:

d

dx

(
(1− x2)

dy

dx

)
+ n(n+ 1)y = 0. (5.1.17)

Define the linear map

(Qf)(x) =
d

dx

(
(1− x2)

df

dx
(x)

)
,

solving (5.1.17) becomes an eigenvalue problem Qy = −n(n + 1)y. The general study of
the orthogonality among solutions corresponding to different eigenvalues is contained in
Sturm-Liouville theory. One may google it for detail, this is important for physics students.

Orthonormal set provides us a natural decomposition of every vectors in an inner
product space. Also with the help of orthonormal basis, all inner products look very similar
to standard inner product on Fn.

Theorem 5.1.18. LetW be a subspace of (V , 〈·, ·〉) with orthonormal basis α = {w1, . . . ,wk}.

(i) For every w ∈W , w =
∑k
i=1〈w,wi〉wi.

(ii) For x, y ∈W , 〈x, y〉 = 〈[x]α, [y]α〉.

Proof. (i) Suppose w = a1w1 + · · ·+ akwk, then

〈w,wi〉 = 〈a1w1 + · · ·+ akwk,wi〉 = ai‖wi‖2 = ai.

(ii) Let x =
∑k
i=1 xiwi and y =

∑k
i=1 yiwi, then

〈x, y〉 =

〈
k∑
i=1

xiwi,

k∑
j=1

yjwj

〉
=

k∑
i=1

k∑
j=1

xiyj〈wi,wj〉 =

k∑
i=1

xiyi = 〈[x]α, [y]α〉. �

5.2 Orthogonal Complement

Definition 5.2.1. In (V , 〈·, ·〉), the set

S⊥ := {v ∈ V : 〈v, s〉 = 0, for all s ∈ S}

is called the orthogonal complement of S in V .

It will be seen very soon that orthogonal complement provides us a simple way to
decompose a vector space into direct sum of subspaces. Before that we check that orthogonal
complement always has a good linear algebraic structure.

Theorem 5.2.2. In (V , 〈·, ·〉), let S be a subset of V , then S⊥ is a subspace of V ,

Proof. It is a routine verification of (i), (ii) and (iii) in Definition 2.4.1. �
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In Theorem 5.2.2 we only require S be a set, not a subspace. If we also require S
be a subspace, then we get more interesting properties:

Theorem 5.2.3 (Properties of Orthogonal Complement).

(i) Let S ⊆ V and 0 ∈ S, we have

S ∩ S⊥ = {0}.

(ii) Let W1,W2 be subspaces of V , then

(W1 +W2)⊥ = W⊥1 ∩W⊥2 .

Proof. (i) Let x ∈ S ∩ S⊥, then 〈x, s〉 for every s ∈ S, take s = x, we have ‖x‖ = 0, so
x = 0.

(ii) Let x ∈ (W1 + W2)⊥, we try to show x ∈ W⊥1 ∩W⊥2 . Since 〈x, v〉 = 0 for
all v ∈W1 +W2, 〈x, v〉 = 0 for all v ∈W1 and also all v ∈W2, so x ∈W⊥1 ∩W⊥2 , thus

(W1 +W2)⊥ ⊆W⊥1 ∩W⊥2 .

Conversely, let x ∈W⊥1 ∩W⊥2 , then for every w1 ∈W1 and every w2 ∈W2,

〈x,w1〉, 〈x,w2〉 = 0 =⇒ 〈x,w1 + w2〉 = 0,

so 〈x,w〉 = 0 for all w ∈W1 +W2, thus x ∈ (W1 +W2)⊥, so

W⊥1 ∩W⊥2 ⊆ (W1 +W2)⊥. �

5.3 Gram-Schmidt Orthogonalization Process

Let’s visualize our “orthogonalization” in R3. Let’s consider a set of three vectors {P ,Q,R}
(drawn below) that are linearly independent and we try to “orthogonalize” them.

y

x

z

Q

P

R

y

x

z

Q

v1

R

v2

v3orthogonalize to

Step 1. We fix a vector v1 = P as our “starting element”.

Step 2. We search for a vector in span{v1,Q} that is orthogonal to v1. To do this,
we do “projection” of Q onto span{v1} to get Pspan{v1}Q, then we let

v2 := Q− Pspan{v1}Q = Q− (Q · v1)v1

‖v1‖2
.
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Step 3. We search for an element in span{v1, v2,R} that is orthogonal to both v1

and v2. For this, we project R onto span{v1, v2} to get Pspan{v1,v2}R, then we let

v3 := R− Pspan{v1,v2}R = R−
(

(R · v1)v1

‖v1‖2
+

(R · v2)v2

‖v2‖2

)
.

The process above can be generalized to every n dimensional subspace W of a vector
space V provided a basis of W is already known.

Theorem 5.3.1 (Gram-Schmidt Process). LetW be a finite dimensional subspace of (V , 〈·, ·〉).
Given a basis {u1, . . . un} of W , v1, v2, . . . , vn constructed below

v1 = u1

v2 = u2 −
〈u2, v1〉
‖v1‖2

v1

v3 = u3 −
〈u3, v1〉
‖v1‖2

v1 −
〈u3, v2〉
‖v2‖2

v2

...

vp = up −
∑
i<p

〈up, vi〉
‖vi‖2

vi

(5.3.2)

are mutually orthogonal, p = 2, 3, . . . ,n, hence by Theorem 5.1.15, {v1, . . . , vn} is an
orthogonal basis of W .

Proof. The orthogonality is just a routine verification, we leave the proof as an exer-
cise. �

Remark. Using (5.3.2) we can reduce any linearly independent set of vectors into an or-
thogonal set which spans the same space. Dividing each resulting vector by its norm (this
process is called normalization), we get an orthonormal set.

Gram-Schmidt processes provides us with a partially constructive proof to the fol-
lowing important result:

Theorem 5.3.3 (Existence of Orthonormal Basis). Every finite dimensional inner product
space V admits an orthonormal basis.

Proof. By Theorem 2.6.8 V has a basis, by (5.3.2) and normalization, we can reduce
this basis into an orthonormal set. �

5.4 Orthogonal Projection

5.4.1 General Definition

To make sense of the upcoming definition one needs to know that whenever T : V → V
satisfies T 2 = T ,

V = kerT ⊕ rangeT . (5.4.1)
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This is because for every v ∈ V ,

v = (v − Tv) + Tv,

while v − Tv ∈ kerT and Tv ∈ rangeT . Moreover, if v ∈ kerT ∩ rangeT , one easily shows
that v = 0, so the sum is actually a direct sum. In conclusion, every map T : V → V that
satisfies T 2 = T generates a direct sum decomposition of V .

Furthermore, suppose we can give V an inner product, we also study when the
direct sum generated by such a map (satisfying T 2 = T ) will be an orthogonal sum, namely,
when will kerT ⊥ rangeT .

Definition 5.4.2. Let V be a vector space over F and T : V → V a linear map.

(i) We say that T is a projection if T 2 = T .

(ii) If V = (V , 〈·, ·〉), we say that T is an orthogonal projection if T is a projection
and the direct sum

V = kerT ⊕ rangeT

is orthogonal.

Example 5.4.3. Define T : Mn×n(R)→ Mn×n(R) by

T (A) =
A + AT

2
, ∀A ∈ Mn×n(R).

T is a projection. Indeed, for each A ∈ Mn×n(R),

T 2(A) = T

(
A + AT

2

)
=

A+AT

2 + AT+A
2

2
=

A + AT

2
= T (A),

as desired. By the discussion preceding Definition 5.4.2 we have Mn×n(R) = ker T⊕range T .
Denote Symn(R) = {symmetric matrices} and Ssymn(R) = {skew-symmetric matrices},

Mn×n(R) = range T ⊕ ker T = Symn(R)⊕ Ssymn(R).

Suppose we turn Mn×n(R) into an inner product space by defining 〈A, B〉 as in Problem 5.1
for A, B ∈ Mn×n(R), then the direct sum is easily shown to be orthogonal. Hence

T : (Mn×n(R), 〈·, ·〉)→ (Symn(R), 〈·, ·〉)

is an orthogonal projection.

5.4.2 Orthogonal Projection onto Finite Dimensional Subspaces

In the rest we mainly focus on the orthogonal projection defined in the following definition.
Note that we just require W be finite dimensional, while V is as “big” as we want.

Definition 5.4.4. Let W be finite dimensional subspace of V and {w1, . . . ,wk} its orthog-
onal basis, then we denote the linear map PW : V →W defined by

PW v =

k∑
i=1

〈v,wi〉wi
‖wi‖2

, for each v ∈ V . (5.4.5)
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We will prove that the map PW is well-defined. Namely, the vector PW v is inde-
pendent of the choices of orthogonal basis of W , therefore it makes sense to speak of PW
without specifying the orthogonal basis of W we use. We will state this result precisely in
Corollary 5.4.8.

Remark. The reason to study orthogonal projection can be seen in Theorem 5.4.13. Namely,
orthogonal projection gives us an explicit construction of a solution to optimization problems
in linear algebra setting.

Remark. PW defined in Definition 5.4.4 is usually called

the orthogonal projection onto W .

The reason for using each underlined term will be clear after we go through Theorem 5.4.6,
Corollary 5.4.7 and Corollary 5.4.8.

For Theorem 5.4.6 and Corollary 5.4.7 let’s suppose PW is defined by fixing a
choice of an orthogonal basis {w1,w2, . . . ,wk} of W .

Theorem 5.4.6. Let W be a finite dimensional subspace of (V , 〈·, ·〉), then:

(i) P 2
W = PW . (Projection)

(ii) 〈PWu, v〉 = 〈u,PW v〉. (Self-Adjoint)

(iii) PW
∣∣
W

= IW .

(iv) rangePW = W and kerPW = W⊥.

Proof. (i) Indeed,

P 2
W v = PW

(
k∑
i=1

〈v,wi〉wi
‖wi‖2

)
=

k∑
i=1

〈v,wi〉
‖wi‖2

PW (wi)

=

k∑
i=1

k∑
j=1

〈v,wi〉
‖wi‖2

〈wi,wj〉wj
‖wj‖2

=

k∑
i=1

〈v,wi〉wi
‖wi‖2

= PW v,

thus PW is a projection.

(ii) By direct expansion,

〈PWu, v〉 =

〈
k∑
i=1

〈u,wi〉wi
‖wi‖2

, v

〉
=

k∑
i=1

〈u,wi〉〈wi, v〉
‖wi‖2

(∗)
===

k∑
i=1

〈u, 〈v,wi〉wi〉
‖wi‖2

= 〈u,PW v〉.

Here (∗) holds since 〈u,wi〉〈wi, v〉 = 〈u,wi〉〈v,wi〉 = 〈u, 〈v,wi〉wi〉.

(iii) suppose x ∈W , then there are a1, . . . , ak ∈ F such that

x = a1w1 + · · ·+ akwk =⇒ 〈x,wi〉 = ai‖wi‖2 =⇒ ai =
〈x,wi〉
‖wi‖2

,

thus

x =

k∑
i=1

aiwi =

k∑
i=1

〈x,wi〉
‖wi‖2

wi = PWx,
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as desired.

(iv) rangePW = W since rangePW ⊆ W and PW
∣∣
W

= IW . For the next
equality,

x ∈ kerPW ⇐⇒ PWx = 0 ⇐⇒ 〈PWx,w〉 = 0,∀w ∈W
⇐⇒ 〈x,PWw = w〉 = 0,∀w ∈W ⇐⇒ x ∈W⊥. �

Now we justify the name that PW is indeed an orthogonal projection onto W .

Corollary 5.4.7. Let W be a finite dimensional subspace of (V , 〈·, ·〉), then PW defined in
(5.4.5) is an orthogonal projection.

Proof. By (i) of Theorem 5.4.6 PW is a projection. By (ii) of Theorem 5.4.6 we have
kerPW ⊥ rangePW , it is because for u ∈ kerPW and PW v ∈ rangePW ,

〈u, v〉 = 〈u,PW v〉 = 〈PWu, v〉 = 〈0, v〉 = 0. �

It is a natural to ask what happens if the orthogonal projections are constructed by
two different orthogonal bases, will they be different? The answer is NO:

Corollary 5.4.8. Let W be a finite dimensional subspace of (V , 〈·, ·〉), then PW defined in
Definition 5.4.4 is well-defined. That is, given two orthogonal bases {w1, . . . ,wk}, {w′1, . . . .w′k}
of W , we have

k∑
i=1

〈v,wi〉wi
‖wi‖2

=

k∑
i=1

〈v,w′i〉w′i
‖w′i‖2

,

for all v ∈ V .

Proof. By (5.4.5) we get PW by using the orthogonal basis {w1, . . . ,wk}. Replacing
wi’s in (5.4.5) by w′i’s, we get another orthogonal projection P ′W . Now Theorem 5.4.6
can be applied to both PW and P ′W , in particular, by (iv) of Theorem 5.4.6 for every
v ∈ V ,

v = PW v︸ ︷︷ ︸
∈W

+ (I − PW )v︸ ︷︷ ︸
∈kerPW=W⊥

= P ′W v︸ ︷︷ ︸
∈W

+ (I − P ′W )v︸ ︷︷ ︸
∈kerP ′W=W⊥

.

However, by (i) of Theorem 5.2.3, W ∩W⊥ = {0}, and also by (ii) of Proposition 2.4.10
the summing way is unique, i.e., PW v = P ′W v. �

(i) and (iv) of Theorem 5.4.6 directly gives the decomposition:

Corollary 5.4.9. If W is a finite dimensional subspace of V , then

V = W ⊕W⊥ and (W⊥)⊥ = W .

Usually we say that the direct sum W ⊕W⊥ is orthogonal since for every u ∈ W
and v ∈W⊥, 〈u, v〉 = 0.
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Proof. Let α be an orthogonal basis of W and use it to construct PW : V → W , the
orthogonal projection onto W . Then (i) of Theorem 5.4.6 says that PW is a projection,
thus by (5.4.1),

V = rangePW ⊕ kerPW ,

then by (iv) of Theorem 5.4.6, V = W ⊕W⊥.

It remains to check (W⊥)⊥ = W , it follows from definition that W ⊆ (W⊥)⊥.
Conversely, let x ∈ (W⊥)⊥, then there are u ∈W , v ∈W⊥ such that x = u+ v, then

v = x− u ∈ (W⊥)⊥ +W = (W⊥)⊥ =⇒ v ∈ (W⊥)⊥ ∩W⊥,

therefore v = 0 by (i) of Theorem 5.2.3 and thus x = u ∈W , so (W⊥)⊥ ⊆W . �

In the following example we use A∗ to mean (A)T , i.e., it is the conjugate trans-
pose of A. For example, [ i 1

0 1 ] ∗ =
[−i 0

1 1

]
. It shares almost all features with transpose. For

example, under standard inner product in Fn, 〈A∗x, y〉 = 〈x,Ay〉. We also use ∗ to express
the standard inner product on Fn: 〈x, y〉 = y∗x. When F = R, y∗x = yTx.

Example 5.4.10. Let A ∈ Mm×n(F), and Fm,Fn be given standard inner products. Conjugate
transpose and orthogonal complement are related by the following identities:

(i) (Col A)⊥ = Nul A∗

(ii) (Nul A)⊥ = Col A∗

(iii) (Col A∗)⊥ = Nul A

(iv) (Nul A∗)⊥ = Col A

To show these, we just need to prove (i) and the rest will then follow from this and Corol-
lary 5.4.9. Now

x ∈ Nul A∗ ⇐⇒ A∗x = 0 ⇐⇒ 〈A∗x , v〉 = 0,∀v ∈ Fn

⇐⇒ 〈x , Av〉 = 0,∀v ∈ Fn ⇐⇒ x ∈ (Col A)⊥,

that said, Nul AT = (Col A)⊥.

Remark. A simple application of Example 5.4.10 gives

A is onto iff ColA = Fm iff (ColA)⊥ = (Fm)⊥ iff NulAT = {0} iff AT is 1-1.

The result (W⊥)⊥ = W in Corollary 5.4.9 can be false if W is infinite di-
mensional. In general it is easy to prove W ⊆ (W⊥)⊥. In analysis we further know

(W⊥)⊥ = W , where · denotes the closure with respect to the norm induced by the inner
product. We give a specific counter example below which requires a result in real analysis.

Example 5.4.11. Let P = P(R)|[0,1] = {p|[0,1] : p ∈ P(R)}, then P is a subspace of the inner

product space C ([0, 1],R) with the inner product defined by 〈f , g〉 =
∫ 1

−1 f g dx . Let · ⊥
denote the orthogonal complement in C ([0, 1],R), we try to prove that

(P⊥)⊥ = C ([0, 1],R).

By definition,

f ∈ (P⊥)⊥ ⇐⇒
∫ 1

0

fg dx = 0 for all g ∈ P⊥.
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What is P⊥? Let g ∈ P⊥, then∫ 1

0

gp dx = 0 for every polynomial p on [0, 1].

But g is continuous on [0, 1], by Weierstrass approximation Theorem in analysis there is a
sequence of polynomials {pn} such that pn → g uniformly on [0, 1], thus

0 =

∫ 1

0

gpn dx for all n =⇒ 0 = lim
n→∞

∫ 1

0

gpn dx =

∫ 1

0

g2 dx ,

hence by continuity g = 0 on [0, 1].

The logic says that P⊥ ⊆ {0}, thus P⊥ = {0}. Therefore

(P⊥)⊥ = ({0})⊥ = C ([0, 1],R).

Example 5.4.12. Let v = (1, 2, 1)T ∈ R3, and W = span{(1, 0, 1)T , (1, 1, 0)T}, let’s compute
PW v .

Step 1 (Find an orthogonal basis of W ). Let

u1 = (1, 0, 1)T and u2 = (1, 1, 0)T .

We use the Gram-Schmidt process (5.3.2),

v1 = u1 =

1
0
1

 , ‖v1‖2 = 2

next,

v2 = u2 −
〈u2, v1〉
‖v1‖2

v1 =

1
1
0

− (1, 1, 0)T · (1, 0, 1)T

2

1
0
1

 =

 1/2
1
−1/2

 , ‖v2‖2 =
3

2
.

Step 2 (Project v to W ). We apply the formula of PW in (5.4.5) to get

PW v =
∑ 〈v , vi 〉
‖vi‖2

vi =

[
1
2
1

]
·
[
1
0
1

]
2

1
0
1

+

[
1
2
1

]
·
[

1/2
1
−1/2

]
3/2

 1/2
1
−1/2

 =
1

3

5
4
1

 .

5.4.3 Application of Orthogonal Projection to Obtain “Minimizer”

Theorem 5.4.13 explains why we spend time on orthogonal projection. The map PW : V →
W itself has many well properties explained in Theorem 5.4.6. Apart from that, certain
minimization problems, possibly in calculus, can be translated to linear algebra setting, and
the next theorem shows us linear algebra can settle the problem quickly.

Theorem 5.4.13. Let W be a finite dimensional subspace of V , then PW v is an element
such that

‖v − PW v‖ ≤ ‖v − w‖ for all w ∈W .

Remark. In Theorem 5.4.13, PW v ∈W minimizes the distance ‖v−w‖ for w ∈W . We will
show that such minimizer is unique in Theorem 5.4.14.
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Proof. Let v ∈ V and w ∈W , then

‖v−w‖2 = ‖(v−PW v) + (PW v−w)‖2 (∗)
=== ‖v−PW v‖2 + ‖PW v−w‖2 ≥ ‖v−PW v‖2.

Here (∗) holds because v − PW v ∈ kerPW = W⊥, PW v − w ∈W and W ⊥W⊥. �

Theorem 5.4.13 has a very good geometric interpretation:

y

x

z

v

PW v

W

The picture also suggests that when w0 is a minimizer, i.e., ‖v−w0‖ ≤ ‖v−w‖ for
all w ∈W , then (v−w0) ⊥ w for every w ∈W . Let’s turn this geometrically straightforward
observation into a rigorous proof.

Theorem 5.4.14 (Variational Principle). LetW be a finite dimensional subspace of (V , 〈·, ·〉).

(i) w0 ∈W minimizes the distance from v to W :

‖v − w‖, w ∈W

if and only if v − w0 ∈W⊥.

(ii) The minimizer above is unique.

Remark. The existence of w0 ∈W is guaranteed by Theorem 5.4.13.

Proof. (i) (⇒) We fix a w ∈W and define a function f : R→ R as follows:

f(t) = ‖v − w0 + tw‖2 = ‖v − w0‖2 + t2‖w‖2 + 2tRe〈v − w0,w〉,

the second equality follows from Example 5.1.12. Now f(t) ≥ f(0) for every t ∈ R,
f attains a local extreme at 0, so f ′(0) = 0. Since f ′(t) = 2t‖w‖2 + 2 Re〈v − w0,w〉,
f ′(0) = 0 becomes

Re〈v − w0,w〉 = 0.

When F = R we are done. When F = C, we can replace w by iw (since iw ∈ W ) to
conclude

Im〈v − w0,w〉 = 0,

so 〈v − w0,w〉 = 0. Now this is true for each fixed w ∈W , we conclude v − w0 ∈W⊥.

(⇐) Assume v − w0 ∈W⊥, then for every w ∈W ,

‖v − w‖2 = ‖(v − w0) + (w0 − w)‖2 = ‖v − w0‖2 + ‖w0 − w‖2 ≥ ‖v − w0‖2,

therefore w0 minimizes the distance from v to W .

(ii) Let w0 be defined as in (i) and let w′ ∈W be such that ‖v−w′‖ ≤ ‖v−w‖
for every w ∈W , then v − w′ ∈W⊥ by (i). Now both v − w0, v − w′ ∈W⊥, hence

w0 − w′ = (v − w′)− (v − w0) ∈W ∩W⊥ = {0}. �
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Example 5.4.15. Let y = (7, 4, 7)T ∈ R3 and let V be a subspace of R3 spanned by

u1 = (1, 2, 3)T and u2 = (4, 5, 6)T .

Let’s find the distance from y to V in 4 different ways:

(a) Find a u ∈ V that is closest to y by orthogonal projection.

(b) Find a u ∈ V that is closest to y by constructing a normal equation.

(c) Find a u ∈ V that is closest to y by the property of minimizer given in Theorem 5.4.14.

(d) Construct a matrix P ∈ M3×3(R) such that

‖x − Px‖ ≤ ‖x − v‖

for all x ∈ R3 and v ∈ V . What is Py?

(a) By Gram-Schmidt process we orthogonalize u1 and u2 to

v1 =

1
2
3

 and v2 =
1

7

12
3
−6

 .

Where ‖v1‖2 = 14 and ‖v2‖2 = 27
7 . If we use this orthogonal basis of V to construct the

orthogonal projection: For each x ∈ R3,

Px =
〈x , v1〉v1
‖v1‖2

+
〈x , v2〉v2
‖v2‖2

. (5.4.16)

The u ∈ V we need is Py ∈ V , since ‖y − Py‖ is least possible among {‖y − v‖ : v ∈ V }.
Now

u = Py =
〈y , v1〉v1
‖v1‖2

+
〈y , v2〉v2
‖v2‖2

=

[
7
4
7

]
·
[
1
2
3

]
14

1
2
3

+

1
7

[
7
4
7

]
·
[

12
3
−6

]
27
7

1

7

12
3
−6

 =

6
6
6

 .

(b) Let’s construct A =
[
1 4
2 5
3 6

]
, then Col A = V . The system Ax = y has no

solution, but the best possible that we can do is to choose an element a ∈ Col A such that
a is closest to y . To do this, consider

ATAx = AT y , (5.4.17)

then the solution x0 to this system will satisfy ‖y − v‖ ≥ ‖y −Ax0‖, for all v ∈ Col A. Thus
what we want is u = Ax0.

Let’s try to solve (5.4.17), a direct computation shows that (5.4.17) is the same as[
14 32
32 77

]
x =

[
36
90

]
,

a direct calculation yields x =
[−2

2

]
. Hence u = Ax =

[
1 4
2 5
3 6

] [−2
2

]
=
[
6
6
6

]
.

(c) An element a ∈ Col A minimizes the distance {‖y − v‖ : v ∈ Col A} if and only
if

y − a ⊥ v , ∀v ∈ Col A.(†)

(†) Essentially this is the idea that we use to construct normal equation in (b) since y − a ∈ (ColA)⊥ iff
AT (y − a) = 0). But this “orthogonality method” also works for minimization problem that is not in
Rn. In particular, it works for some finite dimensional function spaces in which the language of matrices
is not applicable, say the collection of all polynomials with degree at most n.
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It is worth illustrating how simple the orthogonality method is. Let a = x
[
1
2
3

]
+ y

[
4
5
6

]
that

minimizes the distance, then〈
y − a,

1
2
3

〉 =

〈
y − a,

4
5
6

〉 = 0 =⇒

{
14x + 32y = 36,

32x + 77y = 90,

thus x = −2 and y = 2, so u =
[
6
6
6

]
.

(d) The projection matrix is given by P = A(ATA)−1AT = 1
6

[
5 2 −1
2 2 2
−1 2 5

]
, so u =

Py =
[
6
6
6

]
. We will explain the formula in detail in Section 5.5.

Of course the computation of P above is very tedious.

Given an orthonormal basis, why don’t we just find the standard matrix of the
orthogonal projection constructed by this basis? Recall the formula in (5.4.16), we have (on
simplification)

P(x) =
x ·
[
1
2
3

]
14

1
2
3

+
x ·
[

4
1
−2

]
21

 4
1
−2

 ,

so we get

Pe1 =
1

14

1
2
3

+
4

21

 4
1
−2

 =
1

6

 5
2
−1


Pe2 =

2

14

1
2
3

+
1

21

 4
1
−2

 =
1

6

2
2
2


Pe3 =

3

14

1
2
3

+
(−2)

21

 4
1
−2

 =
1

6

−1
2
5


=⇒ [P] =

1

6

 5 2 −1
2 2 2
−1 2 5

 , (5.4.18)

where the computation is much simpler!

Remark. If v1, v2 ∈ R3 given are already orthonormal at the beginning, then the projection
matrix is extremely easy to compute. Namely, let A = [v1 v2], then

P = A(ATA)−1AT = AAT .

Remark. The projection matrix in (5.4.18) is symmetric. Indeed the standard matrix of
any orthogonal projection must be symmetric, see Problem 5.10 for detail.

Example 5.4.19. We try to find p ∈ P3(R) such that p(0) = 0, p′(0) = 0 and∫ 1

0

(2 + 3x − p(x))2 dx

is as small as possible. Note that it is the same as finding p0 in the vector space

W = {p ∈ P3(R) : p(0) = p′(0) = 0} = {a3x3 + a2x2 : a3, a2 ∈ R}

such that
{‖2 + 3x − p‖ : p ∈W }
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is minimized by p0, where the norm is induced by the inner product 〈f , g〉 =
∫ 1

0
f g dx . We

can find p0 by two methods.

Method 1 (Projection method).

Step 1 (Find an orthogonal basis in W ). It is clear {x2, x3} is a basis of W .
We use Gram-Schmidt process (5.3.2) to find an orthogonal basis of W .

f1 = x2, ‖f1‖2 =

∫ 1

0

(x2)2 dx =
1

5

f2 = x3 − 〈x
3, f1〉
‖f1‖2

f1 = x3 − 〈x
3, x2〉
1
5

x2 = x3 − 5

6
x2, ‖f2‖2 =

1

252
.

Step 2 (Compute projection). Now the minimizing element is

p0 = PW (2 + 3x) =
∑ 〈2 + 3x , fi 〉

‖fi‖2
fi

=
〈2 + 3x , x2〉

1
5

x2 +
〈2 + 3x , x3 − 5

6x2〉
1

252

(
x3 − 5

6
x2

)
= −203

10
x3 + 24x2.

Method 2 (Orthogonality method). In (i) of Theorem 5.4.14 we have shown
that p0 is an minimizing element if and only if 2 + 3x − p0 ∈ W⊥. Let p0 = a3x3 + a2x2,
then: {

〈2 + 3x − (a3x3 + a2x2), x2〉 = 0

〈2 + 3x − (a3x3 + a2x2), x3〉 = 0
=⇒


a3
6

+
a2
5

=
17

12
a3
7

+
a2
6

=
11

10
By solving it, we have a2 = 24 and a3 = −203/10.

5.5 Least Square Approximation

Let A = [a1 · · · an] ∈Mm×n(R) with a1, a2, . . . , an ∈ Rm. Let b ∈ Rm, although

Ax = b

may not have solution, generally we can still try to find out a0 ∈ ColA such that ‖b − a0‖
is minimized. To find such a0, we try to minimize

‖b− a‖, a ∈ ColA,

the minimizing element a0 ∈ ColA exists by Theorem 5.4.13, also a0 is such an element if
and only if b−a0 ∈ (ColA)⊥ by (i) of Theorem 5.4.14, hence a0 is a minimizer if and only if

b− a0 ⊥ a1, a2, . . . , an,

or equivalently,
AT (b− a0) = 0.

Writing a0 = Ax0 for some x0 ∈ Rn, we obtain the normal equation (associated to the
vector equation Ax = b)

(ATA)x0 = AT b(‡).

(‡) Alternatively, we can obtain this equation by multivaribale calculus. Let A = [a1 · · · an] and

define f(x) = ‖b−Ax‖2, one can show that fxk (x) = −2aTk b−
∑n
j=1 xja

T
j ak, and hence

 fx1 (x)

...
fxn (x)

 =

−2(AT b−ATAx). So we get the normal equation when ∇f(x) = 0.
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WLOG we may assume the columns of A are linearly independent(§), in this case
A is of full rank and necessarily m ≥ n. Now ATA is an n × n matrix and rankATA =
rankA = n (by Problem 2.21), hence ATA is invertible, thus

x0 = (ATA)−1AT b,

and the minimizer a0 is Ax0 = A(ATA)−1AT b. However, by Theorem 5.4.13, the orthogonal
projection of b ∈ Rm onto ColA is also a minimizer, and Theorem 5.4.14 guarantees the
uniqueness of such element, hence

PColAb = A(ATA)−1AT b.

We summarize it as a theorem.

Theorem 5.5.1. Let V be a proper subspace of Rn (i.e., V 6= Rn) and {v1, v2, . . . , vk} a
basis of V . Then the orthogonal projection onto V is given by

PV x = A(ATA)−1ATx,

where A = [v1 · · · vk].

5.6 Spectral Theorem

5.6.1 Linear Functional and Adjoint

Let V be a vector space, a map ϕ ∈ L(V ,F) is called a linear functional. L(X,F) is
also called the dual space of V , denoted by V ∗. Dual space is an important concept in
analysis, which provides us the notion of weak convergence, a weaker mode of convergence
than the convergence in norm (which recovers “compactness” that starts to be lost in infinite
dimensional vector spaces).

For finite dimensional vector space, every element in V ∗ can be easily understood.

Theorem 5.6.1 (Riesz Representation). Let (V , 〈·, ·〉) be a finite dimensional inner product
space, for every ϕ ∈ V ∗ = L(V ,F), there is a unique w ∈ V such that ϕ(·) = 〈·,w〉.

Remark. The theorem actually holds for Hilbert space, a larger class of vector spaces than
finite dimensional spaces, which we will not need in the rest of this text. Also there are
several versions of Riesz representation theorem, mostly in real analysis, that are totally
different from the statement we have, but they indeed bear the same last name.

Proof. We establish existence first. For this, let {w1, . . . ,wk} be an orthonormal basis
of V . Then for every linear functional ϕ : V → F and for every v ∈ V , since

v =

k∑
i=1

〈v,wi〉wi,

we have

ϕ(v) = ϕ

(
k∑
i=1

〈v,wi〉wi

)
=

k∑
i=1

〈v,wi〉ϕ(wi) =

〈
v,

k∑
i=1

ϕ(wi)wi

〉
= 〈v,w〉,

(§) Otherwise we abandon finitely many of them, replace A by A′ = [an1 · · · ank ], the problem is not
changed.
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for some w ∈ V with

w =

k∑
i=1

ϕ(wi)wi. (5.6.2)

i.e., there is w ∈ V such that ϕ(·) = 〈·,w〉. Moreover, such w must be unique since
whenever 〈·,w〉 = 〈·,w′〉 on V ,

〈v,w − w′〉 = 0, ∀v ∈ V =⇒ ‖w − w′‖ = 0 =⇒ w = w′. �

Note that the proof of Theorem 5.6.1 provides us a explicit construction of the “w”
using the formula (5.6.2).

Now we introduce the concept of adjoint operator. Given a linear map T : V → V
we can define a ϕ ∈ V ∗ by ϕ(·) = 〈T (·),u〉. Then there is a unique w ∈ V such that
ϕ(·) = 〈·,w〉. We note that this w ∈ V corresponds only to T and u, we denote this w by
T ∗(u). Therefore, for every v ∈ V and every (fixed) u ∈ V ,

〈Tv,u〉 = 〈v,T ∗u〉. (5.6.3)

Proposition 5.6.4. T ∗ : V → V defined above is linear.

Proof. By definition, fix u,w ∈ V , for every α ∈ F and v ∈ V , we have

〈v,T ∗(u+ αw)〉 = 〈Tv,u+ αw〉
= 〈Tv,u〉+ α〈Tv,w〉
= 〈v,T ∗u〉+ 〈v,αT ∗w〉
= 〈v,T ∗u+ αT ∗w〉.

Therefore 〈v,T ∗(u+ αw)− (T ∗u+ αT ∗w)〉 = 0 for every v ∈ V , and hence

T ∗(u+ αw) = T ∗u+ αT ∗w. �

One can easily verify that the linear map from V to V that can satisfy (5.6.3) for
all u, v ∈ V is unique. Therefore we can define the following:

Definition 5.6.5. In an inner product space (V , 〈·, ·〉) the map T ∗ : V → V that corresponds
to T : V → V is called the adjoint of T . Namely, T ∗ : V → V is the unique linear map
such that

〈Tv,u〉 = 〈v,T ∗u〉, for all u, v ∈ V .

Taking adjoint is pretty much the same as taking transpose:

Proposition 5.6.6. Let (V , 〈·, ·〉) be an finite dimensional inner product space and S,T :
V → V linear. For c ∈ F:

(i) (T + cS)∗ = T ∗ + cS∗ (ii) (TS)∗ = S∗T ∗ (iii) T ∗∗ = T

Proof. (i) For every u, v ∈ V ,

〈u, (T + cS)∗v〉 = 〈Tu+ cSu, v〉 = 〈u,T ∗v〉+ 〈u, cS∗v〉 = 〈u, (T ∗ + cS∗)v〉.
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As this is true for every u ∈ V , we have (T + S)∗ = T ∗ + S∗.

(ii) It follows similarly.

(iii) We take complex conjugate on both sides of 〈Tv,u〉 = 〈v,T ∗u〉 to get
〈u,Tv〉 = 〈T ∗u, v〉, therefore for every u, v ∈ V ,

〈u,Tv〉 = 〈T ∗u, v〉 = 〈u,T ∗∗v〉. �

The main property that we need for adjoint operator is (5.6.3). Bearing this property
in mind, we go through some computational examples:

Example 5.6.7. Let A ∈ Mn×n(F), what is L∗A? Let x , y ∈ Fn, then

〈x , L∗Ay〉 = 〈LAx , y〉 = 〈Ax , y〉 = 〈x , A∗y〉 = 〈x , LA∗y〉,

therefore L∗A = LA∗ . This shows that the use of the notation ∗ for adjoint operator is

consistent with conjugate transpose. Indeed adjoint and conjugate transpose are closely
related, we shall see this in Theorem 5.6.9.

Example 5.6.8. Consider the linear operator T : R3 → R3 given by

T (x , y , z)T = (4x + y , 5y , 6z)T .

What is T ∗ : R3 → R3? To find this, let x , y , z , a, b, c ∈ R, then

〈(x , y , z)T , T ∗(a, b, c)T 〉 = 〈T (x , y , z)T , (a, b, c)T 〉
= (4x + y)a + 5yb + 6zc

= x(4a) + y(a + 5b) + z(6c)

= 〈(x , y , z)T , (4a, a + 5b, 6c)T 〉.

Therefore T ∗(a, b, c)T = (4a, a + 5b, 6c)T .

The computation of T ∗ in general can be tedious, but this becomes very simple with
the help of orthonormal basis.

Theorem 5.6.9. Let (V , 〈·, ·〉) be a finite dimensional inner product space. For every or-
thonormal basis α, we have

[T ∗]α = [T ]∗α.

Proof. First of all, given an orthonormal basis α of V , by (ii) of Theorem 5.1.18 for
every u, v ∈ V ,

〈u, v〉 = 〈[u]α, [v]α〉.
Therefore for every x, y ∈ Fn, choose u, v ∈ V such that [u]α = x and [v]α = y, then

〈x, [T ∗]αy〉 = 〈[u]α, [T ∗]α[v]α〉
= 〈u,T ∗v〉
= 〈Tu, v〉
= 〈[T ]αx, y〉
= 〈x, [T ]∗αy〉.

(5.6.10)

As this is true for every x, y ∈ Fn, we are done. �
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Definition 5.6.11. Let (V , 〈·, ·〉) be a finite dimensional inner product space. A map T :
V → V is said to be self-adjoint if T ∗ = T .

We have seen that projection map PW : V →W onto a finite dimensional subspace
is a self-adjoint linear map. In fact these self-adjoint linear maps can all be obtained from
Hermitian matrices:

Theorem 5.6.12. In a finite dimensional inner product space (V , 〈·, ·〉), let T : V → V be
linear, the following are equivalent:

(i) T : V → V is self-adjoint

(ii) For every orthonormal basis α of V , [T ]∗α = [T ]α.

Proof. (i)⇒ (ii) is just a direct application of Theorem 5.6.9. For (ii)⇒ (i) we imitate
the computation in (5.6.10). �

For example, every symmetric matrix A ∈ Mn×n(R) naturally gives a self-adjoint
linear map from Rn to Rn because by Example 5.6.7,

L∗A = LA∗ = LAT = LA.

Every Hermitian matrix also gives a self-adjoint linear map from Cn to Cn due to the same
reason. Later we will prove the important result, Spectral Theorem 5.6.19, which asserts
that every self-adjoint linear map always has an orthonormal basis consisting of eigenvec-
tors, therefore every symmetric matrix and Hermitian matrix do have a basis consisting of
eigenvectors, i.e., they are diagonalizable. The development of this theorem usual starts
with the class of normal operators in the next section:

5.6.2 Normal Operators

We start with a brief introduction to normal operator on finite dimensional inner product
spaces. This serves as a transition to the proof of Spectral Theorem 5.6.19.

Definition 5.6.13. Let (V , 〈·, ·〉) be a finite dimensional inner product space. A linear oper-
ator T : V → V is said to be normal if

TT ∗ = T ∗T .

For example, self-adjoint operators and unitary operators are obviously normal. We
also define normal matrices due to the following result:

Proposition 5.6.14. Let A ∈Mn×n(F), the induced linear map LA is normal if and only if
AA∗ = A∗A.

Proof. This is simply because

LAL
∗
A = L∗ALA ⇐⇒ LALA∗ = LA∗LA ⇐⇒ AA∗ = A∗A.

Here we take matrix representation w.r.t. standard basis in the last ⇔. �
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Definition 5.6.15. A matrix A ∈Mn×n(F) is said to be normal if

AA∗ = A∗A.

The crucial property of normal operators that we frequently use is: They share the
same set of eigenvectors with their adjoint:

Theorem 5.6.16. Let (V , 〈·, ·〉) be a finite dimensional inner product space. If T is normal,
then for λ ∈ F and v ∈ V ,

Tv = λv ⇐⇒ T ∗v = λv.

In other words, T and T ∗ have slightly different eigenvalues and v is an eigenvector
of T if and only if v is an eigenvector of T ∗.

Proof. Suppose Tv = λv, to prove T ∗v = λv, we note that

T ∗v = λv ⇐⇒ 〈T ∗v − λv,T ∗v − λv〉 = 0

⇐⇒
[
〈T ∗v,T ∗v〉 − 〈λv,T ∗v〉

]
+
[
〈λv,λv〉 − 〈T ∗v,λv〉

]
= 0.

The last equality holds. Indeed, the first bracket vanishes because

〈λv,T ∗v〉 = 〈v,T ∗(λv)〉 = 〈v,T ∗Tv〉 = 〈v,TT ∗v〉 = 〈T ∗v,T ∗v〉.

Likewise the second bracket vanishes because

〈λv,λv〉 = 〈v,λ(λv)〉 = 〈v,λTv〉 = 〈T ∗v,λv〉. �

We end this section with the basic properties of eigenvalues and eigenvectors of a
self-adjoint operators.

Theorem 5.6.17. Let (V , 〈·, ·〉) be a finite dimensional inner product space. If T is self-
adjoint, then:

(i) All eigenvalues of T are real.

(ii) Eigenvectors corresponding to different eigenvalues of T are orthogonal.

Proof. (i) Let λ ∈ F and v ∈ V be nonzero, by Theorem 5.6.16 we have

λv = Tv
self-adjoint

========= T ∗v = λv,

therefore (λ− λ)v = 0. As v 6= 0, λ− λ = 0.

(ii) Let u, v ∈ V be nonzero and λ1,λ2 ∈ F be such that Tu = λ1u,Tv = λ2v
and λ1 6= λ2. By (i) all eigenvalues are real, therefore λi ∈ R, i = 1, 2, and hence

λ1〈u, v〉 = 〈λ1u, v〉 = 〈Tu, v〉 self-adjoint
========= 〈u,Tv〉 = 〈u,λ2v〉 = λ2〈u, v〉,

thus (λ1 − λ2)〈u, v〉 = 0. Since λ1 6= λ2, necessarily 〈u, v〉 = 0. �
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5.6.3 The Spectral Theorem for Real and Complex Matrices

In this section we establish the existence of “eigenbasis” for several classes of operators on
V . It will be made apparent that complex eigenvalue is an indispensable ingredient to the
proof even for real vector spaces.

Recall that a subspace W of V is said to be T -invariant if T (W ) ⊆ W . We have
already used the concept of invariant subspace to decompose an operator in Section 4.3.

Lemma 5.6.18. Let (V , 〈·, ·〉) be a finite dimensional inner product space. A subspace W
is T -invariant if and only if W⊥ is T ∗-invariant.

Proof. Suppose W is T -invariant, let v ∈ W⊥, we show that T ∗v ∈ W⊥. Let u ∈ W ,
then

〈u,T ∗v〉 = 〈Tu, v〉 = 0,

the last equality holds because Tu ∈W and v ∈W⊥. Therefore T ∗v ∈W⊥.

Now the converse follows because T ∗∗ = T . �

Theorem 5.6.19 (Spectral). Let V be a finite dimensional inner product space.

(i) If F = C and T : V → V is an normal operator, then there is an orthonormal basis
consisting of eigenvectors of T .

(ii) If F = R and T : V → V is self-adjoint operator, then there is an orthonormal
basis consisting of eigenvectors of T .

Proof. (i) We will prove by induction on dimV . When dimV = 1, the normalized
nonzero vector in V will do. Suppose now the statement holds for every complex inner
product space with dimensional less than k := dimV .

By Lemma 5.6.20 below there is nonzero w1 ∈ V such that Tv = λw1, for some
λ ∈ C. Let W = span{w1}, as W is T -invariant, W⊥ is T ∗ invariant by Lemma 5.6.18.
Since

T ∗|W⊥ : W⊥ →W⊥

is normal (why?), by induction hypothesis there is an orthonormal basis {w2,w3, . . . ,wk−1}
of W⊥ consisting of eigenvectors of T ∗. Since T is normal, by Theorem 5.6.16 w2, . . . ,wk
are eigenvectors of T .

(ii) We first show that T must have at least one eigenvector. Let α be an
orthonormal basis of V , let A = [T ]α ∈Mn×n(R) which is symmetric by Theorem 5.6.9.

Claim. Every symmetric matrix S ∈Mn×n(R) has real eignevalues.

Proof of the Claim. Consider S as a vector in Mn×n(C), then det(S − xI) has
a root λ ∈ C, so LS : Cn → Cn has eigenvalue λ. Since LS is self-adjoint (recall
Example 5.6.7), λ must be real by Theorem 5.6.17. �

By the claim there is an eigenvalue λ ∈ R of A, so there is nonzero x ∈ Rn such that
Ax = λx. If we let v ∈ V be such that [v]α = x, then Tv = λv. Hence we have
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shown that every self-adjoint operator on real vector space(¶) has an eigenvector with
real eigenvalue.

Up to this point we can repeat the argument in the second paragraph of (i) to
finish the proof since T is normal, T and T ∗ share the same set of eigenvectors. �

Lemma 5.6.20. Let V be a finite dimensional complex vector space. Every linear operator
T : V → V has at least one eigenvalue.

Proof. Choose a basis α of V and consider the matrix A = [T ]α, by Corollary 4.1.3
there is at least one eigenvalue λ ∈ C, therefore [T ]αx = λx for some nonzero x ∈ Cn.
Choose v ∈ V \ {0} such that [v]α = x, then Tv = λv. �

For the next immediate corollary, we introduce the following terminology.

(i) We say that a matrix A ∈ Mn×n(R) is orthogonally diagonalizable if there is an
orthogonal matrix P ∈Mn×n(R) (i.e., PTP = I) such that PTAP is diagonal.

(ii) We also say that a matrix A ∈ Mn×n(C) is unitarily diagonalizable if there is an
unitary matrix U ∈Mn×n(C) (i.e., U∗U = I) such that U∗AU is diagonal.

Theorem 5.6.19 tells us:

Corollary 5.6.21.

(i) Symmetric real matrices are orthogonally diagonalizable.

(ii) Hermitian complex matrices are unitarily diagonalizable with only real eigenvalues.

(iii) Unitary Matrices are unitarily diagonalizable.

Proof. Given a matrix A ∈Mn×n(F), apply the Spectral Theorem 5.6.19 to LA in each
part. �

If you want to solve the following on your own, please ignore the solution here for
the moment and try to think about it first.

Example 5.6.22 (HKUST UG Math Competition Senior Level). Let A and B be 3×2 and
2× 3 matrices respectively. If

AB =

 8 2 −2
2 5 4
−2 4 5

 ,

then determine the rank of AB and determine all possible answers of BA.

Solution. Since AB is symmetric, by Corollary 5.6.21 we know that AB is diagonaliz-
able. To find the rank, we may find all out all eigenvectors first.

Since det(AB − λI) = −λ(λ− 9)2, the only eigenvalues are 0 and 9.

For λ = 0: The AM is 1 and thus the GM is also 1.

(¶) Actually with the same argument, every self-adjoint operator on (V , 〈·, ·〉) over F has a real eigenvalue.
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For λ = 9: The AM is 2. However, AB is symmetric, it is diagonalizable, thus
GM must also be 2.

Hence there are linearly independent eigenvectors v1, v2, v3 of AB such that

ABv1 = 0,ABv2 = 9v2 and ABv3 = 9v3. Thus rank(AB) = 2 and it follows that

BA(Bv2) = 9Bv2 and BA(Bv3) = 9Bv3.

Note that Bv2 and Bv3 are linearly independent since

xBv2 + yBv3 = 0 =⇒ xABv2 + yABv3 = 0 =⇒ 9xv2 + 9yv3 = 0 =⇒ x = y = 0.

Let P = [Bv2 Bv3], then

P−1(BA)P =

[
9 0
0 9

]
=⇒ BA = P (9I)P−1 = 9I,

where I is a 2× 2 identity matrix.

Another linear algebra problem from the HKUST UG Math Competition is pre-
sented in Problem 5.8. You may take a look ,.

5.7 Sylvester’s Criterion for Positive Definiteness

In this section we focus on real symmetric matrices. Recall that from Definition 5.1.3 a
matrix is said to be positive definite if it is symmetric and xTAx > 0 for all x 6= 0, moreover,
by Corollary 5.6.21 all symmetric matrices are orthogonally diagonalizable.

Theorem 5.7.1. A real symmetric matrix is positive definite if and only if all its eigenvalues
are positive.

Proof. Let A ∈Mn×n(R) be symmetric and let v1, v2, . . . , vn be orthonormal eigenvec-
tors of A with Avi = λivi, for some λi ∈ R.

(⇒) Suppose A is positive definite. Since Avi = λivi, taking vTi on both sides,

0 < vTi Avi = λi‖vi‖2 =⇒ λi > 0.

(⇐) Suppose all eigenvalues are positive, then for x =
∑n
i=1 aivi 6= 0,

xTAx =

n∑
i=1

n∑
j=1

aiajv
T
i Avj =

n∑
i=1

n∑
j=1

λjaiajv
T
i vj =

n∑
i=1

λia
2
i > 0. �

Therefore to prove a symmetric is positive definite, it is sufficient (and also neces-
sary) to show all of its eigenvalues are positive. We end this section by discussing the nice
computational criterion for positive definiteness.

Theorem 5.7.2 (Sylvester’s Criterion). Let A = [aij ]n×n be real symmetric. Then A is
positive definite if and only if

det[aij ]1×1, det[aij ]2×2, . . . , det[aij ]n×n > 0.
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The scalar det[aij ]k×k is called the kth principal minor of A. Note that the
assumption that A is symmetric doesn’t affect its applicability since ALL quadratic poly-
nomial in n variables can be rearranged to have “symmetric coefficients” (we demonstrate
this in Example 5.9.3).

Proof of (⇒) of Theorem 5.7.2. This is simple because if we let

x = (x1,x2, . . . ,xk, 0, . . . , 0)T = (x̃T , 0, . . . , 0)T , x̃ ∈ Rk,

then

xTAx =

k∑
i=1

k∑
j=1

xixj(e
T
i Aej) =

k∑
i=1

k∑
j=1

xixjaij = x̃T [aij ]k×kx̃, (5.7.3)

this shows us Ak := [aij ]k×k is symmetric and positive definite. By Theorem 5.7.1 all
eigenvalues of Ak are positive. Since detAk is the product of all eigenvalues of Ak,
detAk > 0. �

Our proof to (⇐) direction of Theorem 5.7.2 will be adapted from George T. Gilbert,
Positive Definite Matrices and Sylvester’s Criterion, The American Mathematical Monthly,
Vol. 98, No. 1, Jan., 1991, which proceeds with the following lemma:

Lemma 5.7.4. Let A ∈ Mn×n(R) be a symmetric matrix. If there is a k dimensional
subspace W of Rn such that wTAw > 0 for every w ∈ W \ {0}, then A has at least k
positive eigenvalues.

Proof. Let v1, v2, . . . , vn be eigenvectors of A with Avi = λivi, for some λi ∈ R (which
always exists since A is symmetric). Relabelling if necessary, we assume

λ1 ≥ λ2 ≥ · · · ≥ λn.

If span{vn, vn−1, . . . , vm+1} is too large (i.e., when m is too small), then it must intersect
W nontrivially. Specifically, whenever (n−m)+k > n (iff k > m), then Example 2.7.10
tells us

span{vn, vn−1, . . . , vm+1} ∩W 6= {0},

therefore there is ai ∈ R such that w =
∑n
i=m+1 aivi ∈W \ {0} and

0 < wTAw =

n∑
i=m+1

λia
2
i ≤ λm+1

n∑
i=m+1

a2
i .

Now necessarily λm+1 > 0, i.e., λ1,λ2, . . . ,λm+1 > 0, we take m = k − 1 to finish the
proof. �

Proof of (⇐) of Theorem 5.7.2. We prove by induction on n, the case that n = 1 is
trivial. Suppose now every (n− 1)× (n− 1) symmetric matrix with all principal minors
positive is positive definite.

Let A ∈ Mn×n(R) be symmetric and have all principal minors positive, for
every x = (x̃T , 0)T , x̃ ∈ Rn−1, one has

xTAx = x̃T
(
[aij ](n−1)×(n−1)

)
x̃
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from the computation in (5.7.3). By induction hypothesis, [aij ](n−1)×(n−1) is positive
definiteness, hence xTAx > 0 for all x ∈ W = {(x̃, 0) : x̃ ∈ Rn−1}. By Lemma 5.7.4, A
has at least n− 1 positive eigenvalues. Since detA > 0, the remaining eigenvalue must
be positive. �

If we examine every proof carefully, in each of the results when the word real sym-
metric is replaced by Hermitian and when R is replaced by C, we find that nothing in the
proof can go wrong. Therefore as a direct consequence of the proof we have:

Theorem 5.7.5 (Sylvester’s Criterion). Let A = [aij ]n×n be Hermitian. Then A is positive
definite if and only if

det[aij ]1×1, det[aij ]2×2, . . . , det[aij ]n×n > 0.

5.8 Polar Decomposition

5.8.1 Positive Matrices and Unique Positive Square Root

In this section every matrix A such that 〈Ax,x〉 ≥ 0 for every x will be called a positive
matrix. Since the Sylevester’s Criterion work for real and complex matrices, in this section
we pay all of our effort to Cn, the complex Hilbert space. The notation 〈x, y〉 = y∗x will
always denote the standard inner product on Cn which is conjugate linear in the second
variable.

The first reason we stick with complex Hilbert spaces is due to the following result:

Theorem 5.8.1. Let A be a matrix in Mn×n(C). If A is positive, i.e., if 〈Ax,x〉 ≥ 0 for
every x ∈ Cn, then A is self-adjoint.

It is worth noting that the proof of below (including the claim) carries over to the
general case when Cn is replaced by any complex Hilbert space H and A is replaced by any
positive operator T : H → H. Also note that positive matrices can be singular, they may
not be positive definite.

Proof. First of all we claim that:

Claim. If 〈Ax,x〉 = 0 for every x ∈ Cn, then A = 0.

Proof. It follows from the following computations: For every x, y ∈ Cn,

0 = 〈(A(x+ iy),x+ iy〉 = −i〈Ax, y〉+ i〈Ay,x〉

and
0 = 〈A(x+ y),x+ y〉 = 〈Ax, y〉+ 〈Ay,x〉,

therefore we have 〈Ax, y〉 = 0 for every x, y. In paricular, Ax = 0 for every x ∈ Cn.�

Now it is given that 〈Ax,x〉 ≥ 0, therefore 〈Ax,x〉 = 〈Ax,x〉 = 〈x,Ax〉 = 〈A∗x,x〉, and
therefore 〈(A−A∗)x,x〉 = 0 for every x ∈ Cn. Now by the claim we are done. �
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The following is an immediate application of Spectral Theorem:

Theorem 5.8.2. Every positive matrix A has a unique positive matrix S such that A = S2.
We call S the positive square root of A.

Proof. We show the existence first. By Theorem 5.8.1 A is self-adjoint, hence by
Spectral Theorem in the previous section, P−1AP = D for some P invertible and some
D diagonal. Since A is nonnegative definite, D = diag(λ1,λ2, . . . ,λn), where λi ≥ 0 for

all i. If we define D1/2 = diag(λ
1/2
1 ,λ

1/2
2 , . . . ,λ

1/2
n ), then

S := PD1/2P−1

satisfies S2 = PDP−1 = A, and of course S itself is positive.

As for uniqueness, let’s still denote S a positive square root of A. Since T is
self-adjoint, there are λ1, . . . ,λk such that

Cn =

k⊕
i=1

ker(T − λiI).

Again by Spectral Theorem S is also diagonalizable, let v ∈ ker(S − λI), then Sv = λv
and thus Tv = λ2v, therefore λ =

√
λi for some i. Moreover, since S is self-adjoint and

since ker(S −
√
λiI) ⊆ ker(T − λiI) for each i, this set inclusion cannot be proper due

to the direct sum above, we conclude ker(S −
√
λiI) = ker(T − λiI) for each i. Which

means that Sv =
√
λiv for v ∈ ker(T − λiI), S is uniquely determined. �

Now we can discuss the main theorem of this section:

Theorem 5.8.3 (Polar Decomposition). Let A be an n × n matrix over F = R or C, then
there is a unitary (orthogonal when F = R) matrix U and a positive matrix P ∈Mn×n(F)
such that

A = UP ,

where P =
√
A∗A, the unique positive square root of the positive matrix A∗A.

Proof. First we observe that

‖
√
A∗Ax‖2 = 〈

√
A∗Ax,

√
A∗Ax〉 = 〈x,A∗Ax〉 = 〈Ax,Ax〉 = ‖Ax‖2,

therefore ‖
√
A∗Ax‖ = ‖Ax‖. Now we define an isometry:

S1 : range
√
A∗A→ rangeA;

√
A∗Ax 7→ Ax,

this map is automatically well-defined since it preserves norm. Namely, if
√
A∗Ax =√

A∗Ay, then

‖
√
A∗A(x− y)‖ = ‖A(x− y)‖ = 0,

so Ax = Ay.

Now if we can extend S1 to a unitary operator S on Fn, then we will have for
every x ∈ Fn,

S(
√
A∗Ax) = S1(

√
A∗Ax) = Ax,
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and we will be done. Since S1 is injective, dim range
√
A∗A = dim rangeS1 necessarily.

We let {u1, . . . ,uk} be an orthonormal basis of (range
√
A∗A)⊥ and {v1, . . . , vk} be that

of (rangeS1)⊥. We now define

S2 : (range
√
A∗A)⊥ → (rangeS1)⊥; a1u1 + · · ·+ akuk 7→ a1v1 + · · ·+ akvk.

Finally we define S = S1 ⊕ S2. It is a direct verification that S preserves length: for
u ∈ dom S1 and v ∈ dom S2, we have

‖S(u+ v)‖2 = ‖Su+ Sv‖2 = ‖S1u+ S2v‖2 = ‖S1u‖2 + ‖S2v‖2,

since u =
√
A∗Ax for some x ∈ Fn and ‖S2v‖ = ‖v‖, we have

‖S(u+ v)‖2 = ‖S1(A∗Ax)‖2 + ‖v‖2 = ‖Ax‖2 + ‖v‖2

= ‖
√
A∗Ax‖2 + ‖v‖2

= ‖u‖2 + ‖v‖2 = ‖u+ v‖2,

as desired. Since preserving length is the same as preserving inner product, thus S must
be unitary. �

For every n× n matrix A, the matrix
√
A∗A is often called the positive part of A.

Since it is analogues to decomposition of complex numbers that z = eiθ|z|, it is also common
to denote |A| =

√
A∗A, therefore for every matrix A, there is a unitary matrix U such that

A = U |A|. With this notation, it can be easily checked that a matrix is normal if and only
if |A| = |A∗| (set A = UP , say).

5.8.2 Second Proof of Singular Value Decomposition

In the following let’s give a second proof of Singular Value Decomposition shown in Section
4.2. The proof below will not include the uniqueness of left and right singular vectors—which
has been done in Section 4.2.

Theorem 5.8.4. Every matrix A ∈Mm×n(C) has a SVD:

A = UΣV ∗

U ∈Mm×m(C) is unitary
V ∈Mn×n(C) is unitary
Σ ∈Mm×n(R) is “diagonal”

Furthermore, the singular values σj ’s, σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n}, are uniquely
determined.

Proof. Let A be any n × n matrix over F first, then A = S|A| for some unitary
(orthogonal when F = R) matrix S. We may assume A 6= 0, since |A| is positive
definite, by Spectral Theorem there is a unitary matrix (orthogonal when F = R) V and
diagonal Σ such that

A = S[V ΣV ∗] = (SV )ΣV ∗ = UΣV ∗,

where U = SV is unitary (orthogonal when F = R). We can further arrange columns of
V such that Σ = diag(σ1, . . . ,σn) with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. They are unique since
they are eigenvalues of the unique square root of

√
A∗A.
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5.8. Polar Decomposition

Now suppose that A is an m × n matrix. In order not to insert “(orthogonal
when F = R)” everytime, let’s use the term F-unitary with obvious meaning.

W.l.o.g. let’s assume m > n (otherwise consider AT ). Extend A to a square by
adjoining it an m × (m − n) 0 matrix O, then by what we have just proved there are
m×m dimensional F-unitary matrices U and V such that[

A O
]

= UΣV ∗, (5.8.5)

where Σ = diag(σ1, . . . ,σm) with σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0. Note that Σ is uniquely
corresponded to

[
A O

]
.

By our definition, for every i > n,

0 = UΣV ∗ei = U

(
m∑
k=1

σkekv
∗
k(ei)

)
,

since U is invertible, we have

σkv
∗
k(ei) = 0 for each k = 1, 2, . . . ,m and for each i > n.

In particular, if rankA = r, then σr+1 = 0 (and then σi = 0 for every i > r), and we
then have v∗k(ei) = 0 for every k = 1, 2, . . . , r and i > n. In other words,

v1, . . . vr ∈ Fn × {0m−n}. (5.8.6)

Now multiplying both sides of (5.8.5) by

[
In×n
O

]
, we have

A = UΣV ∗m×n,

where V ∗m×n is the left m×n part of the matrix V ∗. Denote D = diag(σ1, . . . ,σn)—the
upper left n× n part of Σ, then

A = U

[
D On,m−n

Om−n,n Om−n,m−n

]
V ∗m×n = U

[
DV ∗n×n
Om−n,n

]
= U

[
D
O

]
V ∗n×n,

where V ∗n×n denotes the upper left n× n part of V ∗.

We are almost there, except the fact that V ∗n×n is not necessarily F-unitrary.
But we can always rearrange V , if necessary, to achieve this. For this, let’s study the
term DV ∗n×n.

Since σi = 0 for i > r, we have

DV ∗n×n =



σ1v
′∗
1

...
σrv
′∗
r

0 · v′∗r+1
...

0 · v′∗n


,

where v′ means the first n coordinates of v ∈ Fm. We may replace vr+1, . . . , vn ∈ Fm
freely such that v1, . . . , vn form an orthogonal basis of Fn × {0m−n} (recall (5.8.6))
without changing DV ∗n×n, thus we may assume V ∗n×n itself is F-unitary, and we are
done. �
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Chapter 5. Inner Product Spaces

5.9 Quadratic Forms

5.9.1 Definitions and Examples

Definition 5.9.1. Quadratic forms are homogeneous quadratic polynomials in n variables.

In general quadratic form in n variables takes the following form: for x = (x1,x2, . . . ,xn)T ,

Q(x) =

n∑
i=1

n∑
j=1

xiaijxj , (5.9.2)

for some aij ∈ R, i, j = 1, 2, . . . ,n. If we define A = [aij ]n×n, a careful verification shows
that

Q(x) = xTAx.

Note that aij ’s can always be arranged such that A is symmetric, thus every quadratic form
gives us a symmetric form

B(x, y) = xTAy,

where x, y ∈ Rn. Note that when A is positive-definite, then B becomes an inner product.
We have a nice criterion to determine positive definiteness in Theorem 5.7.2.

In application we need to get used to the way to arrange those coefficients into a
symmetric matrix.

Example 5.9.3. Wr try to identify the conics represented by

2x2 − 4xy + 5y2 = 1. (5.9.4)

We expect it is an ellipse. In view of (5.9.2), we see that the ith variable on the left
corresponds to the ith row of our desired matrix:

2x2 − 4xy + 5y2 =
2xx − 2xy
−2yx + 5yy

Note the coefficient of xy is divided by half so that the coefficients of xy and yx are equal,
thus we get

2x2 − 4xy + 5y2 = [x y ]

[
2 −2
−2 5

]
︸ ︷︷ ︸

:=A

[
x
y

]
= uTAu, (5.9.5)

where u = (x , y)T . Now we will diagonalize A in order to get rid of all the cross terms.

Step 1 (Find all eigenvalues and eigenvectors). By direct computation, pA(t) =
(t − 6)(t − 1), hence A is diagonalizable as there are enough eigenvectors.

When t = 6, the system (A − 6I )v = 0 gives v = v1(1,−2)T . When t = 1, the
system (A− I )v = 0 gives v = v2(2, 1)T .

Step 2 (Orthogonalize eigenvectors to get an orthogonal matrix). Luckly
(1,−2)T and (2, 1)T are already orthogonal. We divide them by their lengths to get or-
thonormal set, then

P =
1√
5

[
1 2
−2 1

]
is orthogonal, i.e., PTP = I . We quickly see why we prefer orthogonality.
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5.9. Quadratic Forms

Step 3 (Simplify the quadratic form). Continuing from (5.9.5):

2x2 − 4xy + 5y2 = uTAu = uT

(
P

[
6 0
0 1

]
P−1

)
u = (PTu)T

[
6 0
0 1

]
PTu.

Let PT (x , y)T = (x ′, y ′)T , then (5.9.4) becomes(
x ′

1√
6

)2

+

(
y ′

1

)2

= 1.

So (5.9.4) is an ellipse with major semi-axis of length 1 and minor semi-axis of length 1/
√

6.
The reason we require P be orthogonal is: our strategy is to “rotate” the coordinate axis in
order to identify what the (5.9.4) represents, orthogonal matrices are indeed rotations!

5.9.2 Application of Quadratic Forms to Multivariable Second Derivative
Test

Suppose f is defined near a ∈ Rn such that f has second order derivatives near at a. When
f is nice enough, we expect the following approximation

T (x) = f(a) +

n∑
i=1

∂f

∂xi
(a)(xi − ai) +

1

2!

n∑
i,j=1

(
∂2f

∂xi∂xj
(a)

)
(xi − ai)(xj − aj)

is a second order approximation of f at a, i.e., we should have

lim
x→a

|f(x)− T (x)|
‖x− a‖2

= 0.

To express the quadratic approximation neatly let’s define Hessian matrix of f at a by

Hf (a) =



∂2f

∂x2
1

∂2f

∂x1 ∂x2
· · · ∂2f

∂x1 ∂xn

∂2f

∂x2 ∂x1

∂2f

∂x2
2

· · · ∂2f

∂x2 ∂xn
...

...
. . .

...

∂2f

∂xn ∂x1

∂2f

∂xn ∂x2
· · · ∂2f

∂x2
n


(a).

Therefore the quadratic approximation can be neatly written as

T (x) = f(a) +∇f(a) · (x− a) +
1

2
(x− a)THf (a)(x− a).

When a is a critical point, the quadratic approximation becomes

T (x) = f(a) +
1

2
(x− a)THf (a)(x− a),

hence the study of maximality and minimality of f(a) is the same as the study of positive
definiteness of the quadratic form

ha(x) = (x− a)THf (a)(x− a).

Whom we have very good answer when Hf (a) is a symmetric matrix. Therefore to apply
the knowledge of linear algebra that we have developed we need to provide good sufficient
conditions to make sure:
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• ∂2f

∂xi∂xj
(a) =

∂2f

∂xj∂xi
(a) for all i, j = 1, 2, . . . ,n;

• T (x) := f(a)+∇f(a) ·(c−a)+
1

2
(x−a)THf (a)(x−a) is a second order approximation.

For this, let’s recall those standard results from multivariable calculus without proof.
For simplicity let’s denote

fxixj =
∂2f

∂xj∂xi
.

Theorem 5.9.6. Suppose f(x, y) has first order partial derivatives near (x0, y0). If fx and
fy are differentiable at (x0, y0), then

fxy(x0, y0) = fyx(x0, y0).

To get second order approximation we further require those first order partial deriva-
tives be continuous.

Theorem 5.9.7. Suppose f(x1,x2, . . . ,xn) has continuous first order partial derivatives near
a. If fxi ’s are differentiable at a, then the quadratic approximation is a second order
approximation in the sense that

lim
x→a

∣∣∣∣f(x)−
(
f(a) +∇f(a) · (x− a) +

1

2
(x− a)THf (a)(x− a)

)∣∣∣∣
‖x− a‖2

= 0.

We summarize our discussion as a theorem.

Theorem 5.9.8. Suppose f(x1,x2, . . . ,xn) has continuous first order partial derivatives near
a and fxi ’s are differentiable at a. Then Hf (a) is symmetric and if ∇f(a) = 0,

(i) Hf (a) is positive definite =⇒ f(a) is a local minimum.

(ii) Hf (a) is negative definite =⇒ f(a) is a local maximum.

Remark. In application to apply Theorem 5.9.8 the minimal requirement that fxi ’s are
differentiable at a is usually replaced by a stronger condition that all second order partial
derivatives are continuous at a.

5.10 Exercises

Inner Products

Problem 5.1. Show that 〈A,B〉 := Tr(BTA) defines an inner product on Mm×n(R)
(recall Problem 1.4).

Problem 5.2. Use Cauchy-Schwarz inequality to prove that for all a1, . . . , an, b1, . . . , bn ∈
R, ( n∑

k=1

akbk

)2

≤
( n∑
k=1

ka2
k

)2( n∑
k=1

b2k
k

)2

.
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Problem 5.3. Use Cauchy-Schwarz inequality to prove that all roots of P (z) = zn +
an−1z

n−1 + · · ·+ a1z + a0 lie in the open disk

{z ∈ C : |z| <
√

1 + |an−1|2 + · · ·+ |a1|2 + |a0|2}.

Problem 5.4. Let V be finite dimensional inner product space, prove that

〈u, v〉 = 0 ⇐⇒ ‖u‖ ≤ ‖u+ αv‖, for all α ∈ R.

Problem 5.5. Let A ∈Mn×n(R) be symmetric such that

A3 − 3A2 + 5A− 3I = 0.

Prove that A is positive definite. You may need to know Theorem 5.6.19.

Problem 5.6. Let (·, ·) be another inner product on Rn (with 〈·, ·〉 denoting the dot
product).

(i) Show that there is an invertible matrix S ∈Mn×n(R) such that

(u, v) = 〈Su,Sv〉, for all u, v ∈ Rn.

This characterizes all possible inner products on Rn.

(ii) From this, also prove that whenever A is positive definite, there is an invertible P
such that A = PTP .

Problem 5.7. Let A,B ∈Mn×n(R) be positive definite, show that Tr(AB) ≥ 0.

Hint. What properties of positive definite matrices do we have? See Problem 5.6.

Problem 5.8 (HKUST UG Math Competition Junior Level).
Let H be an inner product space. Let n be a positive integer less than the dimension
of H. If V and E are n and n− 1 dimensional subspaces of H respectively, prove that
there exists a nonzero v ∈ V orthogonal to every x ∈ E.

Remark. The vector space H is possibly infinite dimensional.

Orthogonal Complement and Orthogonal Projection

Problem 5.9. Let V be an inner product space and W its subspace, show that

W ⊆ (W⊥)⊥.

Explain why (W⊥)⊥ = W when W is finite dimensional. Don’t try to make the as-
sumption that dimV <∞.

Problem 5.10. Let A ∈ Mn×n(R) be such that A2 = A. Prove that the following are
equivalent:

(i) A is an orthogonal projection (i.e., NulA ⊥ ColA).

(ii) A is symmetric (i.e., AT = A).
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Problem 5.11. Let A ∈Mm×n(R), prove that A is injective ⇐⇒ AT is surjective.

Problem 5.12. Let U be a finite dimensional subspace of an inner product space V ,
show that

dimU⊥ = dimV − dimU .

Problem 5.13. Let {v1, v2, . . . , vn} be any set of vector in Rn. Show that for any ε > 0,
there is a basis (u1,u2, . . . ,un) of Rn such that

‖vi − ui‖ < ε, i = 1, 2, . . . ,n.

Problem 5.14. Show the Bessel’s Inequality: let {v1, v2, . . . , vn} be an orthonormal
set in an inner product space V , show that for every v ∈ V ,

n∑
i=1

|〈v, vi〉|2 ≤ ‖v‖2.

Problem 5.15. Find a polynomial q ∈ P2(R) such that∫ 1

0

p(x) cos(πx) dx =

∫ 1

0

p(x)q(x) dx

for every p ∈ P2.

Problem 5.16. Find p0 ∈ P5(R) that makes∫ π

−π
(sinx− p(x))2 dx

as small as possible. Don’t do it by hands, use any software which can perform symbolic
computation.

Answer:

p0(x) =

(
693

8π6
− 72765

8π8
+

654885

8π10

)
x5 +

(
39375

4π6
− 315

4π6
− 363825

4π8

)
x3

+

(
105

8π2
− 16065

8π4
+

155925

8π6

)
x

Remark. Interestingly, among degree 5 polynomials p0 gives a very good approximation
of sinx on [−π,π]. Below is the graph of sinx, p0(x) and x− x3/3! + x5/5!.

-4 -2 2 4

-3

-2

-1

1

2

3

Hx from -4 to 4L

sinHxL

0.00564312 x5
- 0.155271 x3

+ 0.987862 x

x5

120
-

x3

6
+ x

Knowledge in linear algebra provides us a much better approximation than calculus!
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Problem 5.17 (Alternative Proof of Spectral Theorem). In this problem we prove Spec-
tral Theorem using an important theorem in multivariable calculus:

Theorem (Lagrange Multiplier). Let f , c1, c2, . . . , cm : Rn → R be contin-
uously differentiable function (i.e., all partial derivatives are continuous). If
the local extreme of f(x1, . . . ,xn) occurs at x0 ∈ Rn subject to the con-
straints

c1(x1, . . . ,xn) = 0, c2(x1, . . . ,xn) = 0, · · · , cm(x1, . . . ,xn) = 0,

then there are λ1, . . . ,λm ∈ R such that

∇f(x0) = λ1∇c1(x0) + · · ·+ λm∇cm(x0).

Now we prove Spectral Theorem in the following step: Let A be a real n×n symmetric
matrix.

Step 1. Let ψ, c : Rn → R be defined by ψ(x) = xTAx and c(x) = xTx − 1
respectively. Show that for every x ∈ Rn,

∇ψ(x) = 2xTA and ∇c(x) = 2xT

Step 2. It is known that subject to the condition c(x) = 0, the local extreme
f(x) occurs for those x, say at x0 (s.t. xT0 x0 = 1). By using Lagrange Multiplier
Theorem, show that x0 is an eigenvector of A.

Step 3. We will finish the proof by induction. Suppose that we already have
orthonormal eigenvectors v1, . . . , vk ∈ Rn of A. Show that the solution to the following
constrained extreme problem (it is known that this exists)

ψ(x) = max, xTx− 1 = 0, xT v1 = 0, xT v2 = 0, · · · ,xT vk = 0

is also an eigenvector of A.

Step 4. Complete the proof by induction.
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